Name \qquad ID \qquad
MATH 311
Exam 2
Section 502
Fall 2000
P. Yasskin

1	$/ 20$	3	$/ 40$
2	$/ 40$	4	$/ 10$

1. (20 points) Consider the vector space P_{2} of polynomials of degree ≤ 2. Consider the function of two polynomials

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

a. (10 pts) Show $\langle p, q\rangle$ is an inner product.
b. (10 pts) Find $\cos \theta$ where θ is the angle between the polynomials

$$
p=5 x^{2}+3 \text { and } q=3 x .
$$

2. (40 points) Consider the vector space P_{2} of polynomials of degree ≤ 2. Consider the bases

$$
\begin{array}{rlc}
e_{1}=1 & e_{2}=x & e_{3}=x^{2} \\
f_{1}=1+x & f_{2}=x & f_{3}=-x+x^{2}
\end{array}
$$

Consider the function $L: P_{2} \rightarrow P_{2}$ given by

$$
L(p)=2 p(0)+p(1) x
$$

a. (5 pts) Show L is linear.
b. (5 pts) Find the matrix of L relative to the e-basis. Call it $\underset{e+e}{A .}$
c. (10 pts) Find the change of basis matrices

- C from the f-basis to the e-basis, and $e+f$
- C from the e-basis to the f-basis.
f-e
d. (10 pts) Find the matrix of L relative to the f-basis. Call it B.
e. (5 pts) Find $\underset{f \sim f}{B}$ by a second method.
f. (5 pts Extra Credit) What are the eigenvalues and corresponding eigenpolynomials of L ? (This required no computations.)

3. (40 points) Consider the matrix $A=\left(\begin{array}{rr}-6 & -8 \\ 4 & 6\end{array}\right)$.
a. (15 pts) Find the eigenvalues and eigenvectors of A.
b. (10 pts) Find the diagonalizing matrix X so that $A=X D X^{-1}$ where D is diagonal. What are D and X^{-1} ?
c. (5 pts) Find A^{10}.
d. (5 pts) Find $e^{A t}$.
e. (5 pts Extra Credit) Find $\sin \left(\frac{\pi}{4} A\right)$.

HINT: $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
4. (10 points) Let $V=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ where

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right) \text { and } \quad \vec{v}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

Notice that V is a subspace of \mathbf{R}^{5}.
a. (6 pts) Find V^{\perp} the orthogonal subspace to V.
b. (2 pts) What is a basis for V^{1} ?
c. (2 pts) What is the dimension of V^{\perp} ?

