Name		. ID				
			1	/20	3	/40
MATH 311	Exam 2	Fall 2000				_
Section 502		P. Yasskin	2	/40	4	/10

1. (20 points) Consider the vector space P_2 of polynomials of degree ≤ 2 . Consider the function of two polynomials

$$\langle p,q\rangle = \int_0^1 p(x) q(x) dx$$

a. (10 pts) Show $\langle p,q \rangle$ is an inner product.

b. (10 pts) Find $\cos\theta$ where θ is the angle between the polynomials $p = 5x^2 + 3$ and q = 3x.

2. (40 points) Consider the vector space P_2 of polynomials of degree ≤ 2 . Consider the bases

 $e_1 = 1$ $e_2 = x$ $e_3 = x^2$ $f_1 = 1 + x$ $f_2 = x$ $f_3 = -x + x^2$

Consider the function $L: P_2 \rightarrow P_2$ given by

$$L(p) = 2p(0) + p(1)x$$

a. (5 pts) Show L is linear.

b. (5 pts) Find the matrix of L relative to the *e*-basis. Call it A. e←e

- c. (10 pts) Find the change of basis matrices
 - C from the f-basis to the e-basis, and $e \leftarrow f$

• *C* from the *e*-basis to the *f*-basis. f←e

d. (10 pts) Find the matrix of L relative to the f-basis. Call it B.

f←f

e. (5 pts) Find B_{f+f} by a second method.

f. (5 pts Extra Credit) What are the eigenvalues and corresponding eigenpolynomials of *L*? (This required no computations.)

- **3**. (40 points) Consider the matrix $A = \begin{pmatrix} -6 & -8 \\ 4 & 6 \end{pmatrix}$.
 - **a**. (15 pts) Find the eigenvalues and eigenvectors of *A*.

b. (10 pts) Find the diagonalizing matrix X so that $A = XDX^{-1}$ where D is diagonal. What are D and X^{-1} ?

c. (5 pts) Find A^{10} .

d. (5 pts) Find e^{At} .

e. (5 pts Extra Credit) Find $\sin(\frac{\pi}{4}A)$. HINT: $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ 4. (10 points) Let $V = \text{Span}\{\vec{v}_1, \vec{v}_2\}$ where

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 and $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$.

Notice that V is a subspace of \mathbf{R}^5 .

a. (6 pts) Find V^{\perp} the orthogonal subspace to V.

b. (2 pts) What is a basis for V^{\perp} ?

c. (2 pts) What is the dimension of V^{\perp} ?