Name \qquad ID. \qquad
MATH 311
Exam 3
Section 502
P. Yasskin

1. (15 points) Compute $\iint_{R} x d x d y$ over the region inside the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ between the lines $y=\frac{x}{2}$ and $y=-\frac{x}{2} \quad$ in the $1^{\text {st }}$ and $4^{\text {th }}$ quadrants. HINT: Use the elliptic coordinate system

$$
x=4 t \cos \theta, \quad y=2 t \sin \theta
$$

2. (30 points) The diamond shaped region at the right is called an astroid. It is the graph of

$$
x^{2 / 3}+y^{2 / 3}=1
$$

and it may be parametrized by

$$
x=\cos ^{3} t \quad y=\sin ^{3} t
$$

a. Find its arc length. HINT: First find one quarter of the length.
b. Find its area. HINT: What does Green's Theorem say about the integral $\oint(-y d x+x d y)$?
3. (15 points) Compute $\int \vec{F} \bullet \vec{d}$ for $\vec{F}=\left(z^{2}-(\sin x) e^{\cos x},(\cos y) e^{\sin y}, 2 x z\right)$ along the helix $\vec{r}(\theta)=(\cos \theta, \sin \theta, \theta)$ for $0 \leq \theta \leq 2 \pi$.
HINT: Check \vec{F} is a conservative vector field. Then find a potential OR change the path.
4. (45 points) The spiral ramp at the right may be parametrized as

$$
\begin{aligned}
& \vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, \theta) \\
& \text { for } \quad 0 \leq r \leq 2 \quad \text { and } \quad 0 \leq \theta \leq 3 \pi .
\end{aligned}
$$

a. Find the tangent plane at the point $(x, y, z)=(-1,0, \pi)$. Give its equation in both parametric form and non-parametric form.
b. Compute $\quad \iint \sqrt{x^{2}+y^{2}} d S \quad$ over this spiral ramp.
c. Compute $\iint \vec{F} \cdot \overrightarrow{d S}$ over this spiral ramp if $\vec{F}=\left(x z, y z, z^{2}\right)$.

