Name
ID
Math 311 Exam 1
Spring 2002
Section 503
P. Yasskin

1	$/ 10$
2	$/ 10$
3	130
4	125
5	125

1. (10 points) A matrix A satisfies $E_{3} E_{2} E_{1} A=U$ where

$$
E_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad E_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \quad E_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \quad U=\left(\begin{array}{ccc}
2 & 5 & * \\
0 & -3 & * \\
0 & 0 & -1
\end{array}\right)
$$

and the $*$'s represent unknown non-zero numbers. Find $\operatorname{det} A$.
2. (10 points) If c is a scalar, A is a 50×60 matrix and B is a 60×80 matrix, prove $A(c B)=c(A B)$. HINT: Write out the $i j$-component of each side.
3. (30 points) Consider the triangle with vertices

$$
A=(2,4,0) \quad B=(4,2,1) \quad C=(2,7,4)
$$

a. Find $\cos \theta$ where θ is the angle at vertex A.
b. Find the area of the triangle $\triangle A B C$.

$$
A=(2,4,0) \quad B=(4,2,1) \quad C=(2,7,4)
$$

c. Find a set of parametric equations for the line containing A and C.
d. Find a set of parametric equations for the plane containing A, B and C.
e. Find a non-parametric equation for the plane containing A, B and C.
4. (25 points) Consider the system of equations:

$$
A X=B \quad \text { where } \quad A=\left(\begin{array}{ccc}
2 & 0 & 1 \\
1 & -2 & 1 \\
0 & 3 & -1
\end{array}\right) \quad X=\left(\begin{array}{cc}
x & p \\
y & q \\
z & r
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1
\end{array}\right)
$$

Compute A^{-1}. (Give reasons for each step.)

Solve $A X=B$.
5. (25 points) Consider the system of equations:

$$
\begin{array}{r}
3 w+6 x+y=5 \\
y-3 z=2 \\
w+2 x+y-2 z=3 \\
-2 w-4 x+y-5 z=b
\end{array}
$$

Find the value(s) of b for which there exist solutions. (Give reasons for each step.)

For that value (those values) of b what is the solution set?

Give a geometrical description of the solution set.

