Name \qquad
Math 311 Exam 2
Spring 2002
Section 503
P. Yasskin

1	$/ 10$	5	$/ 10$
2	$/ 15$	6	$/ 15$
3	$/ 10$	7	$/ 25$
4	$/ 15$		

1. (10 points) Which one of the following is NOT a vector space? Why?
a. $Q=\left\{(w, x, y, z) \in \mathbf{R}^{4} \mid w+2 x+3 y+4 z=0\right\}$
b. $S=\{X \in M(2,2) \mid A X A=X\} \quad$ where $M(2,2)$ is the set of 2×2 matrices and $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
c. $T=\left\{p \in P_{3} \mid p(1)=p(0)+1\right\} \quad$ where P_{3} is the set of polynomials of degree less than 3 .
2. (15 points) For ONE of the two vector spaces listed in \#1 (say which), give a basis and the dimension.
3. (10 points) Which one of the following is NOT a linear function? Why?
a. $I: C[0,2 \pi] \rightarrow \mathbf{R}$ where $C[0,2 \pi]$ is the set of continuous real valued functions on the interval $[0,2 \pi]$ and $I(f)=\int_{0}^{2 \pi}[x+f(x)] d x$.
b. $Z: M(2,2) \rightarrow M(2,2) \quad$ given by $\quad Z(X)=B X B \quad$ where $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$.
c. $E: P_{3} \rightarrow P_{3} \quad$ given by $E(p(x))=x \frac{d p(x)}{d x}-p(x)$.
4. (15 points) For ONE of the two linear functions listed in \#3 (say which), find the kernel and the image (as the span of some vectors) and determine if the function is onto and/or one-to-one.
5. (10 points) Let P_{3} be the vector space of polynomials of degree less than 3 . Which one of the following is NOT an inner product on P_{3} ? Why? HINT: Let $p=a+b x+c x^{2}$ and find which is not positive definite.
a. $\langle p, q\rangle_{1}=\int_{0}^{1} x p(x) q(x) d x$
b. $\langle p, q\rangle_{2}=p(0) q(0)+p(1) q(1)$
c. $\langle p, q\rangle_{3}=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$
6. (15 points) For ONE of the two inner products listed in \#5 (say which), find the angle between the polynomials $r(x)=4 x \quad$ and $\quad s(x)=6 x^{2}$
7. (25 points) Consider the vector space $V=\operatorname{Span}\left\{\sin ^{2} \theta, \cos ^{2} \theta, \sin \theta \cos \theta\right\}$
a. (3) Show $e_{1}=\sin ^{2} \theta, \quad e_{2}=\cos ^{2} \theta, \quad e_{3}=\sin \theta \cos \theta$ is a basis for V.
b. (7) Another basis is $f_{1}=1, f_{2}=\sin 2 \theta, f_{3}=\cos 2 \theta$. Find the change of basis matrices from the e-basis to the f-basis and vice versa. Be sure to say which is which.
(7 continued)
c. (4) Consider the derivative operator $D: V \rightarrow V$ given by $D(g)=\frac{d g}{d \theta}$. Find the matrix of D relative to the e-basis.
d. (6) Find the matrix of D relative to the f-basis in TWO ways.
i. by using the matrix of D relative to the e-basis:
ii. by differentiating basis vectors:
(7 continued)
e. (5) Consider the function $g(\theta)=5 \sin 2 \theta+3 \cos 2 \theta$. Compute $D(g)$ in TWO ways:
i. by differentiating:
ii. by using the matrix of D relative to the f-basis:
