Name
ID \qquad
Math 311
Exam 2
Spring 2002
Section 503
P. Yasskin

Solutions

1	$/ 10$	5	$/ 10$
2	$/ 15$	6	$/ 15$
3	$/ 10$	7	$/ 25$
4	$/ 15$		

1. (10 points) Which one of the following is NOT a vector space? Why?
a. $Q=\left\{(w, x, y, z) \in \mathbf{R}^{4} \mid w+2 x+3 y+4 z=0\right\}$
b. $S=\{X \in M(2,2) \mid A X A=X\} \quad$ where $M(2,2)$ is the set of 2×2 matrices and $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
c. $T=\left\{p \in P_{3} \mid p(1)=p(0)+1\right\} \quad$ where P_{3} is the set of polynomials of degree less than 3 .
T is NOT a vector space.

$$
\begin{aligned}
p, q \in T & \Rightarrow p(1)=p(0)+1 \text { and } q(1)=q(0)+1 \\
& \Rightarrow(p+q)(1)=p(1)+q(1)=p(0)+1+q(0)+1=(p+q)(0)+2 \neq(p+q)(0)+1 \\
& \Rightarrow p+q \notin T
\end{aligned}
$$

2. (15 points) For ONE of the two vector spaces listed in \#1 (say which), give a basis and the dimension.
Q is a vector space which is a 3-plane in R^{4} thru the origin. The augmented matrix of the equation is $\left(\begin{array}{llll|l}1 & 2 & 3 & 4 & 0\end{array}\right)$. So the parametric solution is

$$
\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 r-3 s-4 t \\
r \\
s \\
t
\end{array}\right)=r\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-4 \\
0 \\
0 \\
1
\end{array}\right)
$$

Basis is $\left(\begin{array}{cccc}-2 & 1 & 0 & 0\end{array}\right),\left(\begin{array}{cccc}-3 & 0 & 1 & 0\end{array}\right),\left(\begin{array}{cccc}-4 & 0 & 0 & 1\end{array}\right) \quad \operatorname{dim} Q=3$

OR

S is a vector space.
If $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $A X A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}-d & c \\ b & -a\end{array}\right)$
So $X \in S$ means $\left(\begin{array}{cc}-d & c \\ b & -a\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, or $d=-a$ and $c=b$.
So $X=\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)=a\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Basis is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad \operatorname{dim} S=2$
3. (10 points) Which one of the following is NOT a linear function? Why?
a. $I: C[0,2 \pi] \rightarrow \mathbf{R} \quad$ where $C[0,2 \pi]$ is the set of continuous real valued functions on the interval $[0,2 \pi]$ and $I(f)=\int_{0}^{2 \pi}[x+f(x)] d x$.
b. $Z: M(2,2) \rightarrow M(2,2) \quad$ given by $\quad Z(X)=B X B \quad$ where $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$.
c. $E: P_{3} \rightarrow P_{3}$ given by $E(p(x))=x \frac{d p(x)}{d x}-p(x)$.
I is NOT linear because
$I(a f)=\int_{0}^{2 \pi}[x+a f(x)] d x$ but $a I(f)=a \int_{0}^{2 \pi}[x+f(x)] d x=\int_{0}^{2 \pi}[a x+a f(x)] d x$ which are not equal.
4. (15 points) For ONE of the two linear functions listed in \#3 (say which), find the kernel and the image (as the span of some vectors) and determine if the function is onto and/or one-to-one.
Z is linear. If $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $Z(X)=B X B=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}a+c & a+c \\ 0 & 0\end{array}\right)$.
$\operatorname{Ker}(Z)=\{X \mid Z(X)=\mathbf{0}\}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+c=\mathbf{0}\right\}=\left\{\left(\begin{array}{cc}a & b \\ -a & d\end{array}\right)\right\}$
$=\left\{a\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}=\operatorname{Span}\left\{\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$
$\operatorname{Im}(Z)=\{Z(X)\}=\left\{\left(\begin{array}{cc}a+c & a+c \\ 0 & 0\end{array}\right)\right\}=\left\{(a+c)\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\}=\operatorname{Span}\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\}$
Z is NOT onto because $\operatorname{Im}(Z) \neq M(2,2)$.
Z is NOT one-to-one because $\operatorname{Ker}(Z) \neq\{\mathbf{0}\}$.

OR
E is linear. If $p(x)=a+b x+c x^{2}$, then $E(p(x))=x(b+2 c x)-\left(a+b x+c x^{2}\right)=-a+c x^{2}$.

$$
\begin{aligned}
\operatorname{Ker}(E) & =\{p \mid E(p)=0\}=\left\{a+b x+c x^{2} \mid-a+c x^{2}=0\right\}=\left\{a+b x+c x^{2} \mid a=c=0\right\} \\
& =\{b x\}=\operatorname{Span}\{x\} \\
\operatorname{Im}(E) & =\{E(p)\}=\left\{-a+c x^{2}\right\}=\operatorname{Span}\{1, x\}
\end{aligned}
$$

E is NOT onto because $\operatorname{Im}(Z)=\operatorname{Span}\{1, x\} \neq P_{3} . \quad E$ is NOT one-to-one because $\operatorname{Ker}(E) \neq\{0\}$.
5. (10 points) Let P_{3} be the vector space of polynomials of degree less than 3 . Which one of the following is NOT an inner product on P_{3} ? Why? HINT: Let $p=a+b x+c x^{2}$ and find which is not positive definite.
a. $\langle p, q\rangle_{1}=\int_{0}^{1} x p(x) q(x) d x$
b. $\langle p, q\rangle_{2}=p(0) q(0)+p(1) q(1)$
c. $\langle p, q\rangle_{3}=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$
$\langle p, q\rangle_{2}$ is NOT an inner product, because if $p=a+b x+c x^{2}$ then
$\langle p, p\rangle_{2}=p(0)^{2}+p(1)^{2}=(a)^{2}+(a+b+c)^{2}$
So if $p=x-x^{2}$ then $a=0, b=1, c=-1$ and $\langle p, p\rangle_{2}=(0)^{2}+(0+1-1)^{2}=0$, but $p \neq 0$
6. (15 points) For ONE of the two inner products listed in \#5 (say which), find the angle between the polynomials

$$
r(x)=4 x \quad \text { and } \quad s(x)=6 x^{2}
$$

$$
\begin{aligned}
& \langle p, q\rangle_{1}=\int_{0}^{1} x p(x) q(x) d x \text { is an inner product. } \\
& \langle r, r\rangle_{1}=\int_{0}^{1} x r(x)^{2} d x=\int_{0}^{1} 16 x^{3} d x=\left[4 x^{4}\right]_{0}^{1}=4 \\
& \langle s, s\rangle_{1}=\int_{0}^{1} x s(x)^{2} d x=\int_{0}^{1} 36 x^{5} d x=\left[6 x^{6}\right]_{0}^{1}=6 \\
& \langle r, r\rangle_{1} \\
& \langle r, s\rangle_{1}=2 \\
& \cos \theta=\frac{\int_{0}^{1} x r(x) s(x) d x=\int_{0}^{1} 24 x^{4} d x=\left[24 \frac{x^{5}}{5}\right]_{0}^{1}=\frac{24}{5}}{|r \|\rangle_{1}}=\sqrt{6} \\
& \cos
\end{aligned} \frac{24}{5 \cdot 2 \cdot \sqrt{6}}=\frac{2}{5} \sqrt{6} \quad \Rightarrow \quad \theta=\cos ^{-1} \frac{2 \sqrt{6}}{5} \approx 0.201 \mathrm{rad} .
$$

OR
$\langle p, q\rangle_{3}=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$ is an inner product.
$\langle r, r\rangle_{3}=\langle 4 x, 4 x\rangle_{3}=16+0+16=32 \quad|r|=\sqrt{\langle r, r\rangle_{3}}=\sqrt{32}=4 \sqrt{2}$
$\langle s, s\rangle_{3}=\left\langle 6 x^{2}, 6 x^{2}\right\rangle_{3}=36+0+36=72 \quad|s|=\sqrt{\langle s, s\rangle_{3}}=\sqrt{72}=6 \sqrt{2}$
$\langle r, s\rangle_{3}=\left\langle 4 x, 6 x^{2}\right\rangle_{3}=-24+0+24=0$
$\cos \theta=\frac{\langle r, s\rangle_{3}}{|r \| s|}=\frac{0}{4 \sqrt{2} 6 \sqrt{2}}=0 \quad \Rightarrow \quad \theta=\cos ^{-1} 0 \approx \frac{\pi}{2} \mathrm{rad}$
7. (25 points) Consider the vector space $V=\operatorname{Span}\left\{\sin ^{2} \theta, \cos ^{2} \theta, \sin \theta \cos \theta\right\}$
a. (3) Show $e_{1}=\sin ^{2} \theta, \quad e_{2}=\cos ^{2} \theta, \quad e_{3}=\sin \theta \cos \theta$ is a basis for V.

By definition of V, e_{1}, e_{2} and e_{3} span V. Are they independent?
$a e_{1}+b e_{2}+c e_{3}=0$
$a \sin ^{2} \theta+b \cos ^{2} \theta+c \sin \theta \cos \theta=0$
$\theta=0: \quad \Rightarrow \quad b=0$
$\theta=\frac{\pi}{2}: \quad \Rightarrow \quad a=0$
$\theta=\frac{\pi}{4}: \quad \Rightarrow \quad \frac{a}{2}+\frac{b}{2}+\frac{c}{2}=0 \quad \Rightarrow \quad c=0$
So they are independent and they are a basis.
b. (7) Another basis is $f_{1}=1, f_{2}=\sin 2 \theta, f_{3}=\cos 2 \theta$. Find the change of basis matrices from the e-basis to the f-basis and vice versa. Be sure to say which is which.

$$
\begin{aligned}
& \begin{array}{ll}
f_{1}=1 & =\sin ^{2} \theta+\cos ^{2} \theta=e_{1}+e_{2} \\
f_{2}=\sin 2 \theta & =2 \sin \theta \cos \theta \\
f_{3}=\cos 2 \theta & =e_{3} \\
\cos ^{2} \theta-\sin ^{2} \theta & =-e_{1}+e_{2}
\end{array} \quad \quad \begin{array}{c}
e \leftarrow f
\end{array} \quad=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 & 0 & 1
\end{array}\right) R_{2}-R_{1} \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 2 & -1 & 1 & 0 \\
0 & 2 & 0 & 0 & 0 & 1
\end{array}\right) \frac{1}{2} R_{3} \quad \begin{array}{l}
\frac{1}{2} R_{2}
\end{array} \quad \Rightarrow \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{-1}{2} & \frac{1}{2} & 0
\end{array}\right) R_{1}+R_{3} \quad \Rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 1 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{-1}{2} & \frac{1}{2} & 0
\end{array}\right) \\
& \underset{f \leftarrow e}{C}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & 0
\end{array}\right)
\end{aligned}
$$

(7 continued)
c. (4) Consider the derivative operator $D: V \rightarrow V$ given by $D(g)=\frac{d g}{d \theta}$.

Find the matrix of D relative to the e-basis.

$$
\begin{array}{lll}
D\left(e_{1}\right)=D\left(\sin ^{2} \theta\right) & =2 \sin \theta \cos \theta & =2 e_{3} \\
D\left(e_{2}\right)=D\left(\cos ^{2} \theta\right) & =-2 \sin \theta \cos \theta & =-2 e_{3} \\
D\left(e_{3}\right)=D(\sin \theta \cos \theta) & =\cos ^{2} \theta-\sin ^{2} \theta=-e_{1}+e_{2}
\end{array} \quad A \& \quad A=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 1 \\
2 & -2 & 0
\end{array}\right)
$$

d. (6) Find the matrix of D relative to the f-basis in TWO ways.
i. by using the matrix of D relative to the e-basis:

$$
\begin{aligned}
& \underset{f \leftarrow f}{A}=\underset{f \leftarrow e}{C} \underset{e \leftarrow e}{A} \underset{e \leftarrow f}{C}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 1 \\
2 & -2 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -2 \\
0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

ii. by differentiating basis vectors:

$$
\begin{array}{lll}
D\left(f_{1}\right)=D(1) & =0 & =0 \\
D\left(f_{2}\right)=D(\sin 2 \theta) & =2 \cos 2 \theta & =2 f_{3} \\
D\left(f_{3}\right)=D(\cos 2 \theta) & =-2 \sin 2 \theta & =-2 f_{2}
\end{array} \quad \underset{f \sim f}{A}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -2 \\
0 & 2 & 0
\end{array}\right)
$$

e. (5) Consider the function $g(\theta)=5 \sin 2 \theta+3 \cos 2 \theta$. Compute $D(g)$ in TWO ways:
i. by differentiating:

$$
D(g)=D(5 \sin 2 \theta+3 \cos 2 \theta)=10 \cos 2 \theta-6 \sin 2 \theta
$$

ii. by using the matrix of D relative to the f-basis:

$$
\begin{aligned}
& (g)_{f}=\left(\begin{array}{c}
0 \\
5 \\
3
\end{array}\right) \quad[D(g)]_{f}=\underset{f \leftarrow f}{A}(g)_{f}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -2 \\
0 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
5 \\
3
\end{array}\right)=\left(\begin{array}{c}
0 \\
-6 \\
10
\end{array}\right) \\
& D(g)=-6 f_{2}+10 f_{3}=-6 \sin 2 \theta+10 \cos 2 \theta
\end{aligned}
$$

