	Name]	[D					
	Math 311	Final Exam	Spring 2002		1 EC	/10	3	/30
	Section 503		P. Yasskin		3	/40	4	/30
1.	(10 points Extra Credit)	Determine if a	and where the line	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$	$+t\left(\begin{array}{c}4\\5\\6\end{array}\right)$		

2. (40 points) Let M(p,q) be the vector space of $p \times q$ matrices, and let $P = \begin{pmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{pmatrix}$.

Consider the linear function

a. (5) Let

$$L: M(2,2) \to M(3,2) \text{ given by } L(X) = PX$$
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and compute } L(X).$$

- **b.** (2) Identify the domain of *L*. What is its dimension?
- c. (2) Identify the codomain of *L*. What is its dimension?
- **d.** (8) Identify the kernel (null space) of *L*. Give a basis and the dimension.

Problem 2 continued:

e. (8) Identify the image (range) of *L*. Give a basis and the dimension.

f. (3) Is L onto? Why?

g. (3) Is L one-to-one? Why?

h. (2) Check that the dimensions of the kernel and image are consistent with the dimensions of the domain and codomain.

Problem 2 continued:

i. (7) Find the matrix of L relative to the bases

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$F_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} F_{2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} F_{3} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$F_{4} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} F_{5} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} F_{6} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

3. (30 points) On the vector space $P_2 = \{ \text{polynomials of degree less than } 2 \}$ consider the function of two polynomials given by

$$\langle p,q\rangle = \int_0^\infty p(x)q(x)e^{-x}dx$$

a. (15) Show $\langle p,q \rangle$ is an inner product.

b. (15) Find the angle θ between the polynomials p(x) = 1 and q(x) = x. You may use these integrals without proof:

$$\int_{0}^{\infty} e^{-x} dx = 1, \quad \int_{0}^{\infty} x e^{-x} dx = 1, \quad \int_{0}^{\infty} x^{2} e^{-x} dx = 2, \quad \int_{0}^{\infty} x^{3} e^{-x} dx = 6$$

4. (30 points) Gauss' Theorem states that if V is a volume in \mathbf{R}^3 and ∂V is its boundary surface oriented outward from V and \vec{F} is a nice vector field on V then

$$\iiint\limits_V \vec{\nabla} \cdot \vec{F} dV = \iint\limits_{\partial V} \vec{F} \cdot \vec{dS}$$

Verify Gauss' Theorem if $\vec{F} = (xz^2, -yz^2, x^2z + y^2z)$ and *V* is the volume above the paraboloid $z = x^2 + y^2$ and below the plane z = 9. Notice that ∂V consists of the paraboloid *P* and a disk *D*. Be sure to use the correct orientations for *P* and *D*.

a. (6) Compute
$$\iiint_V \vec{\nabla} \cdot \vec{F} \, dV:$$

i. $\vec{\nabla} \cdot \vec{F} =$

ii.
$$\iiint_V \vec{\nabla} \cdot \vec{F} dV =$$

Problem 4 continued:

- **b.** (10) For the paraboloid *P* compute $\iint_{P} \vec{F} \cdot \vec{dS}$:
 - i. $\vec{R}(r,\theta) =$

ii. $\vec{R}_r =$

iii. $\vec{R}_{\theta} =$

iv. $\vec{N} =$

v. $\vec{F}(\vec{R}(r,\theta)) =$

vi.
$$\vec{F}(\vec{R}(r,\theta)) \cdot \vec{N} =$$

vii. $\iint_{P} \vec{F} \cdot \vec{dS} =$

Problem 4 continued:

- **c.** (10) For the disk D compute $\iint_{D} \vec{F} \cdot \vec{dS}$:
 - i. $\vec{R}(r,\theta) =$

ii. $\vec{R}_r =$

iii. $\vec{R}_{\theta} =$

iv. $\vec{N} =$

v. $\vec{F}(\vec{R}(r,\theta)) =$

vi.
$$\vec{F}(\vec{R}(r,\theta)) \cdot \vec{N} =$$

vii.
$$\iint_D \vec{F} \cdot \vec{dS} =$$

Recall
$$\vec{F} = (xz^2, -yz^2, x^2z + y^2z)$$
.