Name \qquad
Math 311
Final Exam

ID

Spring 2002
P. Yasskin

Solutions

1 EC	$/ 10$	3	$/ 30$
3	$/ 40$	4	$/ 30$

1. (10 points Extra Credit) Determine if and where the line $\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+t\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$ intersects the plane $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ -8 \\ 3\end{array}\right)+r\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)+s\left(\begin{array}{l}3 \\ 6 \\ 4\end{array}\right)$.

Equate x, y and z to get the equations

$$
\begin{aligned}
& 1+4 t=2+r+3 s \\
& 2+5 t=-8-r+6 s \\
& 3+6 t=3+2 r+4 s
\end{aligned} \quad \text { or } \quad \begin{aligned}
& r+3 s-4 t=-1 \\
& -r+6 s-5 t=10 \\
& 2 r+4 s-6 t=0
\end{aligned}
$$

Solve for r, s and t :

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 3 & -4 & -1 \\
-1 & 6 & -5 & 10 \\
2 & 4 & -6 & 0
\end{array}\right) \begin{array}{c}
\\
R_{2}+R_{1} \\
R_{3}-2 R_{1}
\end{array} \Rightarrow\left(\begin{array}{ccc|c}
1 & 3 & -4 & -1 \\
0 & 9 & -9 & 9 \\
0 & -2 & 2 & 2
\end{array}\right) \begin{array}{c}
\\
\frac{1}{9} R_{2} \\
-\frac{1}{2} R_{3}
\end{array} \\
& \Rightarrow\left(\begin{array}{ccc|c}
1 & 3 & -4 & -1 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right)_{R_{3}-R_{2}} \quad \Rightarrow \quad\left(\begin{array}{ccc|c}
1 & 3 & -4 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & -2
\end{array}\right) \\
& \Rightarrow \quad 0=-2 \quad \Rightarrow \text { Contradiction } \quad \Rightarrow \quad \text { No solutions } \\
& \Rightarrow \quad \text { The line does not intersect the plane. }
\end{aligned}
$$

2. (40 points) Let $M(p, q)$ be the vector space of $p \times q$ matrices, and let $P=\left(\begin{array}{ll}2 & 1 \\ 4 & 2 \\ 6 & 3\end{array}\right)$.

Consider the linear function

$$
L: M(2,2) \rightarrow M(3,2) \text { given by } L(X)=P X
$$

a. (5) Let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and compute $L(X)$.

$$
L\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
4 & 2 \\
6 & 3
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
2 a+c & 2 b+d \\
4 a+2 c & 4 b+2 d \\
6 a+3 c & 6 b+3 d
\end{array}\right)
$$

b. (2) Identify the domain of L. What is its dimension?

$$
\operatorname{Dom}(L)=M(2,2) \quad \operatorname{dim} \operatorname{Dom}(L)=4
$$

c. (2) Identify the codomain of L. What is its dimension?

$$
\operatorname{Codom}(L)=M(3,2) \quad \operatorname{dim} \operatorname{Codom}(L)=6
$$

d. (8) Identify the kernel (null space) of L. Give a basis and the dimension.

$$
\begin{gathered}
L(X)=\mathbf{0} \Rightarrow \begin{array}{cc}
2 a+c=0 & 2 b+d=0 \\
4 a+2 c=0 \\
6 a+3 c=0 & 4 b+2 d=0 \\
6 b+3 d=0
\end{array} \Rightarrow \begin{array}{c}
c=-2 a \\
d=-2 b
\end{array} \\
\Rightarrow X=\left(\begin{array}{cc}
a & b \\
-2 a & -2 b
\end{array}\right) \\
\operatorname{Ker}(L)=\left\{\left(\begin{array}{cc}
a & b \\
-2 a & -2 b
\end{array}\right)\right\}=\left\{a\left(\begin{array}{cc}
1 & 0 \\
-2 & 0
\end{array}\right)+b\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)\right\} \\
\\
=\operatorname{Span}\left\{\left(\begin{array}{cc}
1 & 0 \\
-2 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)\right\} \\
\text { Basis is }\left\{\left(\begin{array}{cc}
1 & 0 \\
-2 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)\right\} .
\end{gathered}
$$

Problem 2 continued:
e. (8) Identify the image (range) of L. Give a basis and the dimension.

$$
\begin{aligned}
\operatorname{Im}(L)= & \left\{\left(\begin{array}{cc}
2 a+c & 2 b+d \\
4 a+2 c & 4 b+2 d \\
6 a+3 c & 6 b+3 d
\end{array}\right)\right\} \\
& =\left\{a\left(\begin{array}{ll}
2 & 0 \\
4 & 0 \\
6 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 2 \\
0 & 4 \\
0 & 6
\end{array}\right)+c\left(\begin{array}{ll}
1 & 0 \\
2 & 0 \\
3 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 1 \\
0 & 2 \\
0 & 3
\end{array}\right)\right\} \\
& =\operatorname{Span}\left\{\left(\begin{array}{ll}
2 & 0 \\
4 & 0 \\
6 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
0 & 4 \\
0 & 6
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 0 \\
3 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 2 \\
0 & 3
\end{array}\right)\right\}
\end{aligned}
$$

(Not Linearly Independent!)
$=\operatorname{Span}\left\{\left(\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 2 \\ 0 & 3\end{array}\right)\right\}$
Basis is $\left\{\left(\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 2 \\ 0 & 3\end{array}\right)\right\} . \quad \operatorname{dim} \operatorname{Im}(L)=2$
f. (3) Is L onto? Why?
L is NOT onto because $\operatorname{dim} \operatorname{Im}(L)=2$ but $\operatorname{dim} \operatorname{Codom}(L)=6$, so $\operatorname{Im}(L) \neq \operatorname{Codom}(L)$.
g. (3) Is L one-to-one? Why?
L is NOT one-to-one because $\operatorname{Ker}(L) \neq\{\mathbf{0}\}$.
h. (2) Check that the dimensions of the kernel and image are consistent with the dimensions of the domain and codomain.
$\operatorname{dim} \operatorname{Ker}(L)+\operatorname{dim} \operatorname{Im}(L)=2+2=4=\operatorname{dim} \operatorname{Dom}(L)$

Problem 2 continued:
i. (7) Find the matrix of L relative to the bases

$$
\begin{gathered}
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
F_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad F_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right) \quad F_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right) \\
F_{4}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad F_{5}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \quad F_{6}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Recall: $\quad L\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}2 a+c & 2 b+d \\ 4 a+2 c & 4 b+2 d \\ 6 a+3 c & 6 b+3 d\end{array}\right)$
$L\left(E_{1}\right)=L\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 4 & 0 \\ 6 & 0\end{array}\right)=2 F_{1}+4 F_{2}+6 F_{3}$
$L\left(E_{2}\right)=L\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 0 & 4 \\ 0 & 6\end{array}\right)=2 F_{4}+4 F_{5}+6 F_{6}$
$L\left(E_{3}\right)=L\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 3 & 0\end{array}\right)=1 F_{1}+2 F_{2}+3 F_{3}$
$L\left(E_{4}\right)=L\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 2 \\ 0 & 3\end{array}\right)=1 F_{4}+2 F_{5}+3 F_{6}$
$A=\left(\begin{array}{llll}2 & 0 & 1 & 0 \\ 4 & 0 & 2 & 0 \\ 6 & 0 & 3 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 4 & 0 & 2 \\ 0 & 6 & 0 & 3\end{array}\right)$
3. (30 points) On the vector space $P_{2}=\{$ polynomials of degree less than 2$\}$ consider the function of two polynomials given by

$$
\langle p, q\rangle=\int_{0}^{\infty} p(x) q(x) e^{-x} d x
$$

a. (15) Show $\langle p, q\rangle$ is an inner product.
i. $\langle q, p\rangle=\int_{0}^{\infty} q(x) p(x) e^{-x} d x=\int_{0}^{\infty} p(x) q(x) e^{-x} d x=\langle p, q\rangle$
ii. $\langle p, q+r\rangle=\int_{0}^{\infty} p(x)(q+r)(x) e^{-x} d x=\int_{0}^{\infty} p(x) q(x) e^{-x} d x+\int_{0}^{\infty} p(x) r(x) e^{-x} d x=\langle p, q\rangle+\langle p, r\rangle$
iii. $\left.\langle p, a q\rangle=\int_{0}^{\infty} p(x)\right)(a q)(x) e^{-x} d x=a \int_{0}^{\infty} p(x) q(x) e^{-x} d x=a\langle p, q\rangle$
iv. $\langle p, p\rangle=\int_{0}^{\infty} p(x)^{2} e^{-x} d x \geq 0$ because $p(x)^{2} e^{-x}$ is non-negative. Further

$$
\begin{aligned}
& \langle p, p\rangle=0 \quad \Rightarrow \quad \int_{0}^{\infty} p(x)^{2} e^{-x} d x=0 \\
& \quad \Rightarrow \quad p(x)^{2} e^{-x}=0 \quad \text { because } p(x)^{2} e^{-x} \text { is non-negative and continuous } \\
& \quad \Rightarrow \quad p(x)=0
\end{aligned}
$$

So $\langle p, q\rangle$ is an inner product.
b. (15) Find the angle θ between the polynomials $p(x)=1$ and $q(x)=x$.

You may use these integrals without proof:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-x} d x=1, \quad \int_{0}^{\infty} x e^{-x} d x=1, \quad \int_{0}^{\infty} x^{2} e^{-x} d x=2, \quad \int_{0}^{\infty} x^{3} e^{-x} d x=6 \\
& \langle p, q\rangle=\int_{0}^{\infty} 1 \cdot x \cdot e^{-x} d x=1 \quad\langle p, p\rangle=\int_{0}^{\infty} 1 \cdot 1 \cdot e^{-x} d x=1 \quad\langle q, q\rangle=\int_{0}^{\infty} x \cdot x \cdot e^{-x} d x=2 \\
& \cos \theta=\frac{\langle p, q\rangle}{|p \| q|}=\frac{1}{1 \cdot \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}=\frac{\pi}{4}
\end{aligned}
$$

4. (30 points) Gauss' Theorem states that if V is a volume in \mathbf{R}^{3} and ∂V is its boundary surface oriented outward from V and \vec{F} is a nice vector field on V then

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot \overrightarrow{d S}
$$

Verify Gauss' Theorem if $\vec{F}=\left(x z^{2},-y z^{2}, x^{2} z+y^{2} z\right)$ and V is the volume above the paraboloid $z=x^{2}+y^{2}$ and below the plane $z=9$.
Notice that ∂V consists of the paraboloid P and a disk D. Be sure to use the correct orientations for P and D.

a. (6) Compute $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V$:
i. $\vec{\nabla} \cdot \vec{F}=\quad=\vec{\nabla} \cdot\left(x z^{2},-y z^{2}, x^{2} z+y^{2} z\right)=z^{2}-z^{2}+x^{2}+y^{2}=x^{2}+y^{2}$
$\vec{\nabla} \cdot \vec{F}=r^{2} \quad$ (in cylindrical coordinates)
ii. $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\quad=\int_{0}^{2 \pi} \int_{0}^{3} \int_{r^{2}}^{9}\left(r^{2}\right) r d z d r d \theta=2 \pi \int_{0}^{3}\left[r^{3} z\right]_{r^{2}}^{9} d r$

$$
\begin{aligned}
& =2 \pi \int_{0}^{3}\left(9 r^{3}-r^{5}\right) d r=2 \pi\left[\frac{9 r^{4}}{4}-\frac{r^{6}}{6}\right]_{0}^{3}=2 \pi\left(\frac{9 \cdot 3^{4}}{4}-\frac{3^{6}}{6}\right) \\
& =3^{6} \pi\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{3^{6} \pi}{6}=\frac{243 \pi}{2}
\end{aligned}
$$

b. (10) For the paraboloid P compute $\iint_{P} \vec{F} \cdot \overrightarrow{d S}$:
i. $\vec{R}(r, \theta)=\quad=\left(r \cos \theta, r \sin \theta, r^{2}\right)$
ii. $\vec{R}_{r}=\quad=(\cos \theta, \quad \sin \theta, 2 r)$
iii. $\vec{R}_{\theta}=\quad=(-r \sin \theta, r \cos \theta, 0)$
iv. $\vec{N}=\quad=\hat{\imath}\left(-2 r^{2} \cos \theta\right)-\hat{\jmath}\left(2 r^{2} \sin \theta\right)+\hat{k}\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)=\left(-2 r^{2} \cos \theta,-2 r^{2} \sin \theta, r\right)$

This points up. We need it down. Reverse it.

$$
\vec{N}=\left(2 r^{2} \cos \theta, 2 r^{2} \sin \theta,-r\right)
$$

v. $\vec{F}(\vec{R}(r, \theta))=\quad=\left(r^{5} \cos \theta,-r^{5} \sin \theta, r^{4}\right)$
vi. $\vec{F}(\vec{R}(r, \theta)) \cdot \vec{N}=\quad=2 r^{7} \cos ^{2} \theta-2 r^{7} \sin ^{2} \theta-r^{5}$
vii. $\iint_{P} \vec{F} \cdot \overrightarrow{d S}=\quad=\int_{0}^{2 \pi} \int_{0}^{3}\left(2 r^{7} \cos ^{2} \theta-2 r^{7} \sin ^{2} \theta-r^{5}\right) d r d \theta=\int_{0}^{3} \int_{0}^{2 \pi}\left(2 r^{7} \cos 2 \theta-r^{5}\right) d \theta d r$ $=\int_{0}^{3}\left[2 r^{7} \frac{\sin 2 \theta}{2}-r^{5} \theta\right]_{0}^{2 \pi} d r=-2 \pi \int_{0}^{3} r^{5} d r=-\left.2 \pi \frac{r^{6}}{6}\right|_{0} ^{3}=-3^{5} \pi=-243 \pi$

Problem 4 continued:
Recall $\vec{F}=\left(x z^{2},-y z^{2}, x^{2} z+y^{2} z\right)$.
c. (10) For the disk D compute $\iint_{D} \vec{F} \cdot \overrightarrow{d S}$:
i. $\vec{R}(r, \theta)=\quad=(r \cos \theta, r \sin \theta, 9)$
ii. $\vec{R}_{r}=\quad=\left(\begin{array}{cc}\cos \theta, & \sin \theta, 0\end{array}\right)$
iii. $\vec{R}_{\theta}=((-r \sin \theta, r \cos \theta, 0))$
iv. $\vec{N}=\quad=(0,0, r) \quad$ This points up which is correct.
v. $\vec{F}(\vec{R}(r, \theta))=\quad=\left(81 r \cos \theta, 81 r \sin \theta, 9 r^{2}\right)$
vi. $\vec{F}(\vec{R}(r, \theta)) \cdot \vec{N}=\quad=9 r^{3}$
vii. $\iint_{D} \vec{F} \cdot \overrightarrow{d S}=\quad=\int_{0}^{2 \pi} \int_{0}^{3}\left(9 r^{3}\right) d r d \theta=\left.2 \pi \frac{9 r^{4}}{4}\right|_{0} ^{3}=\frac{3^{6} \pi}{2}=\frac{729 \pi}{2}$
d. (4) Verify the two sides of Gauss' Theorem are equal.
i. $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\frac{243 \pi}{2}$
ii. $\iint_{P} \vec{F} \cdot \overrightarrow{d S}+\iint_{D} \vec{F} \cdot \overrightarrow{d S}=-243 \pi+\frac{729 \pi}{2}=\frac{729 \pi-486 \pi}{2}=\frac{243 \pi}{2}$
iii. They are equal.

