Name

1	$/ 45$	3	$/ 30$
2	$/ 40$	Total	$/ 115$

$\begin{array}{lrr}\text { Math } 311 & \text { Exam } 2 & \text { Spring } 2010 \\ \text { Section } 502 & & \text { P. Yasskin }\end{array}$

1. (45 points) Consider the vector space of functions $V=\operatorname{Span}\left(1, \cos x, \cos ^{2} x\right)$ with basis

$$
v_{1}=1 \quad v_{2}=\cos x \quad v_{3}=\cos ^{2} x
$$

a. (5 pts) Show $\cos 2 x \in V$.

HINT: Use a trig identity.
b. (10 pts) Show another basis for V is

$$
p_{1}=1 \quad p_{2}=\cos x \quad p_{3}=\cos 2 x
$$

c. (6 pts) Find the change of basis matrix from the p basis to the v basis. Call it $\underset{v \sim p}{C}$.
d. (6 pts) Find the change of basis matrix from the v basis to the p basis. Call it $\underset{p \vee v}{C}$.
e. $(6 \mathrm{pts})$ Consider the linear function $L: V \rightarrow \mathbb{R}^{2}$ given by $L(f)=\binom{f(0)}{f\left(\frac{\pi}{2}\right)}$.

Find the matrix of L relative to the v basis for V and the basis $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$ for \mathbb{R}^{2}. Call it $A_{e \in v}$.
f. (6 pts) Find the matrix of L relative to the p basis for V and the e basis for \mathbb{R}^{2}. Call it ${ }_{e-p}$.
g. (6 pts) Recompute $\underset{e \leftharpoonup p}{B}$ by a second method.
(One method should use the change of basis matrix, the other should not.)
2. (40 points) Consider a linear map $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ whose matrix relative to the standard bases is

$$
A=\left(\begin{array}{cccc}
1 & -2 & 0 & -4 \\
-1 & 2 & 1 & 2 \\
0 & 0 & 1 & -2
\end{array}\right)
$$

a. (4 pts) What are n and p ?
b. (9 pts) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.
c. (9 pts) Identify the image of L, a basis for the image, and the dimension of the image.
d. (6 pts) Is the function L one-to-one? Why?
e. (6 pts) Is the function L onto? Why?
f. (6 pts) Verify the dimensions in a, b and c agree with the Nullity-Rank Theorem.
3. (30 points) Consider the vector space of functions $V=\operatorname{Span}\left(1, \cos x, \cos ^{2} x\right)$ with the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) \sin x d x$.
Here is a table of integrals:

$$
\begin{gathered}
\int_{0}^{\pi} \sin x d x=2 \quad \int_{0}^{\pi} \cos x \sin x d x=0 \quad \int_{0}^{\pi} \cos ^{2} x \sin x d x=\frac{2}{3} \\
\int_{0}^{\pi} \cos ^{3} x \sin x d x=0 \quad \int_{0}^{\pi} \cos ^{4} x \sin x d x=\frac{2}{5} \quad \int_{0}^{\pi} \cos ^{5} x \sin x d x=0
\end{gathered}
$$

a. (10 pts) Find the angle between the functions $p=1$ and $q=\cos ^{2} x$.
b. (20 pts) Apply the Gram-Schmidt procedure to the basis

$$
v_{1}=1 \quad v_{2}=\cos x \quad v_{3}=\cos ^{2} x
$$

to produce an orthogonal basis w_{1}, w_{2}, w_{3} and an orthonormal basis u_{1}, u_{2}, u_{3}.

