Name				1	/45	3	/30
Math 311 Section 502	Exam 2	Spring 2010 P. Yasskin	-	2	/40	Total	/115
					2	uh haaia	

- **1**. (45 points) Consider the vector space of functions $V = Span(1, \cos x, \cos^2 x)$ with basis $v_1 = 1$ $v_2 = \cos x$ $v_3 = \cos^2 x$
 - **a**. (5 pts) Show $\cos 2x \in V$. HINT: Use a trig identity.

b. (10 pts) Show another basis for V is

 $p_1 = 1 \qquad p_2 = \cos x \qquad p_3 = \cos 2x$

c. (6 pts) Find the change of basis matrix from the *p* basis to the *v* basis. Call it C_{v-p} .

d. (6 pts) Find the change of basis matrix from the *v* basis to the *p* basis. Call it C_{p-v} .

e. (6 pts) Consider the linear function $L: V \to \mathbb{R}^2$ given by $L(f) = \begin{pmatrix} f(0) \\ f(\frac{\pi}{2}) \end{pmatrix}$.

Find the matrix of *L* relative to the *v* basis for *V* and the basis $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for \mathbb{R}^2 . Call it *A*.

f. (6 pts) Find the matrix of *L* relative to the *p* basis for *V* and the *e* basis for \mathbb{R}^2 . Call it $\underset{e \leftarrow p}{B}$.

g. (6 pts) Recompute $\underset{e \leftarrow p}{B}$ by a second method. (One method should use the change of basis matrix, the other should not.) **2**. (40 points) Consider a linear map $L : \mathbf{R}^n \to \mathbf{R}^p$ whose matrix relative to the standard bases is

$$A = \left(\begin{array}{rrrrr} 1 & -2 & 0 & -4 \\ -1 & 2 & 1 & 2 \\ 0 & 0 & 1 & -2 \end{array}\right).$$

a. (4 pts) What are n and p?

b. (9 pts) Identify the kernel of *L*, a basis for the kernel, and the dimension of the kernel.

c. (9 pts) Identify the image of *L*, a basis for the image, and the dimension of the image.

d. (6 pts) Is the function *L* one-to-one? Why?

e. (6 pts) Is the function L onto? Why?

f. (6 pts) Verify the dimensions in a, b and c agree with the Nullity-Rank Theorem.

3. (30 points) Consider the vector space of functions $V = Span(1, \cos x, \cos^2 x)$ with the inner product $\langle f, g \rangle = \int_0^{\pi} f(x)g(x) \sin x \, dx$. Here is a table of integrals:

$$\int_{0}^{\pi} \sin x \, dx = 2 \qquad \int_{0}^{\pi} \cos x \sin x \, dx = 0 \qquad \int_{0}^{\pi} \cos^{2} x \sin x \, dx = \frac{2}{3}$$
$$\int_{0}^{\pi} \cos^{3} x \sin x \, dx = 0 \qquad \int_{0}^{\pi} \cos^{4} x \sin x \, dx = \frac{2}{5} \qquad \int_{0}^{\pi} \cos^{5} x \sin x \, dx = 0$$

a. (10 pts) Find the angle between the functions p = 1 and $q = \cos^2 x$.

b. (20 pts) Apply the Gram-Schmidt procedure to the basis

$$v_1 = 1$$
 $v_2 = \cos x$ $v_3 = \cos^2 x$

to produce an orthogonal basis w_1, w_2, w_3 and an orthonormal basis u_1, u_2, u_3 .