1	$/ 45$	3	$/ 30$
2	$/ 40$	Total	1115

Section 502 Solutions P. Yasskin
Solutions \quad P. Yasskin

1. (45 points) Consider the vector space of functions $V=\operatorname{Span}\left(1, \cos x, \cos ^{2} x\right)$ with basis

$$
v_{1}=1 \quad v_{2}=\cos x \quad v_{3}=\cos ^{2} x
$$

a. (5 pts) Show $\cos 2 x \in V$.

HINT: Use a trig identity.
$\cos 2 x=2 \cos ^{2} x-1=-1 \cdot v_{1}+2 \cdot v_{3} \in V$.
b. (10 pts) Show another basis for V is

$$
p_{1}=1 \quad p_{2}=\cos x \quad p_{3}=\cos 2 x
$$

Since there are $3 p$'s and $\operatorname{dim} V=3$, we only need to show the p 's span OR are linearly independent.

To show they span, let $f \in V$. Then

$$
\begin{aligned}
f & =a \cdot 1+b \cdot \cos x+c \cdot \cos ^{2} x=a \cdot 1+b \cdot \cos x+c \cdot \frac{1+\cos 2 x}{2} \\
& =\left(a+\frac{c}{2}\right) \cdot 1+b \cdot \cos x+\frac{c}{2} \cdot \cos 2 x=\left(a+\frac{c}{2}\right) p_{1}+b p_{2}+\frac{c}{2} p_{3}
\end{aligned}
$$

So $\left\{p_{1}, p_{2}, p_{3}\right\}$ span V.
To show they are linearly independent, suppose $a \cdot 1+b \cdot \cos x+c \cdot \cos 2 x=0$. Then

$$
\begin{array}{lrl}
x=0: & a+b+c=0 & (1) \\
x=\frac{\pi}{2}: & a-c=0 & (2) \\
x=\pi: & a-b+c=0 & (3)
\end{array} \Rightarrow \begin{array}{r}
(1)-(3) \Rightarrow \quad b=0 \\
(1)+(3) \Rightarrow a+c=0
\end{array} \quad \begin{aligned}
& \text { (4) }
\end{aligned} \quad \Rightarrow \begin{aligned}
& (2)+(5) \Rightarrow a=0 \\
& (2)-(5) \Rightarrow c=0
\end{aligned}
$$

So $\left\{p_{1}, p_{2}, p_{3}\right\}$ are linearly independent. (OR expand in v 's.)
c. (6 pts) Find the change of basis matrix from the p basis to the v basis. Call it $\underset{v<p}{C}$.

$$
\begin{aligned}
& p_{1}=1=v_{1} \\
& p_{2}=\cos x=v_{2} \\
& p_{3}=\cos 2 x=-1 \cdot v_{1}+2 \cdot v_{3}
\end{aligned} \quad \Rightarrow \underset{v<p}{C}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

d. (6 pts) Find the change of basis matrix from the v basis to the p basis. Call it $\underset{p-v}{C}$.

$$
\begin{aligned}
& v_{1}=1=p_{1} \\
& v_{2}=\cos x=p_{2} \\
& v_{3}=\cos ^{2} x=\frac{1+\cos 2 x}{2}=\frac{1}{2} p_{1}+\frac{1}{2} p_{3}
\end{aligned} \quad \Rightarrow \underset{p\llcorner v}{C}=\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)
$$

(OR find the inverse of $\underset{v \leftharpoonup p}{C}$.)
e. (6 pts) Consider the linear function $L: V \rightarrow \mathbb{R}^{2}$ given by $L(f)=\binom{f(0)}{f\left(\frac{\pi}{2}\right)}$.

Find the matrix of L relative to the v basis for V and the basis $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$ for \mathbb{R}^{2}. Call it A.
$L\left(v_{1}\right)=L(1)=\binom{1}{1}=e_{1}+e_{2}$
$L\left(v_{2}\right)=L(\cos x)=\binom{1}{0}=e_{1} \quad \Rightarrow \underset{e \rightarrow v}{A}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$
$L\left(v_{3}\right)=L\left(\cos ^{2} x\right)=\binom{1}{0}=e_{1}$
f. (6 pts) Find the matrix of L relative to the p basis for V and the e basis for \mathbb{R}^{2}. Call it $\underset{e}{B}$. .

$$
\begin{aligned}
& L\left(p_{1}\right)=L(1)=\binom{1}{1}=e_{1}+e_{2} \\
& L\left(p_{2}\right)=L(\cos x)=\binom{1}{0}=e_{1} \quad \Rightarrow \underset{e<p}{B}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right) \\
& L\left(p_{3}\right)=L(\cos 2 x)=\binom{1}{-1}=e_{1}
\end{aligned}
$$

g. (6 pts) Recompute $\underset{e-p}{B}$ by a second method.
(One method should use the change of basis matrix, the other should not.)

$$
\underset{e-p}{B}=\underset{e \sim v}{A} \underset{v<p}{C}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right)
$$

2. (40 points) Consider a linear map $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ whose matrix relative to the standard bases is

$$
A=\left(\begin{array}{cccc}
1 & -2 & 0 & -4 \\
-1 & 2 & 1 & 2 \\
0 & 0 & 1 & -2
\end{array}\right)
$$

a. (4 pts) What are n and p ?

$$
n=4 \quad p=3
$$

b. (9 pts) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
1 & -2 & 0 & -4 & 0 \\
-1 & 2 & 1 & 2 & 0 \\
0 & 0 & 1 & -2 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{cccc|c}
1 & -2 & 0 & -4 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{cccc|c}
1 & -2 & 0 & -4 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 s+4 t \\
s \\
2 t \\
t
\end{array}\right)=s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{l}
4 \\
0 \\
2 \\
1
\end{array}\right) \Rightarrow \operatorname{Ker}(L)=\operatorname{Span}\left\{\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
2 \\
1
\end{array}\right)\right\} \\
& \text { basis }=\left\{\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
2 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

c. (9 pts) Identify the image of L, a basis for the image, and the dimension of the image.

$$
\begin{gathered}
\operatorname{Im}(L)=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-4 \\
2 \\
-2
\end{array}\right)\right\} \\
=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-4 \\
2 \\
-2
\end{array}\right)\right\} \text { Are they independent? } \\
a\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+b\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+c\left(\begin{array}{c}
-4 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ccc|c}
1 & 0 & -4 \\
-1 & 1 & 2 \\
0 & 1 & -2 & 0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
1 & 0 & -4 & 0 \\
0 & 1 & -2 \\
0 \\
0 & 1 & -2 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{lll|l}
1 & 0 & -4 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
4 t \\
2 t \\
t
\end{array}\right)
\end{gathered}
$$

Not independent. Throw away the $3^{\text {rd }}$ vector because c is the free variable.
$\operatorname{Im}(L)=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\} \quad$ basis $=\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\} \quad \operatorname{dim} \operatorname{Im}(L)=2$
d. (6 pts) Is the function L one-to-one? Why?
L is not $1-1$ because $\operatorname{Ker}(L) \neq\{0\}$
e. (6 pts) Is the function L onto? Why?
L is not onto because $\operatorname{dim} \operatorname{Im}(L)=2$ but $\operatorname{dim} \operatorname{Codom}(L)=3$
f. (6 pts) Verify the dimensions in a, b and c agree with the Nullity-Rank Theorem.
$\operatorname{dim} \operatorname{Ker}(L)+\operatorname{dim} \operatorname{Im}(L)=2+2=4=\operatorname{dim} \operatorname{Dom}(L)$
3. (30 points) Consider the vector space of functions $V=\operatorname{Span}\left(1, \cos x, \cos ^{2} x\right)$ with the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) \sin x d x$.
Here is a table of integrals:

$$
\begin{gathered}
\int_{0}^{\pi} \sin x d x=2 \quad \int_{0}^{\pi} \cos x \sin x d x=0 \quad \int_{0}^{\pi} \cos ^{2} x \sin x d x=\frac{2}{3} \\
\int_{0}^{\pi} \cos ^{3} x \sin x d x=0 \quad \int_{0}^{\pi} \cos ^{4} x \sin x d x=\frac{2}{5} \quad \int_{0}^{\pi} \cos ^{5} x \sin x d x=0
\end{gathered}
$$

a. (10 pts) Find the angle between the functions $p=1$ and $q=\cos ^{2} x$.

$$
\begin{aligned}
& |p|=\sqrt{\langle p, p\rangle}=\sqrt{\langle 1,1\rangle}=\sqrt{\int_{0}^{\pi} \sin x d x}=\sqrt{2} \\
& |q|=\sqrt{\langle q, q\rangle}=\sqrt{\left\langle\cos ^{2} x, \cos ^{2} x\right\rangle}=\sqrt{\int_{0}^{\pi} \cos ^{4} x \sin x d x}=\sqrt{\frac{2}{5}} \\
& \langle p, q\rangle=\left\langle 1, \cos ^{2} x\right\rangle=\int_{0}^{\pi} \cos ^{2} x \sin x d x=\frac{2}{3} \\
& \cos (\theta)=\frac{\langle p, q\rangle}{|p \| q|}=\frac{2}{3 \sqrt{2}} \sqrt{\frac{5}{2}}=\frac{\sqrt{5}}{3} \quad \theta=\arccos \frac{\sqrt{5}}{3} \approx 0.73 \mathrm{rad} \approx 41.8^{\circ}
\end{aligned}
$$

b. (20 pts) Apply the Gram-Schmidt procedure to the basis

$$
v_{1}=1 \quad v_{2}=\cos x \quad v_{3}=\cos ^{2} x
$$

to produce an orthogonal basis w_{1}, w_{2}, w_{3} and an orthonormal basis u_{1}, u_{2}, u_{3}.

$$
\begin{aligned}
& w_{1}=v_{1}=1 \\
& \left\langle w_{1}, w_{1}\right\rangle=\langle 1,1\rangle=\int_{0}^{\pi} \sin x d x=2 \quad\left|w_{1}\right|=\sqrt{2} \\
& \left\langle v_{2}, w_{1}\right\rangle=\langle\cos x, 1\rangle=\int_{0}^{\pi} \cos x \sin x d x=0 \\
& w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=v_{2}=\cos x \\
& \left\langle w_{2}, w_{2}\right\rangle=\langle\cos x, \cos x\rangle=\int_{0}^{\pi} \cos ^{2} x \sin x d x=\frac{2}{3} \quad\left|w_{2}\right|=\sqrt{\frac{2}{3}} \\
& \left\langle v_{3}, w_{1}\right\rangle=\left\langle\cos ^{2} x, 1\right\rangle=\int_{0}^{\pi} \cos ^{2} x \sin x d x=\frac{2}{3} \quad\left\langle v_{3}, w_{2}\right\rangle=\left\langle\cos ^{2} x, \cos x\right\rangle=\int_{0}^{\pi} \cos ^{3} x \sin x d x=0 \\
& \begin{array}{c}
w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=\cos ^{2} x-\frac{2}{3 \cdot 2} 1-0=\sqrt[\cos ^{2} x-\frac{1}{3}]{ } \\
\begin{array}{l}
\left\langle w_{3}, w_{3}\right\rangle
\end{array}=\left\langle\cos ^{2} x-\frac{1}{3}, \cos ^{2} x-\frac{1}{3}\right\rangle=\int_{0}^{\pi}\left(\cos ^{2} x-\frac{1}{3}\right)^{2} \sin x d x \\
\quad=\int_{0}^{\pi}\left(\cos ^{2} x-\frac{1}{3}\right)^{2} \sin ^{2} x d x=\int_{0}^{\pi}\left(\cos ^{4} x-\frac{2}{3} \cos ^{2} x+\frac{1}{9}\right) \sin x d x \\
\quad=\frac{2}{5}-\frac{2}{3} \cdot \frac{2}{3}+\frac{1}{9} \cdot 2=\frac{8}{45} \quad\left|w_{3}\right|=\sqrt{\frac{8}{45}} \\
u_{1}=\frac{w_{1}}{\left|w_{1}\right|}=\frac{1}{\sqrt{2}} \quad u_{2}=\frac{w_{2}}{\left|w_{2}\right|}=\sqrt{\frac{3}{2}} \cos x
\end{array} u_{3}=\frac{w_{3}}{\left|w_{3}\right|}=\sqrt{\frac{45}{8}}\left(\cos ^{2} x-\frac{1}{3}\right)
\end{aligned}
$$

