Name_

Math 311	Exam 2	Spring 2010	
Section 502	Solutions	P. Yasskin	

1	/45	3	/30
2	/40	Total	/115

1. (45 points) Consider the vector space of functions $V = Span(1, \cos x, \cos^2 x)$ with basis

 $v_1 = 1$ $v_2 = \cos x$ $v_3 = \cos^2 x$

a. (5 pts) Show $\cos 2x \in V$. HINT: Use a trig identity.

 $\cos 2x = 2\cos^2 x - 1 = -1 \cdot v_1 + 2 \cdot v_3 \in V.$

b. (10 pts) Show another basis for V is

 $p_1 = 1 \qquad p_2 = \cos x \qquad p_3 = \cos 2x$

Since there are 3 p's and $\dim V = 3$, we only need to show the *p*'s span OR are linearly independent.

To show they span, let $f \in V$. Then

$$f = a \cdot 1 + b \cdot \cos x + c \cdot \cos^2 x = a \cdot 1 + b \cdot \cos x + c \cdot \frac{1 + \cos 2x}{2}$$
$$= \left(a + \frac{c}{2}\right) \cdot 1 + b \cdot \cos x + \frac{c}{2} \cdot \cos 2x = \left(a + \frac{c}{2}\right)p_1 + bp_2 + \frac{c}{2}p_3$$

So $\{p_1, p_2, p_3\}$ span *V*.

To show they are linearly independent, suppose $a \cdot 1 + b \cdot \cos x + c \cdot \cos 2x = 0$. Then

So $\{p_1, p_2, p_3\}$ are linearly independent. (OR expand in *v*'s.)

c. (6 pts) Find the change of basis matrix from the p basis to the v basis. Call it C.

 $p_{1} = 1 = v_{1}$ $p_{2} = \cos x = v_{2} \qquad \Rightarrow \qquad C_{v-p} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ $p_{3} = \cos 2x = -1 \cdot v_{1} + 2 \cdot v_{3}$

d. (6 pts) Find the change of basis matrix from the v basis to the p basis. Call it C.

 $v_{1} = 1 = p_{1}$ $v_{2} = \cos x = p_{2}$ $v_{3} = \cos^{2} x = \frac{1 + \cos 2x}{2} = \frac{1}{2}p_{1} + \frac{1}{2}p_{3}$ $\Rightarrow C_{p-\nu} = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$ (OR find the inverse of $C_{\nu-p}$.)

e. (6 pts) Consider the linear function $L: V \to \mathbb{R}^2$ given by $L(f) = \begin{pmatrix} f(0) \\ f(\frac{\pi}{2}) \end{pmatrix}$.

Find the matrix of *L* relative to the *v* basis for *V* and the basis $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for \mathbb{R}^2 . Call it *A*.

$$L(v_1) = L(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = e_1 + e_2$$
$$L(v_2) = L(\cos x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1 \implies A_{e-v} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$L(v_3) = L(\cos^2 x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1$$

f. (6 pts) Find the matrix of *L* relative to the *p* basis for *V* and the *e* basis for \mathbb{R}^2 . Call it $\underset{e \leftarrow p}{B}$.

$$L(p_1) = L(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = e_1 + e_2$$
$$L(p_2) = L(\cos x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1 \implies B_{e-p} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
$$L(p_3) = L(\cos 2x) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = e_1$$

g. (6 pts) Recompute $\underset{e \leftarrow p}{B}$ by a second method. (One method should use the change of basis matrix, the other should not.)

$$B_{e-p} = A_{e-v} C_{v-p} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

2. (40 points) Consider a linear map $L : \mathbf{R}^n \to \mathbf{R}^p$ whose matrix relative to the standard bases is

a. (4 pts) What are n and p?

$$n = 4$$
 $p = 3$

b. (9 pts) Identify the kernel of *L*, a basis for the kernel, and the dimension of the kernel.

$$\begin{pmatrix} 1 & -2 & 0 & -4 & | & 0 \\ -1 & 2 & 1 & 2 & | & 0 \\ 0 & 0 & 1 & -2 & | & 0 \\ 0 & 0 & 1 & -2 & | & 0 \\ 0 & 0 & 1 & -2 & | & 0 \\ 0 & 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -2 & 0 & -4 & | & 0 \\ 0 & 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ \end{pmatrix}$$

$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2s + 4t \\ s \\ 2t \\ t \end{pmatrix} = s \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ t \end{pmatrix} + t \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \\ 0 \\ t \end{pmatrix} \Rightarrow Ker(L) = Span \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ t \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ t \end{pmatrix} \right\}$$

$$basis = \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ t \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ t \end{pmatrix} \right\} \quad dim Ker(L) = 2$$

c. (9 pts) Identify the image of *L*, a basis for the image, and the dimension of the image.

$$Im(L) = Span \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -4 \\ 2 \\ -2 \end{pmatrix} \right\}$$
$$= Span \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -4 \\ 2 \\ -2 \end{pmatrix} \right\}$$
 Are they independent?
$$a\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + b\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c\begin{pmatrix} -4 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & -4 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 4t \\ 2t \\ t \end{pmatrix}$$

Not independent. Throw away the 3^{rd} vector because *c* is the free variable.

$$Im(L) = Span\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \quad basis = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \quad dim Im(L) = 2$$

d. (6 pts) Is the function L one-to-one? Why?

L is not 1 - 1 because $Ker(L) \neq \{0\}$

e. (6 pts) Is the function L onto? Why?

L is not onto because $\dim Im(L) = 2$ but $\dim Codom(L) = 3$

f. (6 pts) Verify the dimensions in a, b and c agree with the Nullity-Rank Theorem.

 $\dim Ker(L) + \dim Im(L) = 2 + 2 = 4 = \dim Dom(L)$

3. (30 points) Consider the vector space of functions $V = Span(1, \cos x, \cos^2 x)$ with the inner product $\langle f, g \rangle = \int_0^{\pi} f(x)g(x) \sin x \, dx$. Here is a table of integrals:

$$\int_{0}^{\pi} \sin x \, dx = 2 \qquad \int_{0}^{\pi} \cos x \sin x \, dx = 0 \qquad \int_{0}^{\pi} \cos^{2} x \sin x \, dx = \frac{2}{3}$$
$$\int_{0}^{\pi} \cos^{3} x \sin x \, dx = 0 \qquad \int_{0}^{\pi} \cos^{4} x \sin x \, dx = \frac{2}{5} \qquad \int_{0}^{\pi} \cos^{5} x \sin x \, dx = 0$$

a. (10 pts) Find the angle between the functions p = 1 and $q = \cos^2 x$.

$$|p| = \sqrt{\langle p, p \rangle} = \sqrt{\langle 1, 1 \rangle} = \sqrt{\int_0^{\pi} \sin x \, dx} = \sqrt{2}$$

$$|q| = \sqrt{\langle q, q \rangle} = \sqrt{\langle \cos^2 x, \cos^2 x \rangle} = \sqrt{\int_0^{\pi} \cos^4 x \sin x \, dx} = \sqrt{\frac{2}{5}}$$

$$\langle p, q \rangle = \langle 1, \cos^2 x \rangle = \int_0^{\pi} \cos^2 x \sin x \, dx = \frac{2}{3}$$

$$\cos(\theta) = \frac{\langle p, q \rangle}{|p||q|} = \frac{2}{3\sqrt{2}} \sqrt{\frac{5}{2}} = \frac{\sqrt{5}}{3} \qquad \theta = \arccos \frac{\sqrt{5}}{3} \approx 0.73 \text{ rad } \approx 41.8^{\circ}$$

b. (20 pts) Apply the Gram-Schmidt procedure to the basis

$$v_1 = 1 \qquad v_2 = \cos x \qquad v_3 = \cos^2 x$$

to produce an orthogonal basis w_1, w_2, w_3 and an orthonormal basis u_1, u_2, u_3 .

$$\begin{split} w_{1} &= v_{1} = \boxed{1} \\ \langle w_{1}, w_{1} \rangle &= \langle 1, 1 \rangle = \int_{0}^{\pi} \sin x \, dx = 2 \qquad |w_{1}| = \sqrt{2} \\ \langle v_{2}, w_{1} \rangle &= \langle \cos x, 1 \rangle = \int_{0}^{\pi} \cos x \sin x \, dx = 0 \\ w_{2} &= v_{2} - \frac{\langle v_{2}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} = v_{2} = \boxed{\cos x} \\ \langle w_{2}, w_{2} \rangle &= \langle \cos x, \cos x \rangle = \int_{0}^{\pi} \cos^{2} x \sin x \, dx = \frac{2}{3} \qquad |w_{2}| = \sqrt{\frac{2}{3}} \\ \langle v_{3}, w_{1} \rangle &= \langle \cos^{2} x, 1 \rangle = \int_{0}^{\pi} \cos^{2} x \sin x \, dx = \frac{2}{3} \qquad \langle v_{3}, w_{2} \rangle = \langle \cos^{2} x, \cos x \rangle = \int_{0}^{\pi} \cos^{3} x \sin x \, dx = 0 \\ w_{3} &= v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2} = \cos^{2} x - \frac{2}{3 \cdot 2} 1 - 0 = \boxed{\cos^{2} x - \frac{1}{3}} \\ \langle w_{3}, w_{3} \rangle &= \langle \cos^{2} x - \frac{1}{3}, \cos^{2} x - \frac{1}{3} \rangle = \int_{0}^{\pi} \left(\cos^{2} x - \frac{1}{3} \right)^{2} \sin x \, dx \\ &= \int_{0}^{\pi} \left(\cos^{2} x - \frac{1}{3} \right)^{2} \sin x \, dx = \int_{0}^{\pi} \left(\cos^{4} x - \frac{2}{3} \cos^{2} x + \frac{1}{9} \right) \sin x \, dx \\ &= \frac{2}{5} - \frac{2}{3} \cdot \frac{2}{3} + \frac{1}{9} \cdot 2 = \frac{8}{45} \qquad |w_{3}| = \sqrt{\frac{8}{45}} \\ u_{1} &= \frac{w_{1}}{|w_{1}|} = \boxed{\frac{1}{\sqrt{2}}} \qquad u_{2} = \frac{w_{2}}{|w_{2}|} = \boxed{\sqrt{\frac{3}{2}} \cos x} \qquad u_{3} = \frac{w_{3}}{|w_{3}|} = \boxed{\sqrt{\frac{45}{8}} \left(\cos^{2} x - \frac{1}{3} \right)^{2}} \end{split}$$