Name___

Math 311Exam 3Spring 2010Section 502P. Yasskin

Consider the vector space P_3 of polynomials with degree less than 3 with standard basis

$$e_1 = 1$$
 $e_2 = x$ $e_3 = x^2$

and the linear operator

 $L: P_3 \to P_3: L(p) = (x-2)\frac{dp}{dx}$

1. (2 pts) What is $\dim P_3$? What is the size of the matrix A of the linear map L?

dim $P_3 =$	A is a	matrix.
-------------	--------	---------

2. (2 pts) Let $p = a + bx + cx^2$. Compute L(p).

$$L(p) =$$

3. (10 pts) Identify the kernel of *L*, a basis for the kernel, and the dimension of the kernel.

 $\dim Ker(L) =$

- **4**. (2 pts) What does the kernel of *L*, (found in part 2), say about one of the eigenvalues of *L*, and the eigenpolynomial(s) for that eigenvalue? No new computations!
- 5. (10 pts) Identify the image of *L*, a basis for the image, and the dimension of the image.

1,2	/ 4	10	/15
3,4	/12	11,12	/12
5	/10	13	/15
6,7	/12	14,15	/10
8,9	/16	Total	/106

 $\dim Im(L) =$

- 6. (6 pts) Is the function L one-to-one? Why?
- 7. (6 pts) Is the function L onto? Why?
- 8. (6 pts) Find the matrix of the linear map L relative to the e basis. Call it $A_{e\leftarrow e}$.

9. (10 pts) Find the eigenvalues of $A_{e \leftarrow e}$.

10. (15 pts) Find the eigenvectors for each eigenvalue. Call them \vec{v}_1 , \vec{v}_2 and \vec{v}_3 .

a.
$$\lambda_1 =$$
 :

c.
$$\lambda_3 =$$

$$\vec{v}_3 =$$

11. (6 pts) Find the eigenpolynomials for each eigenvalue. Call them q_1 , q_2 and q_3 . Verify they are eigenpolynomials by checking that $L(q_k) = \lambda_k q_k$ using the definition of L.

12. (6 pts) The eigenpolynomials $q = (q_1, q_2, q_3)$ form a second basis for P_3 . Find the matrix of the linear map L relative to the q basis. Call it $D_{q \leftarrow q}$.

 $D_{q\leftarrow q} = \left($

13. (15 pts) Find the change of basis matrices $\underset{e \leftarrow q}{C}$ and $\underset{q \leftarrow e}{C}$.

 $\underset{e \leftarrow q}{C} =$

$$C = \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right)$$

5

14. (5 pts) Verify your matrices satisfy $C_{e\leftarrow q} \quad D_{q\leftarrow q} \quad C_{q\leftarrow e} = A_{e\leftarrow e}$.

15. (5 pts) Compute $\begin{pmatrix} A \\ e \leftarrow e \end{pmatrix}^5$.