Name
Math 311 Exam 3 Spring 2010

Section 502
P. Yasskin

Consider the vector space $P_{3}$ of polynomials with degree less than 3 with standard basis

$$
e_{1}=1 \quad e_{2}=x \quad e_{3}=x^{2}
$$

and the linear operator

$$
L: P_{3} \rightarrow P_{3}: L(p)=(x-2) \frac{d p}{d x}
$$

| 1,2 | $/ 4$ | 10 | $/ 15$ |
| :---: | ---: | ---: | ---: |
| 3,4 | $/ 12$ | 11,12 | $/ 12$ |
| 5 | $/ 10$ | 13 | $/ 15$ |
| 6,7 | $/ 12$ | 14,15 | $/ 10$ |
| 8,9 | $/ 16$ | Total | $/ 106$ |

1. (2 pts) What is $\operatorname{dim} P_{3}$ ? What is the size of the matrix $A$ of the linear map $L$ ?

2. (2 pts) Let $p=a+b x+c x^{2}$. Compute $L(p)$.

$$
L(p)=
$$

3. (10 pts) Identify the kernel of $L$, a basis for the kernel, and the dimension of the kernel.

$$
\operatorname{dim} \operatorname{Ker}(L)=\square
$$

4. (2 pts) What does the kernel of $L$, (found in part 2), say about one of the eigenvalues of $L$, and the eigenpolynomial(s) for that eigenvalue? No new computations!
5. (10 pts) Identify the image of $L$, a basis for the image, and the dimension of the image.

$$
\operatorname{dim} \operatorname{Im}(L)=\square
$$

6. (6 pts) Is the function $L$ one-to-one? Why?
7. (6 pts) Is the function $L$ onto? Why?
8. (6 pts) Find the matrix of the linear map $L$ relative to the $e$ basis. Call it $A$.

9. (10 pts) Find the eigenvalues of $\underset{e \leftarrow e}{A}$.

$$
\lambda_{1}=\square \quad \lambda_{2}=\square \quad \lambda_{3}=\square
$$

10. (15 pts) Find the eigenvectors for each eigenvalue. Call them $\vec{v}_{1}, \vec{v}_{2}$ and $\vec{v}_{3}$.
a. $\lambda_{1}=\square$ :

b. $\lambda_{2}=\square$ :

c. $\lambda_{3}=\square$ :

$$
\vec{v}_{3}=(
$$

11. (6 pts) Find the eigenpolynomials for each eigenvalue. Call them $q_{1}, q_{2}$ and $q_{3}$. Verify they are eigenpolynomials by checking that $L\left(q_{k}\right)=\lambda_{k} q_{k}$ using the definition of $L$. $q_{1}=\square \quad L\left(q_{1}\right)=$ $q_{2}=\square \quad L\left(q_{2}\right)=$ $q_{3}=\square \quad L\left(q_{3}\right)=$
12. (6 pts) The eigenpolynomials $q=\left(q_{1}, q_{2}, q_{3}\right)$ form a second basis for $P_{3}$. Find the matrix of the linear map $L$ relative to the $q$ basis. Call it $\underset{q \leftarrow q}{D}$.

13. (15 pts) Find the change of basis matrices $\underset{e \in q}{C}$ and $\underset{q \leftarrow e}{C}$.

14. (5 pts) Verify your matrices satisfy $\underset{e \leftarrow q}{C} \underset{q \leftarrow q}{D} \underset{q \leftarrow e}{C}=\underset{e \leftarrow e}{A}$.
15. (5 pts) Compute $\binom{A}{e \leftarrow e}^{5}$.
