Name_		
Math 311	Exam 3	Spring 2010
Section 502	Solutions	P. Yasskin

Consider the vector space P_{3} of polynomials with degree less than 3 with standard basis

$$
e_{1}=1 \quad e_{2}=x \quad e_{3}=x^{2}
$$

and the linear operator

$$
L: P_{3} \rightarrow P_{3}: L(p)=(x-2) \frac{d p}{d x}
$$

1,2	$/ 4$	10	$/ 15$
3,4	$/ 12$	11,12	$/ 12$
5	$/ 10$	13	$/ 15$
6,7	$/ 12$	14,15	$/ 10$
8,9	$/ 16$	Total	$/ 106$

1. (2 pts) What is $\operatorname{dim} P_{3}$? What is the size of the matrix A of the linear map L ?
$\operatorname{dim} P_{3}=3 \quad A$ is a 3×3 matrix.
2. (2 pts) Let $p=a+b x+c x^{2}$. Compute $L(p)$.

$$
L(p)=(x-2) \frac{d p}{d x}=(x-2)(b+2 c x)
$$

3. (10 pts) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.
$L(p)=(-2 b)+(b-4 c) x+(2 c) x^{2}=0$
$\Rightarrow \quad-2 b=0 \quad b-4 c=0 \quad 2 c=0 \quad \Rightarrow \quad b=c=0 \quad \Rightarrow \quad p=a$
$\operatorname{Ker}(L)=\{p=a\}=\{$ constant polynomials $\}=\operatorname{Span}(1) \quad$ basis $=\{1\} \quad \operatorname{dim} \operatorname{Ker}(L)=1$
4. (2 pts) What does the kernel of L, (found in part 2), say about one of the eigenvalues of L, and the eigenpolynomial(s) for that eigenvalue? No new computations!
$L(1)=0 \cdot 1 \quad$ So 0 is an eigenvalue and 1 is the eigenpolynomial.
5. (10 pts) Identify the image of L, a basis for the image, and the dimension of the image.

$$
\begin{aligned}
& L(p)=(-2 b)+(b-4 c) x+(2 c) x^{2}=b(-2+x)+c\left(-4 x+2 x^{2}\right) \\
& \operatorname{Im}(L)=\{L(p)\}=\operatorname{Span}\left(-2+x,-4 x+2 x^{2}\right) \quad \text { basis }=\left\{-2+x,-4 x+2 x^{2}\right\} \quad \operatorname{dim} \operatorname{Im}(L)=2
\end{aligned}
$$

6. (6 pts) Is the function L one-to-one? Why?
L is not 1-1 because $\operatorname{Ker}(L) \neq\{0\}$
7. (6 pts) Is the function L onto? Why?
L is not onto because $\operatorname{dim} \operatorname{Im}(L)=2$ but $\operatorname{dim} \operatorname{Codom}(L)=\operatorname{dim} P_{3}=3$
8. (6 pts) Find the matrix of the linear map L relative to the e basis. Call it $\underset{e \leftarrow e}{A}$.
$L\left(e_{1}\right)=L(1)==(x-2)(0)=0 \quad=0$
$L\left(e_{2}\right)=L(x)==(x-2)(1)=-2+x=-2 e_{1}+e_{2}$
$L\left(e_{3}\right)=L\left(x^{2}\right)=(x-2)(2 x)=-4 x+2 x^{2}=-4 e_{2}+2 e_{3}$
$\underset{e \leftarrow e}{A}=\left(\begin{array}{ccc}0 & -2 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 2\end{array}\right)$
9. (10 pts) Find the eigenvalues of $\underset{e \leftarrow e}{A}$.
$\operatorname{det}(A-\lambda \mathbf{1})=\operatorname{det}\left(\begin{array}{ccc}-\lambda & -2 & 0 \\ 0 & 1-\lambda & -4 \\ 0 & 0 & 2-\lambda\end{array}\right)=-\lambda(1-\lambda)(2-\lambda)=0 \quad \Rightarrow \quad \lambda=0,1,2$
10. (15 pts) Find the eigenvectors for each eigenvalue. Call them \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
$A \vec{v}=\lambda \vec{v} \quad(A-\lambda \mathbf{1}) \vec{v}=0 \quad\left(\begin{array}{ccc|c}-\lambda & -2 & 0 & 0 \\ 0 & 1-\lambda & -4 & 0 \\ 0 & 0 & 2-\lambda & 0\end{array}\right)$
a. $\lambda_{1}=0$: $\left(\begin{array}{ccc|c}0 & -2 & 0 & 0 \\ 0 & 1 & -4 & 0 \\ 0 & 0 & 2 & 0\end{array}\right) \stackrel{\substack{R_{2} \\ \frac{1}{2} R_{3} \\ R_{1}+2 R_{2}}}{R_{2}} \Rightarrow\left(\begin{array}{ccc|c}0 & 1 & -4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -8 & 0\end{array}\right){ }_{R_{3}+8 R_{2}}^{R_{1}+4 R_{2}} \Rightarrow\left(\begin{array}{lll|l}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\begin{aligned} & y=0 \\ & z=0 \\ & x=r\end{aligned} \quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}r \\ 0 \\ 0\end{array}\right)=r\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad \vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
b. $\lambda_{2}=1: \quad\left(\begin{array}{ccc|c}-1 & -2 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \xrightarrow{R_{3}+4 R_{3}} \begin{aligned} & -R_{1} \\ & R_{3}\end{aligned} \Rightarrow\left(\begin{array}{lll|l}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\begin{aligned} & x+2 y=0 \\ & z=0 \\ & y=r\end{aligned} \quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 r \\ r \\ 0\end{array}\right)=r\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$
c. $\lambda_{3}=2:\left(\begin{array}{ccc|c}-2 & -2 & 0 & 0 \\ 0 & -1 & -4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right){ }^{-\frac{1}{2} R_{1}} R_{2} \Rightarrow\left(\begin{array}{ccc|c}1 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right){ }^{R_{1}-R_{2}} \Rightarrow\left(\begin{array}{ccc|c}1 & 0 & -4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\begin{aligned} & x-4 z=0 \\ & y+4 z=0 \\ & z=r\end{aligned} \quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}4 r \\ -4 r \\ r\end{array}\right)=r\left(\begin{array}{c}4 \\ -4 \\ 1\end{array}\right) \quad \vec{v}_{3}=\left(\begin{array}{c}4 \\ -4 \\ 1\end{array}\right)$
11. (6 pts) Find the eigenpolynomials for each eigenvalue. Call them q_{1}, q_{2} and q_{3}.

Verify they are eigenpolynomials by checking that $L\left(q_{k}\right)=\lambda_{k} q_{k}$ using the definition of L.
$q_{1}=e \vec{v}_{1}=1 \quad q_{2}=e \vec{v}_{2}=-2+x \quad q_{3}=e \vec{v}_{3}=4-4 x+x^{2}$
$L\left(q_{1}\right)=L(1)=(x-2)(0)=0=0 q_{1}$
$L\left(q_{2}\right)=L(-2+x)=(x-2)(1)=-2+x=1 q_{2}$
$L\left(q_{3}\right)=L\left(4-4 x+x^{2}\right)=(x-2)(-4+2 x)=8-8 x+2 x^{2}=2\left(4-4 x+x^{2}\right)=2 q_{3}$
12. (6 pts) The eigenpolynomials $q=\left(q_{1}, q_{2}, q_{3}\right)$ form a second basis for P_{3}.

Find the matrix of the linear map L relative to the q basis. Call it $\underset{q \leftarrow q}{D}$.

$$
\begin{array}{ll}
L\left(q_{1}\right)=0 q_{1} & \underset{q \leftarrow q}{D}=\left(\begin{array}{lll}
0 & 0 & 0 \\
\\
L & 1 & 0 \\
0 & \left.q_{2}\right) & =1 q_{2} \\
L\left(q_{3}\right)=2 q_{3} & 0 & 2
\end{array}\right)
\end{array}
$$

13. (15 pts) Find the change of basis matrices $\underset{e \leftarrow q}{C}$ and $\underset{q \leftarrow e}{C}$.
$q_{1}=1=e_{1} \quad q_{2}=-2+x=-2 e_{1}+e_{2} \quad q_{3}=4-4 x+x^{2}=4 e_{1}-4 e_{2}+e_{3}$
$\underset{e \leftarrow q}{C}=\left(\begin{array}{ccc}1 & -2 & 4 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right) \quad$ Equivalently, the eigenvectors go in the columns.
$\left(\begin{array}{ccc|ccc}1 & -2 & 4 & 1 & 0 & 0 \\ 0 & 1 & -4 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & 2 & 4 \\ 0 & 1 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right) \quad \underset{q-e}{C}=\left(\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right)$
14. (5 pts) Verify your matrices satisfy $\underset{e \leftarrow q}{C} \underset{q \leftarrow q}{D} \underset{q \leftarrow e}{C}=\underset{e \leftarrow e}{A}$.

$$
\begin{aligned}
\underset{e \leftarrow q}{C} & \underset{q \leftarrow q}{D} \\
\underset{q \leftarrow e}{C} & =\left(\begin{array}{ccc}
1 & -2 & 4 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -2 & 4 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & -2 & 0 \\
0 & 1 & -4 \\
0 & 0 & 2
\end{array}\right)=\underset{e \leftarrow e}{A}
\end{aligned}
$$

$$
=\left(\begin{array}{ccc}
1 & -2 & 4 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 32
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -2 & 4 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 4 \\
0 & 0 & 32
\end{array}\right)=\left(\begin{array}{ccc}
0 & -2 & 120 \\
0 & 1 & -124 \\
0 & 0 & 32
\end{array}\right)
$$

