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Math 311 Final Spring 2010

Section 502 Solutions P. Yasskin

1 /26 4 /26

2 /26 5 /16

3 /12 Total /106

1. (26 points) Let P3 be the vector space of polynomials of degree less than 3.
Consider the linear operator L : P3  P3 given by L(p) = 1

x ∫0

x
p(x) dx.

In other words, L(a + bx + cx2 ) = 1
x ax + b x2

2
+ c x3

3 0

x
= a + b x

2
+ c x2

3
.

a. (14 pts) Identify the domain, codomain, kernel and image, and the dimension of each.
Is L one-to-one? Why? Is L onto? Why?

Dom(L) = P3 dim Dom(L) = 3 Codom(L) = P3 dim Codom(L) = 3

Kernel: If p = a + bx + cx2 and L(p) = 0 then a + b x
2

+ c x2

3
= 0

or a = b = c = 0 or p = 0. Ker(L) = {0} dim Ker(L) = 0

Image: Im(L) = a + b x
2

+ c x2

3
= Span(1, x, x2 ) = P3 dim Im(L) = 3

L is one-to-one because Ker(L) = {0}.

L is onto because Im(L) = Codom(L) = P3.

b. (6 pts) Find the matrix of L relative to the basis e1 = 1 e2 = x e3 = x2. Call it A.

L(1) = 1

L(x) = x
2

L(x2 ) = x2

3

A =

1 0 0

0 1
2

0

0 0 1
3

c. (6 pts) Find the eigenvalues and eigenvectors of A. Find the eigenvalues and
eigenpolynomials of L. No new computations!

λ1 = 1 v⃗1 =
1

0

0

p1 = 1

λ2 = 1
2

v⃗2 =
0

1

0

p2 = x

λ3 = 1
3

v⃗3 =
0

0

1

p3 = x2

1



2. (26 points) On the vector space P3 consider the function of two polynomials given by

〈p, q〉 = p(−1) q(−1) + p(0) q(0) + p(1) q(1)

a. (10 pts) Show 〈p, q〉 is an inner product.

i. 〈q, p〉 = q(−1)p(−1) + q(0)p(0) + q(1)p(1) = 〈p, q〉

ii. 〈ap + bq, r〉 = [ap(−1) + bq(−1)]r(−1) + [ap(0) + bq(0)]r(0) + [ap(1) + bq(1)]r(1)

= a[p(−1)r(−1) + p(0)r(0) + p(1)r(1)] + b[q(−1)r(−1) + q(0)r(0) + q(1)r(1)]

= a〈p, r〉 + b〈q, r〉

iii. 〈p, p〉 = p(−1)2 + p(0)2 + p(1)2 ≥ 0 and = 0 only if p(−1) = p(0) = p(1) = 0

If p = a + bx + cx2, then p(−1) = a − b + c = 0 p(0) = a = 0 p(1) = a + b + c = 0

So a = 0, − b + c = 0, b + c = 0 which says a = b = c = 0 or p = 0.

b. (16 pts) Apply the Gram-Schmidt procedure to the basis

e1 = 1 e2 = x e3 = x2

to produce an orthogonal basis w1, w2, w3 and an orthonormal basis u1, u2, u3.

HINT: If p(x) = 1, what are p(−1), p(0) and p(1)? What is 〈1, 1〉?

w1 = e1 = 1

〈w1, w1 〉 = 〈1, 1〉 = 1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 1 = 3 |w1 | = 3

〈e2, w1 〉 = 〈x, 1〉 = (−1) ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 1 = 0

w2 = e2 − 〈e2, w1 〉
〈w1, w1 〉

w1 = x

〈w2, w2 〉 = 〈x, x〉 = (−1) ⋅ (−1) + 0 ⋅ 0 + 1 ⋅ 1 = 2 |w2 | = 2

〈e3, w1 〉 = 〈x2, 1〉 = 1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 1 = 2

〈e3, w2 〉 = 〈x2, x〉 = 1 ⋅ (−1) + 0 ⋅ 0 + 1 ⋅ 1 = 0

w3 = e3 − 〈e3, w1 〉
〈w1, w1 〉

w1 − 〈e3, w2 〉
〈w2, w2 〉

w2 = x2 − 2
3

1 − 0 = x2 − 2
3

〈w3, w3 〉 = (−1)2 − 2
3

2
+ − 2

3

2
+ 12 − 2

3

2
= 1

9
+ 4

9
+ 1

9
= 2

3
|w3 | = 2

3

u1 = w1

|w1 | = 1
3

u2 = w2

|w2 | = x
2

u3 = w3

|w3 | = 3
2

x2 − 2
3

2



3. (12 pts) Let y(x, t) denote the transverse displacement of an 8 cm string at position x and
time t. The velocity of a wave on this string is measured as 3 cm/sec.

It is initially pulled to have the shape f(x) =
0. 1(4 + x) for −4 ≤ x ≤ 0

0. 1(4 − x) for 0 ≤ x ≤ 4

It is then released from rest at time t = 0. It is held fixed at both ends.

Write down the differential equation, boundary and initial conditions satisfied by the string.

Do not solve anything.

The wave equation with velocity 3 is ∂2y
∂t2

= 9
∂2y
∂x2

.

The boundary conditions are y(−4, t) = 0 and y(4, t) = 0 ∀t ≥ 0.

The initial conditions are y(x, 0) = f(x) and ∂y
∂t

(x, 0) = 0 ∀x ∈ [−4, 4].

4. (26 pts) The heat equation for the temperature z(x, t) on a 100 cm metal bar is
∂z
∂t

= 9 ∂2z
∂x2

.

The temperature at the ends are held fixed at 25°C and 75°C. Thus

z(0, t) = 25 and z(100, t) = 75 ∀t ≥ 0

Initially, the temperature on the bar is

z(x, 0) = 25 + x
2

+ 4 sin 7πx
100

∀x ∈ [0, 100]

Find the temperature z(x, t) for t ≥ 0 and x ∈ [0, 100].

HINT: First let z(x, t) = 25 + x
2

+ y(x, t).

Write down the differential equation, boundary and initial conditions satisfied by y(x, t).

Solve for y(x, t) by separating variables. Then substitute back to get z(x, t).
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Let z(x, t) = 25 + x
2

+ y(x, t). Then

∂z
∂t

= ∂y
∂t

∂z
∂x

= 1
2

+ ∂y
∂x

∂2z
∂x2

= ∂2y
∂x2

So the differential equation is

∂y
∂t

= 9
∂2y
∂x2

.

z(0, t) = 25 + y(0, t) z(100, t) = 75 + y(100, t) So the boundary conditions are

y(0, t) = 0 and y(100, t) = 0.

z(x, 0) = 25 + x
2

+ y(x, 0) So the initial condition is

y(x, 0) = 4 sin 7πx
100

To separate variables, let y(x, t) = X(x)T(t). Substitute into the differential equation and divide by
XT:

1
9T

dT
dt

= 1
X

d2X
dx2

.

Since the left is a function of t and the right is a function of x, they both must equal a
constant.

This constant must be negative so that T does not grow exponentially. So
1

9T
dT
dt

= 1
X

d2X
dx2

= −λ2

or
dT
dt

= −9λ2T and d2X
dx2

= −λ2X

The solutions are

T = Ae−9λ2t and X = P sin(λx) + Qcos(λx)

We first satisfy the boundary conditions.

y(0, t) = 0 implies X(0) = Q = 0 or X = P sin(λx)

y(100, t) = 0 implies X(100) = P sin(100λ) = 0. So λ = nπ
100

≡ λn.

By superposition, a solution of the differential equation satisfying the boundary conditions is

y(x, t) = ∑
n=1

∞

Pn sin(λnx)e−9λn
2t = ∑

n=1

∞

Pn sin nπx
100

exp −9 nπ
100

2
t

The initial condition says

y(x, 0) = ∑
n=1

∞

Pn sin nπx
100

= 4 sin 7πx
100

Comparing, we see P7 = 4 and all other Pn’s are 0. So the solution is

y(x, t) = 4 sin(λ7x)e−9λ7
2t = 4 sin 7πx

100
exp −9 7π

100

2
t .

Substitute back to get

z(x, t) = 25 + x
2

+ 4 sin(λ7x)e−9λ7
2t = 25 + x

2
+ 4 sin 7πx

100
exp −9 7π

100

2
t .
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5. (16 pts) Find the fourier series for f(x) =
2 + x for −4 ≤ x ≤ 0

2 − x for 0 ≤ x ≤ 4

Then plot the function f(x) and the first term of its fourier series.

HINT: The fourier series for f(x) on the interval [−L, L] is

f(x) ≈ a0

2
+∑

n=1

∞

an cos nπx
L

+∑
n=1

∞

bn sin nπx
L

where

an = 1
L ∫−L

L
f(x) cos nπx

L
dx bn = 1

L ∫−L

L
f(x) sin nπx

L
dx

The interval is [−4, 4]. So L = 4.

The function f(x) is even because for a ≥ 0, f(a) = 2 − a while f(−a) = 2 + (−a) = 2 − a = f(a).
So only the cos terms are non-zero.

a0 = 1
4 ∫−4

4
f(x) cos(0) dx = 1

4 ∫−4

0
(2 + x) dx + 1

4 ∫0

4
(2 − x) dx = 1

2 ∫0

4
(2 − x) dx = 1

2
− (2 − x)2

2
0

4

= 1
2

− (−2)2

2
− 1

2
− (2)2

2
= 0

an = 1
4 ∫−4

4
f(x) cos nπx

4
dx = 1

4 ∫−4

0
(2 + x) cos nπx

4
dx + 1

4 ∫0

4
(2 − x) cos nπx

4
dx

= 1
2 ∫0

4
(2 − x) cos nπx

4
dx use integration by parts:

u = 2 − x dv = cos nπx
4

dx

du = −dx v = 4
nπ sin nπx

4

an = 1
2

(2 − x) 4
nπ sin nπx

4
+ 4

nπ ∫ sin nπx
4

dx
0

4
= 1

2
− 4

nπ
2

cos nπx
4 0

4

= − 1
2

4
nπ

2
[cos(nπ) − cos(0)] = − 1

2
4

nπ
2
⋅

0 for n even

−2 for n odd
=

0 for n even
16

n2π2
for n odd

f(x) ≈ ∑
n=1
odd

∞
16

n2π2
cos nπx

4

= 16
π2

cos πx
4

+ 16
9π2

cos 3πx
4

+ ⋯
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-2

-1

1

2

x

y
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