\qquad

Final
Spring 2010
Section 502
Solutions P. Yasskin

1	$/ 26$	4	$/ 26$
2	$/ 26$	5	$/ 16$
3	$/ 12$	Total	$/ 106$

1. (26 points) Let P_{3} be the vector space of polynomials of degree less than 3 .

Consider the linear operator $L: P_{3} \rightarrow P_{3}$ given by $L(p)=\frac{1}{x} \int_{0}^{x} p(x) d x$. In other words, $L\left(a+b x+c x^{2}\right)=\frac{1}{x}\left[a x+b \frac{x^{2}}{2}+c \frac{x^{3}}{3}\right]_{0}^{x}=a+b \frac{x}{2}+c \frac{x^{2}}{3}$.
a. (14 pts) Identify the domain, codomain, kernel and image, and the dimension of each.

Is L one-to-one? Why? Is L onto? Why?
$\operatorname{Dom}(L)=P_{3} \quad \operatorname{dim} \operatorname{Dom}(L)=3 \quad \operatorname{Codom}(L)=P_{3} \quad \operatorname{dim} \operatorname{Codom}(L)=3$
Kernel: If $p=a+b x+c x^{2}$ and $L(p)=0$ then $a+b \frac{x}{2}+c \frac{x^{2}}{3}=0$
or $a=b=c=0$ or $p=0 . \quad \operatorname{Ker}(L)=\{0\} \quad \operatorname{dim} \operatorname{Ker}(L)=0$
Image: $\quad \operatorname{Im}(L)=\left\{a+b \frac{x}{2}+c \frac{x^{2}}{3}\right\}=\operatorname{Span}\left(1, x, x^{2}\right)=P_{3} \quad \operatorname{dim} \operatorname{Im}(L)=3$
L is one-to-one because $\operatorname{Ker}(L)=\{0\}$.
L is onto because $\operatorname{Im}(L)=\operatorname{Codom}(L)=P_{3}$.
b. (6 pts) Find the matrix of L relative to the basis $e_{1}=1 \quad e_{2}=x \quad e_{3}=x^{2}$. Call it A.
$L(1)=1$
$L(x)=\frac{x}{2}$
$L\left(x^{2}\right)=\frac{x^{2}}{3}$
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$
c. (6 pts) Find the eigenvalues and eigenvectors of A. Find the eigenvalues and eigenpolynomials of L. No new computations!

$$
\begin{array}{ll}
\lambda_{1}=1 & \vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
p_{1}=1 \\
\lambda_{2}=\frac{1}{2} & \vec{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
p_{2}=x \\
\lambda_{3}=\frac{1}{3} & \vec{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

2. (26 points) On the vector space P_{3} consider the function of two polynomials given by

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

a. (10 pts) Show $\langle p, q\rangle$ is an inner product.
i. $\langle q, p\rangle=q(-1) p(-1)+q(0) p(0)+q(1) p(1)=\langle p, q\rangle$
ii. $\langle a p+b q, r\rangle=[a p(-1)+b q(-1)] r(-1)+[a p(0)+b q(0)] r(0)+[a p(1)+b q(1)] r(1)$

$$
\begin{aligned}
& =a[p(-1) r(-1)+p(0) r(0)+p(1) r(1)]+b[q(-1) r(-1)+q(0) r(0)+q(1) r(1)] \\
& =a\langle p, r\rangle+b\langle q, r\rangle
\end{aligned}
$$

iii. $\langle p, p\rangle=p(-1)^{2}+p(0)^{2}+p(1)^{2} \geq 0$ and $=0$ only if $p(-1)=p(0)=p(1)=0$

If $p=a+b x+c x^{2}$, then $p(-1)=a-b+c=0 \quad p(0)=a=0 \quad p(1)=a+b+c=0$
So $a=0, \quad-b+c=0, \quad b+c=0$ which says $a=b=c=0$ or $p=0$.
b. (16 pts) Apply the Gram-Schmidt procedure to the basis

$$
e_{1}=1 \quad e_{2}=x \quad e_{3}=x^{2}
$$

to produce an orthogonal basis w_{1}, w_{2}, w_{3} and an orthonormal basis u_{1}, u_{2}, u_{3}. HINT: If $p(x)=1$, what are $p(-1), p(0)$ and $p(1)$? What is $\langle 1,1\rangle$?
$w_{1}=e_{1}=1$
$\left\langle w_{1}, w_{1}\right\rangle=\langle 1,1\rangle=1 \cdot 1+1 \cdot 1+1 \cdot 1=3 \quad\left|w_{1}\right|=\sqrt{3}$
$\left\langle e_{2}, w_{1}\right\rangle=\langle x, 1\rangle=(-1) \cdot 1+0 \cdot 1+1 \cdot 1=0$
$w_{2}=e_{2}-\frac{\left\langle e_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=\boxed{x}$
$\left\langle w_{2}, w_{2}\right\rangle=\langle x, x\rangle=(-1) \cdot(-1)+0 \cdot 0+1 \cdot 1=2 \quad\left|w_{2}\right|=\sqrt{2}$
$\left\langle e_{3}, w_{1}\right\rangle=\left\langle x^{2}, 1\right\rangle=1 \cdot 1+0 \cdot 1+1 \cdot 1=2$
$\left\langle e_{3}, w_{2}\right\rangle=\left\langle x^{2}, x\right\rangle=1 \cdot(-1)+0 \cdot 0+1 \cdot 1=0$
$w_{3}=e_{3}-\frac{\left\langle e_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle e_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=x^{2}-\frac{2}{3} 1-0=x^{2}-\frac{2}{3}$
$\left\langle w_{3}, w_{3}\right\rangle=\left((-1)^{2}-\frac{2}{3}\right)^{2}+\left(-\frac{2}{3}\right)^{2}+\left(1^{2}-\frac{2}{3}\right)^{2}=\frac{1}{9}+\frac{4}{9}+\frac{1}{9}=\frac{2}{3} \quad\left|w_{3}\right|=\sqrt{\frac{2}{3}}$
$u_{1}=\frac{w_{1}}{\left|w_{1}\right|}=\frac{1}{\sqrt{3}} \quad u_{2}=\frac{w_{2}}{\left|w_{2}\right|}=\frac{x}{\sqrt{2}} \quad u_{3}=\frac{w_{3}}{\left|w_{3}\right|}=\sqrt{\frac{3}{2}}\left(x^{2}-\frac{2}{3}\right)$
3. (12 pts) Let $y(x, t)$ denote the transverse displacement of an 8 cm string at position x and time t. The velocity of a wave on this string is measured as $3 \mathrm{~cm} / \mathrm{sec}$.

It is initially pulled to have the shape $f(x)=\left\{\begin{array}{lll}0.1(4+x) & \text { for }-4 \leq x \leq 0 \\ 0.1(4-x) & \text { for } 0 \leq x \leq 4\end{array}\right.$
It is then released from rest at time $t=0$. It is held fixed at both ends.
Write down the differential equation, boundary and initial conditions satisfied by the string.
Do not solve anything.
The wave equation with velocity 3 is $\frac{\partial^{2} y}{\partial t^{2}}=9 \frac{\partial^{2} y}{\partial x^{2}}$.
The boundary conditions are $\quad y(-4, t)=0 \quad$ and $\quad y(4, t)=0 \quad \forall t \geq 0$.
The initial conditions are $\quad y(x, 0)=f(x) \quad$ and $\quad \frac{\partial y}{\partial t}(x, 0)=0 \quad \forall x \in[-4,4]$.
4. (26 pts) The heat equation for the temperature $z(x, t)$ on a 100 cm metal bar is

$$
\frac{\partial z}{\partial t}=9 \frac{\partial^{2} z}{\partial x^{2}}
$$

The temperature at the ends are held fixed at $25^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. Thus

$$
z(0, t)=25 \quad \text { and } \quad z(100, t)=75 \quad \forall t \geq 0
$$

Initially, the temperature on the bar is

$$
z(x, 0)=25+\frac{x}{2}+4 \sin \left(\frac{7 \pi x}{100}\right) \quad \forall x \in[0,100]
$$

Find the temperature $z(x, t)$ for $t \geq 0$ and $x \in[0,100]$.
HINT: First let $z(x, t)=25+\frac{x}{2}+y(x, t)$.
Write down the differential equation, boundary and initial conditions satisfied by $y(x, t)$.
Solve for $y(x, t)$ by separating variables. Then substitute back to get $z(x, t)$.

Let $z(x, t)=25+\frac{x}{2}+y(x, t)$. Then
$\frac{\partial z}{\partial t}=\frac{\partial y}{\partial t} \quad \frac{\partial z}{\partial x}=\frac{1}{2}+\frac{\partial y}{\partial x} \quad \frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} y}{\partial x^{2}} \quad$ So the differential equation is

$$
\frac{\partial y}{\partial t}=9 \frac{\partial^{2} y}{\partial x^{2}} .
$$

$z(0, t)=25+y(0, t) \quad z(100, t)=75+y(100, t) \quad$ So the boundary conditions are

$$
y(0, t)=0 \quad \text { and } \quad y(100, t)=0 .
$$

$z(x, 0)=25+\frac{x}{2}+y(x, 0) \quad$ So the initial condition is

$$
y(x, 0)=4 \sin \left(\frac{7 \pi x}{100}\right)
$$

To separate variables, let $y(x, t)=X(x) T(t)$. Substitute into the differential equation and divide by XT:

$$
\frac{1}{9 T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}
$$

Since the left is a function of t and the right is a function of x, they both must equal a constant.

This constant must be negative so that T does not grow exponentially. So

$$
\frac{1}{9 T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\lambda^{2}
$$

or

$$
\frac{d T}{d t}=-9 \lambda^{2} T \quad \text { and } \quad \frac{d^{2} X}{d x^{2}}=-\lambda^{2} X
$$

The solutions are

$$
T=A e^{-9 \lambda^{2} t} \quad \text { and } \quad X=P \sin (\lambda x)+Q \cos (\lambda x)
$$

We first satisfy the boundary conditions.
$y(0, t)=0$ implies $X(0)=Q=0$ or $X=P \sin (\lambda x)$
$y(100, t)=0 \quad$ implies $\quad X(100)=P \sin (100 \lambda)=0$. So $\lambda=\frac{n \pi}{100} \equiv \lambda_{n}$.
By superposition, a solution of the differential equation satisfying the boundary conditions is

$$
y(x, t)=\sum_{n=1}^{\infty} P_{n} \sin \left(\lambda_{n} x\right) e^{-9 \lambda_{n}^{2} t}=\sum_{n=1}^{\infty} P_{n} \sin \left(\frac{n \pi x}{100}\right) \exp \left(-9\left(\frac{n \pi}{100}\right)^{2} t\right)
$$

The initial condition says

$$
y(x, 0)=\sum_{n=1}^{\infty} P_{n} \sin \left(\frac{n \pi x}{100}\right)=4 \sin \left(\frac{7 \pi x}{100}\right)
$$

Comparing, we see $P_{7}=4$ and all other P_{n} 's are 0 . So the solution is

$$
y(x, t)=4 \sin \left(\lambda_{7} x\right) e^{-9 \lambda_{7}^{2} t}=4 \sin \left(\frac{7 \pi x}{100}\right) \exp \left(-9\left(\frac{7 \pi}{100}\right)^{2} t\right) .
$$

Substitute back to get

$$
z(x, t)=25+\frac{x}{2}+4 \sin \left(\lambda_{7} x\right) e^{-9 \lambda_{7}^{2} t}=25+\frac{x}{2}+4 \sin \left(\frac{7 \pi x}{100}\right) \exp \left(-9\left(\frac{7 \pi}{100}\right)^{2} t\right)
$$

5. (16 pts) Find the fourier series for $f(x)=\left\{\begin{array}{l}2+x \text { for }-4 \leq x \leq 0 \\ 2-x \text { for } 0 \leq x \leq 4\end{array}\right.$

Then plot the function $f(x)$ and the first term of its fourier series.
HINT: The fourier series for $f(x)$ on the interval $[-L, L]$ is

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

where

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

The interval is $[-4,4]$. So $L=4$.
The function $f(x)$ is even because for $a \geq 0, f(a)=2-a$ while $f(-a)=2+(-a)=2-a=f(a)$. So only the cos terms are non-zero.

$$
\begin{aligned}
& a_{0}=\frac{1}{4} \int_{-4}^{4} f(x) \cos (0) d x=\frac{1}{4} \int_{-4}^{0}(2+x) d x+\frac{1}{4} \int_{0}^{4}(2-x) d x=\frac{1}{2} \int_{0}^{4}(2-x) d x=\frac{1}{2}\left[-\frac{(2-x)^{2}}{2}\right]_{0}^{4} \\
& =\frac{1}{2}\left[-\frac{(-2)^{2}}{2}\right]-\frac{1}{2}\left[-\frac{(2)^{2}}{2}\right]=0 \\
& a_{n}=\frac{1}{4} \int_{-4}^{4} f(x) \cos \left(\frac{n \pi x}{4}\right) d x=\frac{1}{4} \int_{-4}^{0}(2+x) \cos \left(\frac{n \pi x}{4}\right) d x+\frac{1}{4} \int_{0}^{4}(2-x) \cos \left(\frac{n \pi x}{4}\right) d x \\
& =\frac{1}{2} \int_{0}^{4}(2-x) \cos \left(\frac{n \pi x}{4}\right) d x \quad \text { use integration by parts: } \\
& u=2-x \quad d v=\cos \left(\frac{n \pi x}{4}\right) d x \\
& d u=-d x \quad v=\frac{4}{n \pi} \sin \left(\frac{n \pi x}{4}\right) \\
& a_{n}=\frac{1}{2}\left[(2-x) \frac{4}{n \pi} \sin \left(\frac{n \pi x}{4}\right)+\frac{4}{n \pi} \int \sin \left(\frac{n \pi x}{4}\right) d x\right]_{0}^{4}=\frac{1}{2}\left[-\left(\frac{4}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{4}\right)\right]_{0}^{4} \\
& =-\frac{1}{2}\left(\frac{4}{n \pi}\right)^{2}[\cos (n \pi)-\cos (0)]=-\frac{1}{2}\left(\frac{4}{n \pi}\right)^{2} \cdot\left\{\begin{array}{cc}
0 & \text { for } n \text { even } \\
-2 & \text { for } n \text { odd }
\end{array}=\left\{\begin{array}{cl}
0 & \text { for } n \text { even } \\
\frac{16}{n^{2} \pi^{2}} & \text { for } n \text { odd }
\end{array}\right.\right. \\
& f(x) \approx \sum_{\substack{n=1 \\
\text { odd }}}^{\infty} \frac{16}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{4}\right) \\
& =\frac{16}{\pi^{2}} \cos \left(\frac{\pi x}{4}\right)+\frac{16}{9 \pi^{2}} \cos \left(\frac{3 \pi x}{4}\right)+\cdots
\end{aligned}
$$

