1. Consider the vector space $V=\operatorname{Span}\left(1, e^{x}, e^{-x}\right)$ with the usual addition and scalar multiplication of functions.
a. Show $\vec{e}_{1}=1, \vec{e}_{2}=e^{x}$ and $\vec{e}_{3}=e^{-x}$ are a basis for V. What is the dimension of V ? HINT: Since they already span V, all you need to show is linear independence.
b. Show $\vec{E}_{1}=1, \vec{E}_{2}=\sinh x=\frac{e^{x}-e^{-x}}{2}$ and $\vec{E}_{3}=\cosh x=\frac{e^{x}+e^{-x}}{2}$ are another basis for V. HINT: Why do you only need to show one of spanning or linear independence?
c. Find $\underset{e \leftarrow E}{C}$, the change of basis matrix from the E-basis to the e-basis.

NOTE: If the bases are taken as rows:

$$
e=\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)=\left(1, e^{x}, e^{-x}\right) \text { and } E=\left(\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}\right)=(1, \sinh x, \cosh x)
$$

and the components of a vector \vec{v} are columns $(\vec{v})_{e}$ and $(\vec{v})_{E}$ satisfying $\vec{v}=e(\vec{v})_{e}=E(\vec{v})_{E}$ then this matrix satisfies: $(\vec{v})_{e}=\underset{e \leftarrow E}{C}(\vec{v})_{E}$ and $E=e \underset{e \leftarrow E}{C}$.
d. Find $\underset{E \leftarrow e}{C}$, the change of basis matrix from the e-basis to the E-basis.
e. For the function $q=7+4 \sinh x-2 \cosh x$, find the components relative to the E-basis. Then use $\underset{e \leftarrow E}{C}$ to find the components relative to the e-basis.
Then check your work by substituting $\sinh x$ and $\cosh x$ directly into the function.
f. For the function $r=5-2 e^{x}+4 e^{-x}$, find the components relative to the e-basis.

Then use $\underset{E \leftarrow e}{C}$ to find the components of r relative to the E-basis.
Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.
2. Consider the vector space $W=\operatorname{Span}\left(e^{-x}, 1, e^{x}, e^{2 x}\right)$ with the usual addition and scalar multiplication of functions. Two bases are:

$$
\vec{f}_{1}=e^{-x}, \quad \vec{f}_{2}=1, \quad \vec{f}_{3}=e^{x}, \quad \vec{f}_{4}=e^{2 x}
$$

and

$$
\vec{F}_{1}=e^{-x}, \quad \vec{F}_{2}=e^{-x}+1, \quad \vec{F}_{3}=1+e^{x}, \quad \vec{F}_{4}=e^{x}+e^{2 x}
$$

a. Find $\underset{f \leftarrow F}{C}$, the change of basis matrix from the F-basis to the f-basis.
b. Find $\underset{F \leftarrow f}{C}$, the change of basis matrix from the f-basis to the F-basis.
3. With V and W as defined in \#1 and \#2, consider the function $L: W \rightarrow V$ given by

$$
L(p)=\frac{d p}{d x}-2 p
$$

a. First make sure the function L is well defined.

In other words, for $p=a e^{-x}+b+c e^{x}+d e^{2 x} \in W$, verify that $L(p) \in V$.
b. Show L is linear.
c. Find the $\operatorname{Ker}(L)$. What is $\operatorname{dim} \operatorname{Ker}(L)$?
d. Find the $\operatorname{Im}(L)$. What is $\operatorname{dim} \operatorname{Im}(L)$?
e. What Theorem relates $\operatorname{dim} \operatorname{Ker}(L)$ and $\operatorname{dim} \operatorname{Im}(L)$ to $\operatorname{dim} W$ or $\operatorname{dim} V$? Check it.
f. Let $q=4 e^{-x}-2 e^{x}+2 e^{2 x}$ and compute $L(q)$ directly from the definition of L.
g. Find $\underset{e \leftarrow f}{A}$, the matrix of the linear map L from to the f-basis on W to the e-basis on V.
h. Compute $(q)_{f}$ and recompute $L(q)=L\left(4 e^{-x}-2 e^{x}+2 e^{2 x}\right)$ using $\underset{e \leftarrow f}{A}$.
i. Find $\underset{E \leftarrow F}{B}$, the matrix of the linear map L from to the F-basis on W to the E-basis on V. HINT: Use $\underset{e \leftarrow f}{A}$, and two of $\underset{e \leftarrow E}{C}, \underset{E \leftarrow e}{C}, \underset{f \leftarrow F}{C}$ and/or $\underset{F \leftarrow f}{C}$.
j. Use $\underset{F \leftarrow f}{C}$ to compute $(q)_{F}$, the components of $q=4 e^{-x}-2 e^{x}+2 e^{2 x}$ relative to the F-basis.
k. Recompute $L(q)=L\left(4 e^{-x}-2 e^{x}+2 e^{2 x}\right)$ using $(q)_{F}$ and $\underset{E \leftarrow F}{B}$. Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.

