- 1. Consider the vector space $V = \text{Span}(1, e^x, e^{-x})$ with the usual addition and scalar multiplication of functions.
 - **a**. Show $\vec{e}_1 = 1$, $\vec{e}_2 = e^x$ and $\vec{e}_3 = e^{-x}$ are a basis for *V*. What is the dimension of *V*? HINT: Since they already span *V*, all you need to show is linear independence.
 - **b**. Show $\vec{E}_1 = 1$, $\vec{E}_2 = \sinh x = \frac{e^x e^{-x}}{2}$ and $\vec{E}_3 = \cosh x = \frac{e^x + e^{-x}}{2}$ are another basis for *V*. HINT: Why do you only need to show one of spanning or linear independence?
 - **c**. Find $C_{e \leftarrow E}$, the change of basis matrix from the *E*-basis to the *e*-basis. NOTE: If the bases are taken as rows:

 $e = (\vec{e}_1, \vec{e}_2, \vec{e}_3) = (1, e^x, e^{-x})$ and $E = (\vec{E}_1, \vec{E}_2, \vec{E}_3) = (1, \sinh x, \cosh x)$

and the components of a vector \vec{v} are columns $(\vec{v})_e$ and $(\vec{v})_E$ satisfying $\vec{v} = e(\vec{v})_e = E(\vec{v})_E$ then this matrix satisfies: $(\vec{v})_e = C_{e \leftarrow E} (\vec{v})_E$ and $E = e_{e \leftarrow E} C$.

- **d**. Find $C_{E\leftarrow e}$, the change of basis matrix from the *e*-basis to the *E*-basis.
- e. For the function $q = 7 + 4 \sinh x 2 \cosh x$, find the components relative to the *E*-basis. Then use $\underset{e \leftarrow E}{C}$ to find the components relative to the *e*-basis. Then check your work by substituting $\sinh x$ and $\cosh x$ directly into the function.
- f. For the function $r = 5 2e^x + 4e^{-x}$, find the components relative to the *e*-basis. Then use $C_{E \leftarrow e}$ to find the components of *r* relative to the *E*-basis. Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.
- **2**. Consider the vector space $W = \text{Span}(e^{-x}, 1, e^x, e^{2x})$ with the usual addition and scalar multiplication of functions. Two bases are:

 $\vec{f}_1 = e^{-x}, \quad \vec{f}_2 = 1, \quad \vec{f}_3 = e^x, \quad \vec{f}_4 = e^{2x}$

and

$$\vec{F}_1 = e^{-x}, \qquad \vec{F}_2 = e^{-x} + 1, \qquad \vec{F}_3 = 1 + e^x, \qquad \vec{F}_4 = e^x + e^{2x}$$

a. Find
$$C_{f \leftarrow F}$$
, the change of basis matrix from the *F*-basis to the *f*-basis.

b. Find $C_{F \leftarrow f}$, the change of basis matrix from the *f*-basis to the *F*-basis.

3. With V and W as defined in #1 and #2, consider the function $L: W \rightarrow V$ given by

$$L(p) = \frac{dp}{dx} - 2p$$

- **a**. First make sure the function *L* is well defined. In other words, for $p = ae^{-x} + b + ce^{x} + de^{2x} \in W$, verify that $L(p) \in V$.
- **b**. Show L is linear.
- **c**. Find the Ker(L). What is $\dim Ker(L)$?
- **d**. Find the Im(L). What is $\dim Im(L)$?
- e. What Theorem relates $\dim Ker(L)$ and $\dim Im(L)$ to $\dim W$ or $\dim V$? Check it.
- f. Let $q = 4e^{-x} 2e^x + 2e^{2x}$ and compute L(q) directly from the definition of L.
- **g**. Find $A_{e \leftarrow f}$, the matrix of the linear map *L* from to the *f*-basis on *W* to the *e*-basis on *V*.
- h. Compute $(q)_f$ and recompute $L(q) = L(4e^{-x} 2e^x + 2e^{2x})$ using $A_{e \leftarrow f}$.
- i. Find B, the matrix of the linear map L from to the F-basis on W to the E-basis on V. HINT: Use A, and two of C, C, C and/or C. $e \leftarrow F$ $E \leftarrow e$ $f \leftarrow F$ $E \leftarrow e$
- j. Use $\underset{F \leftarrow f}{C}$ to compute $(q)_F$, the components of $q = 4e^{-x} 2e^x + 2e^{2x}$ relative to the *F*-basis.
- **k**. Recompute $L(q) = L(4e^{-x} 2e^x + 2e^{2x})$ using $(q)_F$ and $\underset{E \leftarrow F}{B}$. Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.