MATH 311Section 502Homework on EigenvectorsSpring 2010P. YasskinConsider the vector space of 2×2 matricesM(2,2) with standard basis

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

and the linear operator

$$L: M(2,2) \to M(2,2): L(X) = PX \quad \text{where} \quad P = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

NOTE: *P* is NOT the matrix of this linear map!

1. What is $\dim M(2,2)$? What is the size of the matrix *A* of the linear map *L*? Find the matrix of the linear map *L* relative to the *E* basis. Call it *A*. $E \leftarrow E$

2. Show the eigenvalues of $A_{E \leftarrow E}$ are $\lambda = 2$ and $\lambda = 4$. HINT: Use long division to factor out $(\lambda - 2)$ and $(\lambda - 4)$. **3**. Find the eigenvectors for the eigenvalue $\lambda = 2$. Define \vec{v}_1 and \vec{v}_2 to be a basis for the eigenspace.

4. Find the eigenvector(s) for the eigenvalue $\lambda = 4$. Define \vec{v}_3 and \vec{v}_4 to be a basis for the eigenspace. **5**. Each of the eigenvectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are the component vectors of eigenmatrices V_1, V_2, V_3, V_4 relative the $E = (E_1, E_2, E_3, E_4)$ basis. Hook the components onto the basis vectors to produce the eigenmatrices V_1, V_2, V_3, V_4 . Verify they are eigenmatrices by checking that $L(V_k) = \lambda V_k$ using the definition L(X) = PX.

6. The matrices $V = (V_1, V_2, V_3, V_4)$ form a second basis for M(2, 2). Find the matrix of the linear map L relative to the V basis. Call it $D_{V \leftarrow V}$. **7**. Find the change of basis matrices $C_{E \leftarrow V}$ and $C_{V \leftarrow E}$.

8. Verify your matrices satisfy $\begin{array}{cc} C & D & C \\ E \leftarrow V & V \leftarrow V & V \leftarrow E \end{array} = \begin{array}{c} A \\ E \leftarrow E \end{array}$.

9. Compute $\begin{pmatrix} A \\ E \leftarrow E \end{pmatrix}^4$