Consider the vector space of $2 \times 2$ matrices $M(2,2)$ with standard basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and the linear operator

$$
L: M(2,2) \rightarrow M(2,2): L(X)=P X \quad \text { where } \quad P=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

NOTE: $P$ is NOT the matrix of this linear map!

1. What is $\operatorname{dim} M(2,2)$ ? What is the size of the matrix $A$ of the linear map $L$ ?

Find the matrix of the linear map $L$ relative to the $E$ basis. Call it $\underset{E \leftarrow E}{A}$.
2. Show the eigenvalues of $\underset{E \leftarrow E}{A}$ are $\lambda=2$ and $\lambda=4$. HINT: Use long division to factor out $(\lambda-2)$ and $(\lambda-4)$.
3. Find the eigenvectors for the eigenvalue $\lambda=2$. Define $\vec{v}_{1}$ and $\vec{v}_{2}$ to be a basis for the eigenspace.
4. Find the eigenvector(s) for the eigenvalue $\lambda=4$. Define $\vec{v}_{3}$ and $\vec{v}_{4}$ to be a basis for the eigenspace.
5. Each of the eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are the component vectors of eigenmatrices $V_{1}, V_{2}, V_{3}, V_{4}$ relative the $E=\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ basis. Hook the components onto the basis vectors to produce the eigenmatrices $V_{1}, V_{2}, V_{3}, V_{4}$. Verify they are eigenmatrices by checking that $L\left(V_{k}\right)=\lambda V_{k}$ using the definition $L(X)=P X$.
6. The matrices $V=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$ form a second basis for $M(2,2)$. Find the matrix of the linear map $L$ relative to the $V$ basis. Call it $D$. $V \leftarrow V$
7. Find the change of basis matrices $\underset{E \leftarrow V}{C}$ and $\underset{V \leftarrow E}{C}$.
8. Verify your matrices satisfy $\underset{E \leftarrow V}{C} \underset{V \leftarrow V}{D} \underset{V \leftarrow E}{C}=\underset{E \leftarrow E}{A}$.
9. Compute $(\underset{E \leftarrow E}{A})^{4}$

