Name				1	/25	4	/10
Math 311 Section 501	Exam 1	Spring 2013 P. Vasskin		2	/20	5	/15
		r. 1855MIT		3	/30	Total	/100
1 . (25 points) Le	et $A = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\vec{x} = \begin{pmatrix} p \\ q \\ x \end{pmatrix},$	\vec{b}	$= \begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix},$	$\vec{c} =$	$ \left(\begin{array}{c} 2\\ 6\\ 3 \end{array}\right). $

 $\begin{pmatrix} 0 & 1 & 2 & 2 & 1 \\ 0 & 3 & 6 & 4 & 3 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} \begin{pmatrix} 3 \\ 8 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ Solve both equations $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{c}$. Give all solutions or say why there are no solutions. 2. (20 points) Let $A = \begin{pmatrix} 1 & 3 & 0 & 2 & 2 \\ 2 & 7 & 2 & 5 & 5 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 3 & 6 & 4 & 3 \end{pmatrix}$ as in problem 1.

a. Find a basis for N(A), the null space of A. What is $\dim N(A)$, the nullity of A?

b. Find a basis for R(A), the row space of A. What is $\dim R(A)$, the row rank of A?

c. Find a basis for C(A), the column space of A. What is $\dim C(A)$, the column rank of A?

d. Give 2 relations between the 3 numbers $\dim N(A)$, $\dim R(A)$ and $\dim C(A)$ which would be true for any 4×5 matrix *A*. (No proof.)

- **3**. (30 points) Let $A \in M(n,n)$ and $\vec{b} \in \mathbb{R}^n$. For each of the following conditions, say whether *A* is singular or non-singular (circle one). Then give a reason. For one and only one of these, you may say this is the definition of singular or non-singular. For the rest, your reason must say why the given condition is equivalent to the definition.
 - a. *A* is row reducable to the unit matrix. singular non-singular Reason:
 - **b**. The reduced row echelon form of *A* has a row of zeros at the bottom. singular non-singular Reason:
 - c. *A* is invertible. singular non-singular Reason:
 - **d**. The equation $A\vec{x} = \vec{0}$ has an infinite number of solutions. singular non-singular Reason:
 - **e**. The equation $A\vec{x} = \vec{b}$ has a unique solution. singular non-singular Reason:

$\mathbf{f.} \ \det(A) = 0$	singular	non-singular
Reason:		

4. (10 points) Recall the definitions:

If A is a $p \times q$ matrix then A^{T} is the $q \times p$ matrix whose *ij* entry is $(A^{\mathsf{T}})_{ii} = A_{ji}$.

If *A* is a $p \times q$ matrix and *B* is a $q \times r$ matrix then *AB* is the $p \times r$ matrix whose *ij* entry is $(AB)_{ij} = \sum_{k=0}^{q} A_{ik} B_{kj}.$

Use only these definitions to prove $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$.

5. (15 points) In the vector space $V = \mathbb{R}^+$ with $a \oplus b = ab$ and $p \odot a = a^p$, write out each of the following facts as identities about ordinary multiplication and exponentiation.

a.
$$p \odot (a \oplus b) = (p \odot a) \oplus (p \odot b)$$

- **b**. $(p+q) \odot a = (p \odot a) \oplus (q \odot a)$
- **c**. $(pq) \odot a = p \odot (q \odot a)$
- **d**. $0 \otimes a = \vec{0}$
- **e**. $p \otimes \vec{0} = \vec{0}$