Name

311	Exam 1	Spring 2013
on 501		P. Yasskin

1	$/ 25$	4	$/ 10$
2	$/ 20$	5	$/ 15$
3	$/ 30$	Total	$/ 100$

1. (25 points) Let $A=\left(\begin{array}{ccccc}1 & 3 & 0 & 2 & 2 \\ 2 & 7 & 2 & 5 & 5 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 3 & 6 & 4 & 3\end{array}\right), \quad \vec{x}=\left(\begin{array}{l}p \\ q \\ x \\ y \\ z\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}2 \\ 6 \\ 3 \\ 8\end{array}\right), \quad \vec{c}=\left(\begin{array}{l}2 \\ 6 \\ 3 \\ 7\end{array}\right)$.

Solve both equations $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$. Give all solutions or say why there are no solutions.
2. (20 points) Let $A=\left(\begin{array}{ccccc}1 & 3 & 0 & 2 & 2 \\ 2 & 7 & 2 & 5 & 5 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 3 & 6 & 4 & 3\end{array}\right) \quad$ as in problem 1.
a. Find a basis for $N(A)$, the null space of A. What is $\operatorname{dim} N(A)$, the nullity of A ?
b. Find a basis for $R(A)$, the row space of A. What is $\operatorname{dim} R(A)$, the row rank of A ?
c. Find a basis for $C(A)$, the column space of A. What is $\operatorname{dim} C(A)$, the column rank of A ?
d. Give 2 relations between the 3 numbers $\operatorname{dim} N(A), \operatorname{dim} R(A)$ and $\operatorname{dim} C(A)$ which would be true for any 4×5 matrix A. (No proof.)
3. (30 points) Let $A \in M(n, n)$ and $\vec{b} \in \mathbb{R}^{n}$. For each of the following conditions, say whether A is singular or non-singular (circle one). Then give a reason. For one and only one of these, you may say this is the definition of singular or non-singular. For the rest, your reason must say why the given condition is equivalent to the definition.
a. A is row reducable to the unit matrix.

Reason:
b. The reduced row echelon form of A has a row of zeros at the bottom. Reason:
singular non-singular
singular non-singular
4. (10 points) Recall the definitions:

If A is a $p \times q$ matrix then A^{\top} is the $q \times p$ matrix whose $i j$ entry is $\left(A^{\top}\right)_{i j}=A_{j i}$.
If A is a $p \times q$ matrix and B is a $q \times r$ matrix then $A B$ is the $p \times r$ matrix whose $i j$ entry is $(A B)_{i j}=\sum_{k=0}^{q} A_{i k} B_{k j}$.
Use only these definitions to prove $(A B)^{\top}=B^{\top} A^{\top}$.
5. (15 points) In the vector space $V=\mathbb{R}^{+}$with $a \oplus b=a b$ and $p \odot a=a^{p}$, write out each of the following facts as identities about ordinary multiplication and exponentiation.
a. $p \odot(a \oplus b)=(p \odot a) \oplus(p \odot b)$
b. $(p+q) \odot a=(p \odot a) \oplus(q \odot a)$
c. $(p q) \odot a=p \odot(q \odot a)$
d. $0 \otimes a=\overrightarrow{0}$
e. $p \otimes \overrightarrow{0}=\overrightarrow{0}$

