Math 311	Exam 1	Spring 2013
Section 501	Solutions	P. Yasskin

1	$/ 25$	4	$/ 10$
2	$/ 20$	5	$/ 15$
3	$/ 30$	Total	$/ 100$

1. (25 points) Let $A=\left(\begin{array}{ccccc}1 & 3 & 0 & 2 & 2 \\ 2 & 7 & 2 & 5 & 5 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 3 & 6 & 4 & 3\end{array}\right), \quad \vec{x}=\left(\begin{array}{c}p \\ q \\ x \\ y \\ z\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}2 \\ 6 \\ 3 \\ 8\end{array}\right), \quad \vec{c}=\left(\begin{array}{l}2 \\ 6 \\ 3 \\ 7\end{array}\right)$.

Solve both equations $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$. Give all solutions or say why there are no solutions.
SOLUTION: The first column shows the row reduction of the augmented matrix with both right hand sides. The second column discusses the solutions.

$$
\begin{aligned}
& \left(\begin{array}{lllll|ll}
1 & 3 & 0 & 2 & 2 & 2 & 2 \\
2 & 7 & 2 & 5 & 5 & 6 & 6 \\
0 & 1 & 2 & 2 & 1 & 3 & 3 \\
0 & 3 & 6 & 4 & 3 & 8 & 7
\end{array}\right) R 2-2 \cdot R 1 \\
& \left(\begin{array}{lllll|ll}
1 & 3 & 0 & 2 & 2 & 2 & 2 \\
0 & 1 & 2 & 1 & 1 & 2 & 2 \\
0 & 1 & 2 & 2 & 1 & 3 & 3 \\
0 & 3 & 6 & 4 & 3 & 8 & 7
\end{array}\right) \begin{array}{l}
R 1-3 \cdot R 2 \\
R 3-R 2 \\
R 4-3 \cdot R 2
\end{array} \\
& \left(\begin{array}{ccccc|cc}
1 & 0 & -6 & -1 & -1 & -4 & -4 \\
0 & 1 & 2 & 1 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 2 & 1
\end{array}\right) \begin{array}{l}
R 1+R 3 \\
R 2-R 3 \\
R 4-R 3
\end{array} \\
& \left(\begin{array}{ccccc|cc}
1 & 0 & -6 & 0 & -1 & -3 & -3 \\
0 & 1 & 2 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \\
& A \vec{x}=\vec{b} \text { has no solution } \\
& \text { because the last equation is } 0=1 \text {. } \\
& A \vec{x}=\vec{c} \text { has free variables } x \text { and } z . \\
& A \vec{x}=\vec{c} \text { equivalent equations: } \\
& p-6 x-z=-3 \\
& q+2 x+z=1 \\
& y=1 \\
& A \vec{x}=\vec{c} \\
& p=-3+6 r+s \\
& q=1-2 r-s \\
& \text { solution: } \\
& x=r \\
& y=1 \\
& z=s
\end{aligned}
$$

2. (20 points) Let $A=\left(\begin{array}{ccccc}1 & 3 & 0 & 2 & 2 \\ 2 & 7 & 2 & 5 & 5 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 3 & 6 & 4 & 3\end{array}\right) \quad$ as in problem 1 .
a. Find a basis for $N(A)$, the null space of A. What is $\operatorname{dim} N(A)$, the nullity of A ?

SOLUTION: The augmented matrix and the reduced matrix are:

So $(6,-2,1,0,0)^{\top}$ and $(1,-1,0,0,1)^{\top}$ are a basis for $N(A)$, and $\operatorname{dim} N(A)=2$.
b. Find a basis for $R(A)$, the row space of A. What is $\operatorname{dim} R(A)$, the row rank of A ?

SOLUTION: $\quad R(A)=\operatorname{Span}$ (rows of A) Row operations simply change the spanning vectors.
So $R(A)=\operatorname{Span}((1,0,-6,0,1),(0,1,2,0,1),(0,0,0,1,0))$
So $(1,0,-6,0,1),(0,1,2,0,1)$ and $(0,0,0,1,0)$ are a basis for $R(A)$, and $\operatorname{dim} R(A)=3$.
c. Find a basis for $C(A)$, the column space of A. What is $\operatorname{dim} C(A)$, the column rank of A ?

SOLUTION: The columns with leading 1's in the row reduction are the columns in A which are basis vectors.
So $(1,2,0,0)^{\top},(3,7,1,3)^{\top}$ and $(2,5,2,4)^{\top}$ are a basis for $C(A)$, and $\operatorname{dim} C(A)=3$.
d. Give 2 relations between the 3 numbers $\operatorname{dim} N(A), \operatorname{dim} R(A)$ and $\operatorname{dim} C(A)$ which would be true for any 4×5 matrix A. (No proof.)

SOLUTION: $\quad \operatorname{dim} N(A)+\operatorname{dim} R(A)=5 \quad \operatorname{dim} R(A)=\operatorname{dim} C(A)$
3. (30 points) Let $A \in M(n, n)$ and $\vec{b} \in \mathbb{R}^{n}$. For each of the following conditions, say whether A is singular or non-singular (circle one). Then give a reason. For one and only one of these, you may say this is the definition of singular or non-singular. For the rest, your reason must say why the given condition is equivalent to the definition.
a. A is row reducable to the unit matrix.
singular non-singular
Reason: The inverse is found by row reducing $(A \mid \mathbf{1})$ to $(\mathbf{1} \mid A)$. So A is invertible if and only if it is row reducable to the unit matrix.
b. The reduced row echelon form of A has a row of zeros at the bottom. singular non-singular

Reason: The inverse is found by row reducing $(A \mid \mathbf{1})$ to ($\mathbf{1} \mid A$). So A is non-invertible if and only if it's row reduction has a row of zeros at the bottom.
c. A is invertible.
singular
non-singular
Reason: This is the definition.
d. The equation $A \vec{x}=\overrightarrow{0}$ has an infinite number of solutions.
singular non-singular
Reason: If A is non-invertible, then the row reduction of A has a row of zeros at the bottom. Since A is square, there must be a free variable. Since $\vec{x}=\overrightarrow{0}$ is a solution, there must be an infinite number of solutions.
e. The equation $A \vec{x}=\vec{b}$ has a unique solution.
singular
non-singular
Reason: If A is invertible, then the unique solution is $\vec{x}=A^{-1} \vec{b}$.
f. $\operatorname{det}(A)=0$
singular non-singular
Reason: The $\operatorname{det} A$ may be computed by using row operations. If it is row reducible to the unit matrix, the determinant is non-zero (see d above). If it's row reduction has a row of zeros at the bottom, the determinant is zero (see e above).
4. (10 points) Recall the definitions:

If A is a $p \times q$ matrix then A^{\top} is the $q \times p$ matrix whose $i j$ entry is $\left(A^{\top}\right)_{i j}=A_{j i}$.
If A is a $p \times q$ matrix and B is a $q \times r$ matrix then $A B$ is the $p \times r$ matrix whose $i j$ entry is $(A B)_{i j}=\sum_{k=0}^{q} A_{i k} B_{k j}$.
Use only these definitions to prove $(A B)^{\top}=B^{\top} A^{\top}$.
SOLUTION:
$\left[(A B)^{\top}\right]_{i j}=(A B)_{j i}=\sum_{k=0}^{q} A_{j k} B_{k i}=\sum_{k=0}^{q}\left(A^{\top}\right)_{k j}\left(B^{\top}\right)_{i k}=\sum_{k=0}^{q}\left(B^{\top}\right)_{i k}\left(A^{\top}\right)_{k j}=\left(B^{\top} A^{\top}\right)_{i j}$
5. (15 points) In the vector space $V=\mathbb{R}^{+}$with $a \oplus b=a b$ and $p \odot a=a^{p}$, write out each of the following facts as identities about ordinary multiplication and exponentiation.
a. $p \odot(a \oplus b)=(p \odot a) \oplus(p \odot b)$. \qquad SOLUTION: $\quad(a b)^{p}=a^{p} b^{p}$
b. $(p+q) \odot a=(p \odot a) \oplus(q \odot a)$ \qquad SOLUTION: $\quad a^{p+q}=a^{p} a^{q}$
c. $(p q) \odot a=p \odot(q \odot a)$. SOLUTION: $\quad a^{p q}=\left(a^{q}\right)^{p}$
d. $0 \otimes a=\overrightarrow{0}$. \qquad SOLUTION: $\quad a^{0}=1$
e. $p \otimes \overrightarrow{0}=\overrightarrow{0}$. \qquad SOLUTION: $\quad 1^{p}=1$

