1	140
2	$/ 30$
3	$/ 40$
Total	$/ 110$

1. (35 points+5 e.c.) Consider the vector space $M(2,2)$ of 2×2 real matrices. Consider the bases

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& F_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad F_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \quad F_{3}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \quad F_{4}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

Consider the function $L: M(2,2) \rightarrow M(2,2)$ given by

$$
L(X)=2 X-X^{\top}
$$

a. (5 pts) Show L is linear.
b. (5 pts) Find the matrix of L relative to the E-basis. Call it $\underset{E-E}{A}$. HINT: A is NOT a 2×2 matrix!
c. (5 pts) Find the change of basis matrix $\underset{E \leftarrow F}{C}$ from the F-basis to the E-basis.
d. (5 pts) Find the change of basis matrix $\underset{F \leftarrow E}{C}$ from the E-basis to the F-basis.
e. (10 pts) Find the matrix of L relative to the F-basis. Call it $\underset{F \leftarrow F}{B}$.
f. (5 pts) Find $\underset{F \leftarrow F}{B}$ by a second method.
g. (5 pts Extra Credit) Looking at your solutions to (b), (e) and (f), find 3 linearly independent eigenvectors of L. What are their eigenvalues?
2. (30 points) Consider the vector space $M(2,2)$ of 2×2 real matrices.

Consider the function of two matrices

$$
\langle X, Y\rangle=\operatorname{tr}\left(X D Y^{\top}\right) \quad \text { where } \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

where tr means trace (sum of diagonal elements) and ${ }^{\top}$ means transpose.
a. (10 pts) Show $\langle X, Y\rangle$ is an inner product.

HINT: First compute the inner product of $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $Y=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$.
b. (10 pts) Find the angle between the matrices $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $Q=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$.
c. (10 pts) Let $V=\operatorname{Span}\{P, Q\}$ where P and Q are given in (b).

- Find V^{\perp} the orthogonal subspace to V within $M(2,2)$.
- Find a basis for V^{\perp} and its dimension.

3. (35 points+5 e.c.) Consider the matrix $A=\left(\begin{array}{rr}0 & 6 \\ -1 & 5\end{array}\right)$.
a. (15 pts) Find the eigenvalues and corresponding eigenvectors of A.
b. (10 pts) Find the diagonalizing matrix X so that $A=X D X^{-1}$ where D is diagonal. What are X^{-1} and D ? Just state them. No derivation.

$$
X=\left(\quad X^{-1}=(\quad D=(\square)\right.
$$

c. (5 pts) Find A^{4}.
d. (5 pts) Find $\cos (\pi A)$.
e. (5 pts Extra Credit) What are the eigenvalues and corresponding eigenvectors of $5 A$?

