Exam 2

1	/40
2	/30
3	/40
Total	/110

1. (35 points+5 e.c.) Consider the vector space M(2,2) of 2×2 real matrices. Consider the bases

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$F_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad F_{2} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad F_{3} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad F_{4} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Consider the function $L: M(2,2) \rightarrow M(2,2)$ given by

$$L(X) = 2X - X^{\mathsf{T}}$$

a. (5 pts) Show L is linear.

b. (5 pts) Find the matrix of *L* relative to the *E*-basis. Call it A. HINT: *A* is NOT a 2 × 2 matrix! **c**. (5 pts) Find the change of basis matrix $C_{E\leftarrow F}$ from the *F*-basis to the *E*-basis.

d. (5 pts) Find the change of basis matrix $C_{F \leftarrow E}$ from the *E*-basis to the *F*-basis.

e. (10 pts) Find the matrix of *L* relative to the *F*-basis. Call it $B_{F\leftarrow F}$.

f. (5 pts) Find $\underset{F \leftarrow F}{B}$ by a second method.

g. (5 pts Extra Credit) Looking at your solutions to (b), (e) and (f), find 3 linearly independent eigenvectors of *L*. What are their eigenvalues?

2. (30 points) Consider the vector space M(2,2) of 2×2 real matrices. Consider the function of two matrices

$$\langle X, Y \rangle = \operatorname{tr}(XDY^{\mathsf{T}}) \text{ where } D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

where tr means trace (sum of diagonal elements) and ^T means transpose. **a.** (10 pts) Show $\langle X, Y \rangle$ is an inner product.

HINT: First compute the inner product of
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $Y = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

b. (10 pts) Find the angle between the matrices $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

c. (10 pts) Let $V = \text{Span}\{P, Q\}$ where *P* and *Q* are given in (b). • Find V^{\perp} the orthogonal subspace to *V* within M(2, 2).

• Find a basis for V^{\perp} and its dimension.

- **3**. (35 points+5 e.c.) Consider the matrix $A = \begin{pmatrix} 0 & 6 \\ -1 & 5 \end{pmatrix}$.
 - **a**. (15 pts) Find the eigenvalues and corresponding eigenvectors of *A*.

b. (10 pts) Find the diagonalizing matrix X so that $A = XDX^{-1}$ where D is diagonal. What are X^{-1} and D? Just state them. No derivation.

$$X = \left(\begin{array}{c} \\ \\ \end{array} \right) \qquad X^{-1} = \left(\begin{array}{c} \\ \\ \end{array} \right) \qquad D = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

c. (5 pts) Find A^4 .

d. (5 pts) Find $\cos(\pi A)$.

e. (5 pts Extra Credit) What are the eigenvalues and corresponding eigenvectors of 5A?