Name: \qquad
MATH 311 Section 501 Spring 2013 P. Yasskin

Final

1	$/ 20$	4	$/ 25$
2	$/ 20$	5	$/ 15$
3	$/ 20$	Total	$/ 100$

1. (20 points) Hams Duet is flying the Millenium Eagle through a region of intergalactic space containing a deadly hyperon vector field which is a function of position, $\vec{H}=\left(H_{1}(x, y, z), H_{2}(x, y, z), H_{3}(x, y, z)\right)$. Of course, its magnitude is $M=|\vec{H}|=\sqrt{\left(H_{1}\right)^{2}+\left(H_{2}\right)^{2}+\left(H_{3}\right)^{2}}$. At stardate time $t=21437.439$ years, Hams is located at the point $(x, y, z)=(5,-3,2)$ millilightyears and has velocity $\vec{v}=(3,-2,1)$ millilightyears/year. At that instant, he measures the hyperon density is $\vec{H}=\left(12 \times 10^{4},-3 \times 10^{4}, 4 \times 10^{4}\right)$ hyperons/millilightyear ${ }^{3}$
the gradients of its components are

$$
\vec{\nabla} H_{1}=(2,-1,3) \quad \vec{\nabla} H_{2}=(4,0,-1) \quad \vec{\nabla} H_{3}=(-2,1,3) \text { hyperons/millilightyear }{ }^{4} .
$$

Find the current hyperon magnitude M and its current rate of change $\frac{d M}{d t}$ as seen by Hams?
HINT: Compute M and then the Jacobian matrices $\frac{D(M)}{D\left(H_{1}, H_{2}, H_{3}\right)}, \frac{D\left(H_{1}, H_{2}, H_{3}\right)}{D(x, y, z)}$ and $\frac{D(x, y, z)}{D(t)}$ and combine them to get $\frac{d M}{d t}$.
2. (20 points) Consider the vector space $\left(P_{3}\right)^{2}=P_{3} \times P_{3}$ of ordered pairs of polymonials of degree less than 3. For example, $\left(2+3 x+4 x^{2}, 5-4 x-3 x^{2}\right) \in\left(P_{3}\right)^{2}$. We take the "standard" basis to be:
$\vec{e}_{1}=(1,0), \quad \vec{e}_{2}=(x, 0), \quad \vec{e}_{3}=\left(x^{2}, 0\right), \quad \vec{e}_{4}=(0,1), \quad \vec{e}_{5}=(0, x), \quad \vec{e}_{6}=\left(0, x^{2}\right)$
and the alternate basis to be:
$\vec{E}_{1}=(1,0), \quad \vec{E}_{2}=(1+x, 0), \quad \vec{E}_{3}=\left(1+x^{2}, 0\right), \quad \vec{E}_{4}=(0,1), \quad \vec{E}_{5}=(0,1+x), \quad \vec{E}_{6}=\left(0,1+x^{2}\right)$
a. Find the change of basis matrices C and C. Be sure to say which is which.
b. Find the components $(\vec{v})_{e}$ of the vector $\vec{v}=\left(2+3 x+4 x^{2}, 5-4 x-3 x^{2}\right)$ relative to the e-basis.
c. Use a change of basis matrix to find the components $(\vec{v})_{E}$ of the vector \vec{v} relative to the E-basis.
d. Check your answer to (c) by hooking the components $(\vec{v})_{E}$ onto the E-basis vectors and simplifying.
3. (20 points) Consider the subspace $V=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ of \mathbb{R}^{4} with the inner product $\langle\vec{p}, \vec{q}\rangle=\vec{p}^{\top} G \vec{q}$ where ${ }^{\top}$ means transpose and

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right) \quad \vec{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \text { and } G=\left(\begin{array}{cccc}
2 & 2 & 0 & 0 \\
2 & 3 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 3
\end{array}\right)
$$

Find an orthonormal basis for V by applying the Gram-Schmidt procedure to the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
4. (25 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}$ for the slice of the cone C given by $z=\sqrt{x^{2}+y^{2}}$ for $1 \leq z \leq 3$. oriented down and out, and the vector field $\vec{F}=\left(-y z, x z, z^{2}\right)$.

Note: The boundary of the cone has 2 pieces:
the top circle, $x^{2}+y^{2}=9$, and the bottom circle, $x^{2}+y^{2}=1$.
Be sure to check the orientations. Use the following steps:
a. The cone may be parametrized as $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$ Compute the surface integral by successively finding:

$$
\vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times\left.\vec{F}\right|_{\vec{R}(r, \theta)}, \quad \iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}
$$

b. The top circle T may be parametrized as $\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta, 3)$.

Compute the line integral over the top circle by successively finding:

$$
\vec{v},\left.\quad \vec{F}\right|_{\vec{r}(\theta)}, \oint_{T} \vec{F} \cdot d \vec{s}
$$

c. Compute the line integral over the bottom circle by successively finding:

$$
\vec{r}(\theta), \quad \vec{v},\left.\quad \vec{F}\right|_{\vec{r}(\theta)}, \quad \oint_{B} \vec{F} \cdot d \vec{s}
$$

d. Combine the results from (b) and (c) to get $\oint_{\partial C} \vec{F} \cdot d \vec{s}$.
5. (15 points) Compute $\iint_{H} \vec{F} \cdot d \vec{S}$ for the vector field $\vec{F}=\left(x y^{2}, y x^{2}, x^{2}+y^{2}\right)$ over the hemisphere H given by $x^{2}+y^{2}+z^{2}=25$ with $z \geq 0$ oriented upward.

HINT: Use Gauss' Theorem to convert this surface integral into a volume integral over a solid hemisphere V and a surface integral over a disk D. Then add or subtract the answers to get the required integral. Be careful with the orientations.

