Name: _

MATH 311 Section 501 Spring 2013 P. Yasskin Final

1	/20	4	/25
2	/20	5	/15
3	/20	Total	/100

 (20 points) Hams Duet is flying the Millenium Eagle through a region of intergalactic space _→ containing a deadly hyperon vector field which is a function of position,

 $\vec{H} = (H_1(x, y, z), H_2(x, y, z), H_3(x, y, z)).$ Of course, its magnitude is $M = |\vec{H}| = \sqrt{(H_1)^2 + (H_2)^2 + (H_3)^2}$. At stardate time t = 21437.439 years, Hams is located at the point (x, y, z) = (5, -3, 2) millilightyears and has velocity $\vec{v} = (3, -2, 1)$ millilightyears/year. At that instant, he measures the hyperon density is

 $\vec{H} = (12 \times 10^4, -3 \times 10^4, 4 \times 10^4)$ hyperons/millilightyear³

the gradients of its components are

 $\vec{\nabla}H_1 = (2, -1, 3)$ $\vec{\nabla}H_2 = (4, 0, -1)$ $\vec{\nabla}H_3 = (-2, 1, 3)$ hyperons/millilightyear⁴.

Find the current hyperon magnitude *M* and its current rate of change $\frac{dM}{dt}$ as seen by Hams?

HINT: Compute *M* and then the Jacobian matrices $\frac{D(M)}{D(H_1, H_2, H_3)}$, $\frac{D(H_1, H_2, H_3)}{D(x, y, z)}$ and $\frac{D(x, y, z)}{D(t)}$ and combine them to get $\frac{dM}{dt}$.

2. (20 points) Consider the vector space $(P_3)^2 = P_3 \times P_3$ of ordered pairs of polymonials of degree less than 3. For example, $(2 + 3x + 4x^2, 5 - 4x - 3x^2) \in (P_3)^2$. We take the "standard" basis to be:

 $\vec{e}_1 = (1,0), \quad \vec{e}_2 = (x,0), \quad \vec{e}_3 = (x^2,0), \quad \vec{e}_4 = (0,1), \quad \vec{e}_5 = (0,x), \quad \vec{e}_6 = (0,x^2)$ and the alternate basis to be:

 $\vec{E}_1 = (1,0), \quad \vec{E}_2 = (1+x,0), \quad \vec{E}_3 = (1+x^2,0), \quad \vec{E}_4 = (0,1), \quad \vec{E}_5 = (0,1+x), \quad \vec{E}_6 = (0,1+x^2)$ **a**. Find the change of basis matrices *C* and *C*. Be sure to say which is which.

$$E \leftarrow e \qquad e \leftarrow E$$

- **b**. Find the components $(\vec{v})_e$ of the vector $\vec{v} = (2 + 3x + 4x^2, 5 4x 3x^2)$ relative to the *e*-basis.
- c. Use a change of basis matrix to find the components $(\vec{v})_E$ of the vector \vec{v} relative to the *E*-basis.

d. Check your answer to (c) by hooking the components $(\vec{v})_E$ onto the *E*-basis vectors and simplifying.

3. (20 points) Consider the subspace $V = \text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ of \mathbb{R}^4 with the inner product $\langle \vec{p}, \vec{q} \rangle = \vec{p}^{\mathsf{T}} G \vec{q}$ where ^T means transpose and

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ and } G = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 3 \end{pmatrix}.$$

Find an orthonormal basis for V by applying the Gram-Schmidt procedure to the vectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 .

- 4. (25 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{s}$ for the slice of the cone *C* given by $z = \sqrt{x^2 + y^2}$ for $1 \le z \le 3$. oriented down and out, and the vector field $\vec{F} = (-yz, xz, z^2)$. Note: The boundary of the cone has 2 pieces: the top circle, $x^2 + y^2 = 9$, and the bottom circle, $x^2 + y^2 = 1$. Be sure to check the orientations. Use the following steps:
 - **a**. The cone may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$ Compute the surface integral by successively finding:

$$\vec{e}_r, \vec{e}_\theta, \vec{N}, \vec{\nabla} \times \vec{F}, \vec{\nabla} \times \vec{F} \Big|_{\vec{R}(r,\theta)}, \iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$$

CONTINUED

b. The top circle *T* may be parametrized as $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 3)$. Compute the line integral over the top circle by successively finding:

$$\vec{v}, \vec{F}\Big|_{\vec{r}(\theta)}, \oint_T \vec{F} \cdot d\vec{s}$$

c. Compute the line integral over the bottom circle by successively finding:

$$\vec{r}(\theta), \vec{v}, \vec{F}\Big|_{\vec{r}(\theta)}, \oint_B \vec{F} \cdot d\vec{s}$$

d. Combine the results from (b) and (c) to get $\oint_{\partial C} \vec{F} \cdot d\vec{s}$.

5. (15 points) Compute $\iint_{H} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = (xy^2, yx^2, x^2 + y^2)$ over the hemisphere *H*

given by $x^2 + y^2 + z^2 = 25$ with $z \ge 0$ oriented upward.

HINT: Use Gauss' Theorem to convert this surface integral into a volume integral over a solid hemisphere V and a surface integral over a disk D. Then add or subtract the answers to get the required integral. Be careful with the orientations.