1. Consider the vector space $W=\operatorname{Span}\left(1, \sin ^{2} x, \cos ^{2} x, \sin x \cos x\right)$ with the usual addition and scalar multiplication of functions. Do the following 4 vectors

$$
\vec{f}_{1}=1, \quad \vec{f}_{2}=\sin ^{2} x, \quad \vec{f}_{3}=\cos ^{2} x, \quad \vec{f}_{4}=\sin x \cos x
$$

form a basis? If yes, prove it. If no, pare it down to a basis and prove it is a basis.
2. Consider the vector space $V=\operatorname{Span}\left(1, e^{x}, e^{-x}\right)$ with the usual addition and scalar multiplication of functions.
a. Show $\vec{e}_{1}=1, \vec{e}_{2}=e^{x}$ and $\vec{e}_{3}=e^{-x}$ are a basis for V. What is the dimension of V ? HINT: Since they already span V, all you need to show is linear independence.
b. Show $\vec{E}_{1}=1, \vec{E}_{2}=\sinh x=\frac{e^{x}-e^{-x}}{2}$ and $\vec{E}_{3}=\cosh x=\frac{e^{x}+e^{-x}}{2}$ are another basis for V. HINT: Why do you only need to show one of spanning or linear independence?
c. Find $\underset{e+E}{C}$, the change of basis matrix from the E-basis to the e-basis.

NOTE: If the bases are taken as rows:

$$
e=\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)=\left(1, e^{x}, e^{-x}\right) \text { and } E=\left(\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}\right)=(1, \sinh x, \cosh x)
$$

and the components of a vector \vec{v} are columns $(\vec{v})_{e}$ and $(\vec{v})_{E}$ satisfying $\vec{v}=e(\vec{v})_{e}=E(\vec{v})_{E}$ then this matrix satisfies: $(\vec{v})_{e}=\underset{e \leftarrow E}{C}(\vec{v})_{E}$ and $E=e \underset{e \leftarrow E}{C}$.
d. Find $\underset{E-e}{C}$, the change of basis matrix from the e-basis to the E-basis.
e. For the function $q=7+4 \sinh x-2 \cosh x$, find the components relative to the E-basis. Then use $\underset{e \leftarrow E}{C}$ to find the components relative to the e-basis.
Then check your work by substituting $\sinh x$ and $\cosh x$ directly into the function.
f. For the function $r=5-2 e^{x}+4 e^{-x}$, find the components relative to the e-basis.

Then use $\underset{E+e}{C}$ to find the components of r relative to the E-basis.
Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.

