1. Consider the vector space $W = \text{Span}(1, \sin^2 x, \cos^2 x, \sin x \cos x)$ with the usual addition and scalar multiplication of functions. Do the following 4 vectors

 $\vec{f}_1 = 1$, $\vec{f}_2 = \sin^2 x$, $\vec{f}_3 = \cos^2 x$, $\vec{f}_4 = \sin x \cos x$

form a basis? If yes, prove it. If no, pare it down to a basis and prove it is a basis.

- **2**. Consider the vector space $V = \text{Span}(1, e^x, e^{-x})$ with the usual addition and scalar multiplication of functions.
 - **a**. Show $\vec{e}_1 = 1$, $\vec{e}_2 = e^x$ and $\vec{e}_3 = e^{-x}$ are a basis for *V*. What is the dimension of *V*? HINT: Since they already span *V*, all you need to show is linear independence.
 - **b**. Show $\vec{E}_1 = 1$, $\vec{E}_2 = \sinh x = \frac{e^x e^{-x}}{2}$ and $\vec{E}_3 = \cosh x = \frac{e^x + e^{-x}}{2}$ are another basis for *V*. HINT: Why do you only need to show one of spanning or linear independence?
 - **c**. Find *C*, the change of basis matrix from the *E*-basis to the *e*-basis. NOTE: If the bases are taken as rows:

$$e = (\vec{e}_1, \vec{e}_2, \vec{e}_3) = (1, e^x, e^{-x})$$
 and $E = (\vec{E}_1, \vec{E}_2, \vec{E}_3) = (1, \sinh x, \cosh x)$

and the components of a vector \vec{v} are columns $(\vec{v})_e$ and $(\vec{v})_E$ satisfying $\vec{v} = e(\vec{v})_e = E(\vec{v})_E$ then this matrix satisfies: $(\vec{v})_e = C_{e \leftarrow E} (\vec{v})_E$ and $E = e_{e \leftarrow E} C_{e \leftarrow E}$.

- **d**. Find $C_{E \leftarrow e}$, the change of basis matrix from the *e*-basis to the *E*-basis.
- e. For the function $q = 7 + 4 \sinh x 2 \cosh x$, find the components relative to the *E*-basis. Then use $\underset{e \leftarrow E}{C}$ to find the components relative to the *e*-basis. Then check your work by substituting $\sinh x$ and $\cosh x$ directly into the function.
- f. For the function $r = 5 2e^x + 4e^{-x}$, find the components relative to the *e*-basis. Then use $C_{E \leftarrow e}$ to find the components of *r* relative to the *E*-basis. Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.