1. Consider the vector space $V = \text{Span}(e^{-x}, 1, e^x, e^{2x})$ with the usual addition and scalar multiplication of functions. Two bases are:

 $\vec{f}_1 = e^{-x}, \quad \vec{f}_2 = 1, \quad \vec{f}_3 = e^x, \quad \vec{f}_4 = e^{2x}$

and

 $\vec{F}_1 = e^{-x}, \quad \vec{F}_2 = e^{-x} + 1, \quad \vec{F}_3 = 1 + e^x, \quad \vec{F}_4 = e^x + e^{2x}$

a. Find $C_{f \leftarrow F}$, the change of basis matrix from the *F*-basis to the *f*-basis.

- **b.** Find C_{F+f} , the change of basis matrix from the *f*-basis to the *F*-basis.
- **2**. Consider the vector space $W = \text{Span}(1, e^x, e^{-x})$ with the usual addition and scalar multiplication of functions. Two bases are:

$$\vec{e}_1 = 1, \quad \vec{e}_2 = e^x, \qquad \vec{e}_3 = e^{-x}$$

and

$$\vec{E}_1 = 1$$
, $\vec{E}_2 = \sinh x = \frac{e^x - e^{-x}}{2}$ $\vec{E}_3 = \cosh x = \frac{e^x + e^{-x}}{2}$

- **a**. Find $C_{e \leftarrow E}$, the change of basis matrix from the *E*-basis to the *e*-basis.
- **b**. Find C_{E+e} , the change of basis matrix from the *e*-basis to the *E*-basis.

3. With V and W as defined in #1 and #2, consider the function $L: V \rightarrow W$ given by

$$L(p) = \frac{dp}{dx} - 2p$$

- **a**. First make sure the function *L* is well defined. In other words, for $p = ae^{-x} + b + ce^{x} + de^{2x} \in V$, verify that $L(p) \in W$.
- **b**. Show L is linear.
- **c**. Find the Ker(L). Give a basis. What is $\dim Ker(L)$? Remember: The basis vectors must be functions in *V*.
- **d**. Find the Im(L). Give a basis. What is $\dim Im(L)$? Remember: The basis vectors must be functions in W.
- e. Let $q = 4e^{-x} 2e^x + 2e^{2x}$ and compute L(q) directly from the definition of L.
- f. Find $A_{e \leftarrow f}$, the matrix of the linear map L from to the f-basis on V to the e-basis on W.

g. Compute $(q)_f$ and recompute $L(q) = L(4e^{-x} - 2e^x + 2e^{2x})$ using A.

- **h**. Find $B_{E\leftarrow F}$, the matrix of the linear map L from to the F-basis on V to the E-basis on W. HINT: Use $A_{e\leftarrow f}$, and two of $C_{e\leftarrow E}$, $C_{E\leftarrow e}$, $C_{f\leftarrow F}$ and/or $C_{F\leftarrow f}$.
- i. Use $C_{F \leftarrow f}$ to compute $(q)_F$, the components of $q = 4e^{-x} 2e^x + 2e^{2x}$ relative to the *F*-basis.
- j. Recompute $L(q) = L(4e^{-x} 2e^x + 2e^{2x})$ using $(q)_F$ and $\underset{E \leftarrow F}{B}$.

Then check your work by substituting $\sinh x$ and $\cosh x$ into the answer.