1. A plate has the shape of the region between the curves

\[y = 1 + \frac{1}{2} e^x, \quad y = 2 + \frac{1}{2} e^x; \]
\[y = 3 - \frac{1}{2} e^x, \quad y = 5 - \frac{1}{2} e^x \]

where \(x \) and \(y \) are measured in centimeters.

If the mass density is \(\rho = ye^x \) \(\text{gm/cm}^2 \), find the total mass of the plate.

HINT: Use the curvilinear coordinates \((u,v)\) defined by

\[y = u + \frac{1}{2} e^x \quad \text{and} \quad y = v - \frac{1}{2} e^x \]

Follow these steps:

a. Write the boundaries in terms of \(u \) and \(v \).

b. Define the curvilinear coordinate system \((x,y) = \vec{R}(u,v)\) by solving for \(x \) and \(y \) in terms of \(u \) and \(v \).

c. Compute the Jacobian factor.

d. Express the mass density in terms of \(u \) and \(v \).

e. Compute the mass.
2. Verify Stokes’ Theorem \(\iint_P \nabla \times \vec{F} \cdot d\vec{S} = \oint_{\partial P} \vec{F} \cdot d\vec{r} \) for the vector field \(\vec{F} = (-yz, xz, z^2) \) and the paraboloid \(z = x^2 + y^2 \) with \(z \leq 4 \) oriented down and out. Follow these steps:

LHS:
- a. Compute \(\nabla \times \vec{F} \).

- b. Parametrize the paraboloid by \(\vec{R}(r, \theta) = (r \cos \theta, r \sin \theta, r^2) \) and compute the normal vector, \(\vec{N} \).

- c. Evaluate \(\nabla \times \vec{F} \) on the surface.

- d. Compute \(\nabla \times \vec{F} \cdot \vec{N} \).

- e. Compute the surface integral.

RHS:
- f. Parametrize the boundary curve, \(\vec{r}(\theta) \), and compute the tangent vector, \(\vec{v}(\theta) \).

- g. Evaluate \(\vec{F} \) on the curve.

- h. Compute \(\vec{F} \cdot \vec{v} \).

- i. Compute the line integral.
3. Verify Gauss’ Theorem \[\iiint_{H} \nabla \cdot \vec{F} \, dV = \iint_{\partial H} \vec{F} \cdot d\vec{S} \] for the vector field \(\vec{F} = (xz, yz, x^2 + y^2) \) and the solid hemisphere, \(H \), given by \(x^2 + y^2 + z^2 \leq 4 \) with \(z \geq 0 \). Be careful with orientations. Follow these steps:

LHS:

a. Compute \(\nabla \cdot \vec{F} \).

b. Compute the volume integral.

RHS: The boundary of the hemisphere consists of the hemispherical surface, \(S \), given by \(x^2 + y^2 + z^2 = 9 \) with \(z \geq 0 \) and the disk, \(D \), given by \(x^2 + y^2 \leq 9 \) with \(z = 0 \).

c. Parametrize the hemispherical surface, \(S \), by \(\vec{R}(\phi, \theta) = (2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi) \) and compute the normal vector, \(\vec{N} \).

d. Evaluate \(\vec{F} = (xz, yz, x^2 + y^2) \) on the hemispherical surface.

e. Compute \(\vec{F} \cdot \vec{N} \).

f. Compute the surface integral \(\iint_{S} \vec{F} \cdot d\vec{S} \) on the hemispherical surface.

CONTINUED.
g. Parametrize the disk, \(D \), by \(\mathbf{R}(r, \theta) = (r \cos \theta, r \sin \theta, 0) \) and compute the normal vector, \(\mathbf{N} \).

h. Evaluate \(\mathbf{F} = (xz, yz, x^2 + y^2) \) on the disk.

i. Compute \(\mathbf{F} \cdot \mathbf{N} \).

j. Compute the surface integral \(\iint_D \mathbf{F} \cdot d\mathbf{S} \) on the disk.

k. Compute the total surface integral \(\iint_{\partial H} \mathbf{F} \cdot d\mathbf{S} \).