Name:
MATH 311 Section 501
Quiz on Integration

1. A plate has the shape of the region between the curves

$$
\begin{array}{ll}
y=1+\frac{1}{2} e^{x}, & y=2+\frac{1}{2} e^{x}, \\
y=3-\frac{1}{2} e^{x}, & y=5-\frac{1}{2} e^{x}
\end{array}
$$

where x and y are measured in centimeters.
If the mass density is $\rho=y e^{x} \quad \mathrm{gm} / \mathrm{cm}^{2}$,
find the total mass of the plate.
HINT: Use the curvilinear coordinates (u, v) defined by

$$
y=u+\frac{1}{2} e^{x} \quad \text { and } \quad y=v-\frac{1}{2} e^{x}
$$

Follow these steps:
a. Write the boundaries in terms of u and v.
b. Define the curvilinear coordinate system $(x, y)=\vec{R}(u, v)$ by solving for x and y in terms of u and v.
c. Compute the Jacobian factor.
d. Express the mass density in terms of u and v.
e. Compute the mass.
2. Verify Stokes' Theorem $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial P} \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=\left(-y z, x z, z^{2}\right)$ and the paraboloid $z=x^{2}+y^{2}$ with $z \leq 4$ oriented down and out. Follow these steps:

LHS:

a. Compute $\vec{\nabla} \times \vec{F}$.
b. Parametrize the paraboloid by $\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$ and compute the normal vector, \vec{N}.
c. Evaluate $\vec{\nabla} \times \vec{F}$ on the surface.
d. Compute $\vec{\nabla} \times \vec{F} \cdot \vec{N}$.
e. Compute the surface integral.

RHS:

f. Parametrize the boundary curve, $\vec{r}(\theta)$, and compute the tangent vector, $\vec{v}(\theta)$.
g. Evaluate \vec{F} on the curve.
h. Compute $\vec{F} \cdot \vec{v}$.
i. Compute the line integral.
3. Verify Gauss' Theorem $\iiint_{H} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial H} \vec{F} \cdot d \vec{S}$ for the vector field $\vec{F}=\left(x z, y z, x^{2}+y^{2}\right)$ and the solid hemisphere, H, given by $x^{2}+y^{2}+z^{2} \leq 4$ with $z \geq 0$. Be careful with orientations. Follow these steps:

LHS:

a. Compute $\vec{\nabla} \cdot \vec{F}$.
b. Compute the volume integral.

RHS: The boundary of the hemisphere consists of the hemispherical surface, S, given by $x^{2}+y^{2}+z^{2}=9$ with $z \geq 0$ and the disk, D, given by $x^{2}+y^{2} \leq 9$ with $z=0$.
c. Parametrize the hemispherical surface, S, by $\vec{R}(\varphi, \theta)=(2 \sin \varphi \cos \theta, 2 \sin \varphi \sin \theta, 2 \cos \varphi)$ and compute the normal vector, \vec{N}.
d. Evaluate $\vec{F}=\left(x z, y z, x^{2}+y^{2}\right)$ on the hemispherical surface.
e. Compute $\vec{F} \cdot \vec{N}$.
f. Compute the surface integral $\iint_{S} \vec{F} \cdot d \vec{S}$ on the hemispherical surface.
g. Parametrize the disk, D, by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \varphi, 0)$ and compute the normal vector, \vec{N}.
h. Evaluate $\vec{F}=\left(x z, y z, x^{2}+y^{2}\right)$ on the disk.
i. Compute $\vec{F} \cdot \vec{N}$.
j. Compute the surface integral $\iint_{D} \vec{F} \cdot d \vec{S}$ on the disk.
k. Compute the total surface integral $\iint_{\partial H} \vec{F} \cdot d \vec{S}$.

