Name: _

MATH 311 Section 501

Quiz on Integration

1. A plate has the shape of the region between the curves

y =
$$1 + \frac{1}{2}e^{x}$$
, y = $2 + \frac{1}{2}e^{x}$,
y = $3 - \frac{1}{2}e^{x}$, y = $5 - \frac{1}{2}e^{x}$

where x and y are measured in centimeters.

If the mass density is $\rho = ye^x$ gm/cm²,

find the total mass of the plate.

HINT: Use the curvilinear coordinates (u, v) defined by

$$y = u + \frac{1}{2}e^x$$
 and $y = v - \frac{1}{2}e^x$

Follow these steps:

a. Write the boundaries in terms of u and v.

b. Define the curvilinear coordinate system $(x, y) = \vec{R}(u, v)$ by solving for x and y in terms of u and v.

c. Compute the Jacobian factor.

- **d**. Express the mass density in terms of u and v.
- e. Compute the mass.

2. Verify Stokes' Theorem $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial P} \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (-yz, xz, z^2)$ and the paraboloid $z = x^2 + y^2$ with $z \le 4$ oriented down and out. Follow these steps:

LHS:

a. Compute $\vec{\nabla} \times \vec{F}$.

b. Parametrize the paraboloid by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$ and compute the normal vector, \vec{N} .

- **c**. Evaluate $\vec{\nabla} \times \vec{F}$ on the surface.
- **d**. Compute $\vec{\nabla} \times \vec{F} \cdot \vec{N}$.
- e. Compute the surface integral.

RHS:

- f. Parametrize the boundary curve, $\vec{r}(\theta)$, and compute the tangent vector, $\vec{v}(\theta)$.
- **g**. Evaluate \vec{F} on the curve.
- h. Compute $\vec{F} \cdot \vec{v}$.
- i. Compute the line integral.

3. Verify Gauss' Theorem $\iiint_{H} \vec{\nabla} \cdot \vec{F} dV = \iint_{\partial H} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = (xz, yz, x^2 + y^2)$ and the solid hemisphere, *H*, given by $x^2 + y^2 + z^2 \le 4$ with $z \ge 0$. Be careful with orientations. Follow these steps:

LHS:

- **a**. Compute $\vec{\nabla} \cdot \vec{F}$.
- **b**. Compute the volume integral.

RHS: The boundary of the hemisphere consists of the hemispherical surface, *S*, given by $x^2 + y^2 + z^2 = 9$ with $z \ge 0$ and the disk, *D*, given by $x^2 + y^2 \le 9$ with z = 0.

c. Parametrize the hemispherical surface, *S*, by $\vec{R}(\varphi, \theta) = (2\sin\varphi\cos\theta, 2\sin\varphi\sin\theta, 2\cos\varphi)$ and compute the normal vector, \vec{N} .

d. Evaluate $\vec{F} = (xz, yz, x^2 + y^2)$ on the hemispherical surface.

- **e**. Compute $\vec{F} \cdot \vec{N}$.
- f. Compute the surface integral $\iint_{S} \vec{F} \cdot d\vec{S}$ on the hemispherical surface.

CONTINUED.

g. Parametrize the disk, D, by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\varphi, 0)$ and compute the normal vector, \vec{N} .

- **h**. Evaluate $\vec{F} = (xz, yz, x^2 + y^2)$ on the disk.
- i. Compute $\vec{F} \cdot \vec{N}$.
- j. Compute the surface integral $\iint_{D} \vec{F} \cdot d\vec{S}$ on the disk.

k. Compute the total surface integral $\iint_{\partial H} \vec{F} \cdot d\vec{S}.$