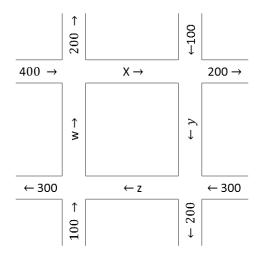
Name		
Math 311	Exam 1 Version A	Spring 2015
Section 502		P. Yasskin

Points indicated. Show all work.

1.	(30 points) Solve the traffic flow system shown			
	at the right. Find the smallest non-negative values			
	of w, x, y, z. In your augmented matrix, keep			
	the variables in the order w , x , y , z .			

1	/30	5	/20
2	/10	6	/15
3	/10	7	/15
4	/10	Total	/110



2. (10 points) By definition, a matrix, A, is nilpotent with degree 2 if $A^2 = \mathbf{0}$. Prove if A is nilpotent with degree 2, then $\mathbf{1} - A$ is non-singular and $(\mathbf{1} - A)^{-1} = \mathbf{1} + A$.

3. (10 points) For an $n \times n$ matrix A, define its trace to be $tr(A) = \sum_{i=1}^{n} A_{ii}$ i.e. the sum of its diagonal entries. Prove, for $n \times n$ matrices A and B, tr(AB) = tr(BA).

4. (10 points) A matrix A satisfies $E_1E_2E_3A = B$ where

$$E_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & * & * \\ 0 & -4 & 7 \\ 0 & 0 & -2 \end{pmatrix}$$

and the *'s represent unknown non-zero numbers. Find det A.

5. (20 points) Sulfuric acid (H_2SO_4) combines with sodium hydroxide (NaOH) to produce sodium sulfate (Na_2SO_4) and water (H_2O) according to the chemical equation:

$$aH_2SO_4 + bNaOH \rightarrow cNa_2SO_4 + dH_2O$$

To balance this chemical equation, you must solve the system

$$H: 2a+b = 2d$$

$$S: \qquad a = c$$

$$O: 4a+b = 4c+d$$

$$Na: b = 2c$$

a. Write out the augmented matrix for this system of 4 equations in 4 unknowns. DO NOT SOLVE.

b. Compute the determinant of the matrix of coefficients.

- c. What property of the augmented matrix says there is at least one solution? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is zero.
 - ii. The fact that the determinant of the matrix of coefficients is non-zero.
 - iii. The fact that the matrix of coefficients is square (4×4) .
 - iv. The fact that the system is homogeneous (the right hand sides are all zero).
- d. What additional property says there are infinitely many solutions? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is zero.
 - ii. The fact that the determinant of the matrix of coefficients is non-zero.
 - iii. The fact that the matrix of coefficients is square (4×4) .
 - iv. The fact that the system is homogeneous (the right hand sides are all zero).

6. (15 points) Let
$$A = \begin{pmatrix} 1 & 2 & a \\ 4 & 3 & b \\ c & d & 0 \end{pmatrix}$$
. Given that $det(A) = 5$, determine each of the following:

$$\begin{vmatrix} 1 & 2 & a \\ 4+c & 3+d & b \\ c & d & 0 \end{vmatrix} = \underline{\qquad} \begin{vmatrix} 1 & 4 & a \\ 4 & 6 & b \\ c & 2d & 0 \end{vmatrix} = \underline{\qquad} \begin{vmatrix} 4 & 3 & b \\ 1 & 2 & a \\ c & d & 0 \end{vmatrix} = \underline{\qquad}$$

$$det(2A) = \underline{\hspace{1cm}} det(A^{-1}) = \underline{\hspace{1cm}}$$

7. (15 points) For each of the following sets with operations, determine whether it forms a vector space. If it does, just say "Yes". If it does not, say "No" and give an axiom or other property it violates and show why.

a. The set of all power series centered at 3,
$$S = \left\{ a = \sum_{n=0}^{\infty} a_n (x-3)^n \right\}$$
 with $a \oplus b = \sum_{n=0}^{\infty} (a_n + b_n)(x-3)^n$ and $\alpha \odot a = \sum_{n=0}^{\infty} \alpha a_n (x-3)^n$

b.
$$F_{\text{even}}[-1,1] = \{f : [-1,1] \to \mathbb{R} \mid f(-x) = f(x)\} \text{ with } (f \oplus g)(x) = f(-x) + g(-x) \text{ and } (\alpha \odot f)(x) = \alpha f(-x)$$

c.
$$F_{\text{odd}}[-1,1] = \{f : [-1,1] \to \mathbb{R} \mid f(-x) = -f(x)\} \text{ with } (f \oplus g)(x) = f(-x) + g(-x) \text{ and } (\alpha \odot f)(x) = \alpha f(-x)$$