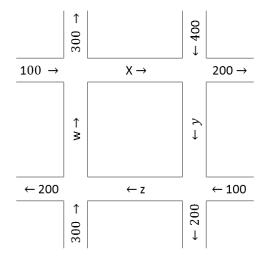
Name		
Math 311	Exam 1 Version B	Spring 2015
Section 502		P. Yasskin

Points indicated. Show all work.

1.	(30 points) Solve the traffic flow system shown		
	at the right. Find the smallest non-negative value		
	of w, x, y, z. In your augmented matrix, keep		
	the variables in the order w , x , y , z .		

1	/30	5	/20
2	/10	6	/15
3	/10	7	/15
4	/10	Total	/110



2. (10 points) By definition, a matrix, A, is idempotent if $A^2 = A$. Prove if A is idempotent, then $\mathbf{1} + A$ is non-singular and $(\mathbf{1} + A)^{-1} = \mathbf{1} - \frac{1}{2}A$.

3. (10 points) If A is a 50×60 matrix while B and C are 60×80 matrices, prove A(B+C) = AB + AC.

HINT: Prove equality of the *ij*-component of each side.

4. (10 points) A matrix A satisfies $E_1E_2E_3A = B$ where

$$E_{1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad E_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -5 & 3 & * \\ 0 & 2 & * \\ 0 & 0 & -2 \end{pmatrix}$$

and the *'s represent unknown non-zero numbers. Find $\det A$.

5. (20 points) Phosphoric acid (H_3PO_4) combines with sodium hydroxide (NaOH) to produce trisodium phosphate (Na_3PO_4) and water (H_2O) according to the chemical equation:

$$aH_3PO_4 + bNaOH \rightarrow cNa_3PO_4 + dH_2O$$

To balance this chemical equation, you must solve the system

$$H: 3a+b = 2d$$

$$P: \qquad a = c$$

$$O: 4a+b = 4c+d$$

$$Na: b = 3c$$

a. Write out the augmented matrix for this system of 4 equations in 4 unknowns. DO NOT SOLVE.

b. Compute the determinant of the matrix of coefficients.

- c. What property of the augmented matrix says there is at least one solution? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is non-zero.
 - ii. The fact that the determinant of the matrix of coefficients is zero.
 - iii. The fact that the system is homogeneous (the right hand sides are all zero).
 - iv. The fact that the matrix of coefficients is square (4×4) .
- **d**. What additional property says there are infinitely many solutions? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is non-zero.
 - ii. The fact that the determinant of the matrix of coefficients is zero.
 - iii. The fact that the system is homogeneous (the right hand sides are all zero).
 - iv. The fact that the matrix of coefficients is square (4×4) .

6. (15 points) Let
$$A = \begin{pmatrix} 1 & 2 & a \\ 4 & 3 & b \\ c & d & 0 \end{pmatrix}$$
. Given that $det(A) = 4$, determine each of the following:

$$\begin{vmatrix} 1+c & 2+d & a \\ 4 & 3 & b \\ c & d & 0 \end{vmatrix} = \underline{\qquad} \begin{vmatrix} 1 & 6 & a \\ 4 & 9 & b \\ c & 3d & 0 \end{vmatrix} = \underline{\qquad} \begin{vmatrix} 2 & 1 & a \\ 3 & 4 & b \\ d & c & 0 \end{vmatrix} = \underline{\qquad}$$

$$\det(3A) = \underline{\qquad} \det(A^{-1}) = \underline{\qquad}$$

- 7. (15 points) For each of the following sets with operations, determine whether it forms a vector space. If it does, just say "Yes". If it does not, say "No" and give an axiom or other property it violates and show why.
 - **a**. The set of infinite sequences, $S = \{a = [a_1, a_2, \dots, a_n, \dots]\}$, with $a \oplus b = [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots]$ and $\alpha \odot a = [\alpha a_1, \alpha a_2, \dots, \alpha a_n, \dots]$

b. The set of traceless
$$2 \times 2$$
 matrices $M_0(2,2) = \left\{ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \middle| A_{11} + A_{22} = 0 \right\}$ with $A \oplus B = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}$ and $\alpha \odot A = \begin{pmatrix} \alpha A_{22} & \alpha A_{12} \\ \alpha A_{21} & \alpha A_{11} \end{pmatrix}$

c. The set of traceless
$$2 \times 2$$
 matrices $M_0(2,2) = \left\{ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \mid A_{11} + A_{22} = 0 \right\}$

$$A \oplus B = \begin{pmatrix} A_{11} + B_{22} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{11} \end{pmatrix} \text{ and } \alpha \odot A = \begin{pmatrix} \alpha A_{11} & \alpha A_{12} \\ \alpha A_{21} & \alpha A_{22} \end{pmatrix}$$