Name_

Math 311	Exam 1 Version B	Spring 2015				
Section 502	Solutions	P. Yasskin				
Points indicated. Show all work.						

1	/30	5	/20
2	/10	6	/15
3	/10	7	/15
4	/10	Total	/110

1. (30 points) Solve the traffic flow system shown at the right. Find the smallest non-negative values of w, x, y, z. In your augmented matrix, keep the variables in the order w, x, y, z.

Solution: The equations are:

w + 100 = x + 300	w - x = 200
x + 400 = y + 200	x - y = -200
y + 100 = z + 200	y - z = 100
z + 300 = w + 200	-w + z = -100

The augmented matrix and row operations are:

$\begin{pmatrix} 1 & -1 & 0 & 0 \end{pmatrix}$	200		$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	0 200	$R_1 + R_2$	
0 1 -1 0	-200	_	0 1 -1	0 –200	_	
0 0 1 -	1 100		0 0 1	-1 100		
$\begin{pmatrix} -1 & 0 & 0 & 1 \end{pmatrix}$	-100	$\int R_4 + R_1$	(0 -1 0)	1 100	$R_4 + R_2$	
(1 0 -1 0	0	$R_1 + R_3$	$\begin{pmatrix} 1 & 0 & 0 & -1 \end{pmatrix}$	100	w = r + 100	
0 1 -1 0	-200	$R_2 + R_3$	0 1 0 -1	$ -100 \Rightarrow$	x = r - 100	
0 0 1 -1	100	<i>—</i>	0 0 1 -1	100	y = r + 100	
$\begin{pmatrix} 0 & 0 & -1 & 1 \end{pmatrix}$	-100	$R_4 + R_3$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	0	z = r	
For the smallest non-negative solution, we take $r = 100$:						
w = 200 x	= 0	y = 200	z = 100			

2. (10 points) By definition, a matrix, *A*, is idempotent if $A^2 = A$. Prove if *A* is idempotent, then $\mathbf{1} + A$ is non-singular and $(\mathbf{1} + A)^{-1} = \mathbf{1} - \frac{1}{2}A$.

Solution: $(\mathbf{1}+A)(\mathbf{1}-\frac{1}{2}A) = \mathbf{1}-\frac{1}{2}A+A-\frac{1}{2}A^2 = \mathbf{1}-\frac{1}{2}A+A-\frac{1}{2}A = \mathbf{1}$ since $A^2 = A$. Thus $(\mathbf{1}+A)$ and $(\mathbf{1}-\frac{1}{2}A)$ are inverses and $\mathbf{1}+A$ is invertible and non-singular.

3. (10 points) If *A* is a 50×60 matrix while *B* and *C* are 60×80 matrices, prove A(B+C) = AB + AC.

HINT: Prove equality of the *ij*-component of each side.

Solution:
$$[A(B+C)]_{ij} = \sum_{k=1}^{60} A_{ik}(B+C)_{kj} = \sum_{k=1}^{60} A_{ik}(B_{kj}+C_{kj}) = \sum_{k=1}^{60} A_{ik}B_{kj} + \sum_{k=1}^{60} A_{ik}C_{kj}$$
$$= [AB]_{ij} + [AC]_{ij} = [AB + AC]_{ij}$$

These are equal. So A(B+C) = AB + AC

4. (10 points) A matrix A satisfies $E_1E_2E_3A = B$ where

$$E_{1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad E_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -5 & 3 & * \\ 0 & 2 & * \\ 0 & 0 & -2 \end{pmatrix}$$

and the *'s represent unknown non-zero numbers. Find detA.

Solution: $\det E_1 = -1$ $\det E_2 = 2$ $\det E_3 = 1$ $\det B = (-5)(2)(-2) = 20$

 $\det A = \frac{\det B}{\det E_1 \det E_2 \det E_3} = \frac{20}{(-1)(2)(1)} = -10$

5. (20 points) Phosphoric acid (H_3PO_4) combines with sodium hydroxide (NaOH) to produce trisodium phosphate (Na_3PO_4) and water (H_2O) according to the chemical equation:

$$aH_3PO_4 + bNaOH \rightarrow cNa_3PO_4 + dH_2O$$

To balance this chemical equation, you must solve the system

$$H: \qquad 3a+b = 2d$$

$$P: \qquad a = c$$

$$O: \qquad 4a+b = 4c+d$$

$$Na: \qquad b = 3c$$

a. Write out the augmented matrix for this system of 4 equations in 4 unknowns. DO NOT SOLVE.

Solution:
$$\begin{pmatrix} 3 & 1 & 0 & -2 & | & 0 \\ 1 & 0 & -1 & 0 & | & 0 \\ 4 & 1 & -4 & -1 & | & 0 \\ 0 & 1 & -3 & 0 & | & 0 \end{pmatrix}$$

b. Compute the determinant of the matrix of coefficients.

Solution: Use 2 row operations. Then expand on column 2:

$$\det A = \begin{vmatrix} 3 & 1 & 0 & -2 \\ 1 & 0 & -1 & 0 \\ 4 & 1 & -4 & -1 \\ 0 & 1 & -3 & 0 \end{vmatrix} \begin{vmatrix} 3 & 1 & 0 & -2 \\ 1 & 0 & -1 & 0 \\ R_3 - R_1 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 0 & -2 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & -4 & 1 \\ -3 & 0 & -3 & 2 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -1 & 0 \\ 1 & -4 & 1 \\ -3 & -3 & 2 \end{vmatrix}$$

Add column 1 to column 2. Then expand on row 1:

$$\det A = (-1) \begin{vmatrix} 1 & 0 & 0 \\ 1 & -3 & 1 \\ -3 & -6 & 2 \end{vmatrix} = (-1)(1) \begin{vmatrix} -3 & 1 \\ -6 & 2 \end{vmatrix} = (-1)(1)(-6+6) = 0$$

- c. What property of the augmented matrix says there is at least one solution? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is non-zero.
 - ii. The fact that the determinant of the matrix of coefficients is zero.
 - iii. The fact that the system is homogeneous (the right hand sides are all zero). CORRECT
 - iv. The fact that the matrix of coefficients is square (4×4) .
- d. What additional property says there are infinitely many solutions? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is non-zero.
 - ii. The fact that the determinant of the matrix of coefficients is zero. CORRECT
 - iii. The fact that the system is homogeneous (the right hand sides are all zero).
 - iv. The fact that the matrix of coefficients is square (4×4) .

6. (15 points) Let
$$A = \begin{pmatrix} 1 & 2 & a \\ 4 & 3 & b \\ c & d & 0 \end{pmatrix}$$
. Given that $\det(A) = 4$, determine each of the following:
$$\begin{vmatrix} 1+c & 2+d & a \\ 4 & 3 & b \\ c & d & 0 \end{vmatrix} = 4 \qquad \begin{vmatrix} 1 & 6 & a \\ 4 & 9 & b \\ c & 3d & 0 \end{vmatrix} = 12 \qquad \begin{vmatrix} 2 & 1 & a \\ 3 & 4 & b \\ d & c & 0 \end{vmatrix} = -4$$
$$\det(3A) = 108 \qquad \det(A^{-1}) = \frac{1}{4}$$

- 7. (15 points) For each of the following sets with operations, determine whether it forms a vector space. If it does, just say "Yes". If it does not, say "No" and give an axiom or other property it violates and show why.
 - **a**. The set of infinite sequences, $S = \{a = [a_1, a_2, \dots, a_n, \dots]\}$, with $a \oplus b = [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots]$ and $\alpha \odot a = [\alpha a_1, \alpha a_2, \dots, \alpha a_n, \dots]$

Solution: Yes, it is a vector space.

b. The set of traceless
$$2 \times 2$$
 matrices $M_0(2,2) = \left\{ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \mid A_{11} + A_{22} = 0 \right\}$ with $A \oplus B = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}$ and $\alpha \odot A = \begin{pmatrix} \alpha A_{22} & \alpha A_{12} \\ \alpha A_{21} & \alpha A_{11} \end{pmatrix}$
Solution: No, it violates A_8 since $1 \odot A = \begin{pmatrix} A_{22} & A_{12} \\ A_{21} & A_{11} \end{pmatrix} \neq A$
c. The set of traceless 2×2 matrices $M_0(2,2) = \left\{ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \mid A_{11} + A_{22} = 0 \right\}$
 $A \oplus B = \begin{pmatrix} A_{11} + B_{22} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{11} \end{pmatrix}$ and $\alpha \odot A = \begin{pmatrix} \alpha A_{11} & \alpha A_{12} \\ \alpha A_{21} & \alpha A_{22} \end{pmatrix}$
Solution: No, it violates A_1 since $B \oplus A = \begin{pmatrix} B_{11} + A_{22} & B_{12} + A_{12} \\ B_{21} + A_{21} & B_{22} + A_{11} \end{pmatrix} \neq A \oplus B$