Name_

Math 311	Exam 1 Version A	Spring 2015				
Section 503	Solutions	P. Yasskin				
Points indicated. Show all work.						

1	/30	5	/20
2	/10	6	/15
3	/10	7	/15
4	/10	Total	/110

 $X \rightarrow$

←z

300

↓

 $\stackrel{\uparrow}{\sim}$

 $\leftarrow 100$

 $100 \rightarrow$

← 300

ſ

400

↑ ≥

 $200 \rightarrow$

 $100 \rightarrow$

← 300

1. (30 points) Solve the traffic flow system shown at the right. Find the smallest non-negative values of w, x, y, z. In your augmented matrix, keep the variables in the order w, x, y, z.

Solution: The equations are:

w + 100 = x + 400	w - x = 300
x + 300 = y + 100	x - y = -200
y + 300 = z + 100	y - z = -200
z + 200 = w + 300	-w + z = 100

The augmented matrix and row operations are:

$\begin{pmatrix} 1 & -1 & 0 & 0 \end{pmatrix}$	300		$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$	0 300	$R_1 + R_2$		
0 1 -1 0	-200	_	0 1 -1	0 –200	<u> </u>		
0 0 1 -1	l –200		0 0 1	-1 -200			
$\begin{pmatrix} -1 & 0 & 0 & 1 \end{pmatrix}$	100	$\int R_4 + R_1$	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$	1 400	$R_4 + R_2$		
(1 0 -1 0	100	$R_1 + R_3$	$\begin{pmatrix} 1 & 0 & 0 & -1 \end{pmatrix}$	-100	w = r - 100		
0 1 -1 0	-200	$R_2 + R_3$	0 1 0 -1	$ -400 \Rightarrow$	x = r - 400		
0 0 1 -1	-200		0 0 1 -1	-200	y = r - 200		
$\begin{pmatrix} 0 & 0 & -1 & 1 \end{pmatrix}$	200	$R_4 + R_3$	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	0	z = r		
For the smallest non-negative solution, we take $r = 400$:							
w = 300 x	= 0	y = 200	z = 400				

2. (10 points) By definition, a matrix, *A*, is nilpotent with degree 2 if $A^2 = 0$. Prove if *A* is nilpotent with degree 2, then 1 + A is non-singular and $(1 + A)^{-1} = 1 - A$.

Solution: $(1+A)(1-A) = 1 - A + A - A^2 = 1 - A^2 = 1$ since $A^2 = 0$. Thus (1+A) and (1-A) are inverses and 1 + A is invertible and non-singular.

3. (10 points) For an $n \times n$ matrix *A*, define its trace to be $tr(A) = \sum_{i=1}^{n} A_{ii}$ i.e. the sum of its diagonal entries. Prove, for $n \times n$ matrices *A* and *B*, tr(AB) = tr(BA).

Solution:
$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} B_{ki} A_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{n} B_{ki} A_{ik} = \sum_{k=1}^{n} (BA)_{kk} = tr(BA)$$

4. (10 points) A matrix A satisfies $E_1E_2E_3A = B$ where

$$E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -3 & * & 5 \\ 0 & 4 & * \\ 0 & 0 & 2 \end{pmatrix}$$

and the *'s represent unknown non-zero numbers. Find detA.

Solution: $\det E_1 = -1$ $\det E_2 = 4$ $\det E_3 = 1$ $\det B = (-3)(4)(2) = -24$ $\det A = \frac{\det B}{\det E_1 \det E_2 \det E_3} = \frac{-24}{(-1)(4)(1)} = 6$ 5. (20 points) Sulfuric acid (H_2SO_4) combines with sodium hydroxide (NaOH) to produce sodium sulfate (Na_2SO_4) and water (H_2O) according to the chemical equation:

$$aH_2SO_4 + bNaOH \rightarrow cNa_2SO_4 + dH_2O$$

To balance this chemical equation, you must solve the system

$$H: 2a+b = 2d$$

$$S: a = c$$

$$O: 4a+b = 4c+d$$

$$Na: b = 2c$$

a. Write out the augmented matrix for this system of 4 equations in 4 unknowns. DO NOT SOLVE.

Solution:
$$\begin{pmatrix} 2 & 1 & 0 & -2 & | & 0 \\ 1 & 0 & -1 & 0 & | & 0 \\ 4 & 1 & -4 & -1 & | & 0 \\ 0 & 1 & -2 & 0 & | & 0 \end{pmatrix}$$

1

b. Compute the determinant of the matrix of coefficients.

Solution: Use 2 row operations. Then expand on column 2:

$$\det A = \begin{vmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & -1 & 0 \\ 4 & 1 & -4 & -1 \\ 0 & 1 & -2 & 0 \end{vmatrix} \begin{vmatrix} R_3 - R_1 \\ R_4 - R_1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & -1 & 0 \\ 2 & 0 & -4 & 1 \\ -2 & 0 & -2 & 2 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -1 & 0 \\ 2 & -4 & 1 \\ -2 & -2 & 2 \end{vmatrix}$$

Add column 1 to column 2. Then expand on row 1:

$$\det A = (-1) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -2 & 1 \\ -2 & -4 & 2 \end{vmatrix} = (-1)(1) \begin{vmatrix} -2 & 1 \\ -4 & 2 \end{vmatrix} = (-1)(1)(-4+4) = 0$$

- c. What property of the augmented matrix says there is at least one solution? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is zero.
 - ii. The fact that the determinant of the matrix of coefficients is non-zero.
 - iii. The fact that the matrix of coefficients is square (4×4) .
 - iv. The fact that the system is homogeneous (the right hand sides are all zero). CORRECT
- d. What additional property says there are infinitely many solutions? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is zero. CORRECT
 - ii. The fact that the determinant of the matrix of coefficients is non-zero.
 - iii. The fact that the matrix of coefficients is square (4×4) .
 - iv. The fact that the system is homogeneous (the right hand sides are all zero).

6. (15 points) Let
$$A = \begin{pmatrix} a & 4 & 3 \\ b & 1 & 2 \\ 0 & c & d \end{pmatrix}$$
. Given that $det(A) = 3$, determine each of the following:
$$\begin{vmatrix} a & 4 & 3 \\ 0 & c & d \\ b & 1 & 2 \end{vmatrix} = -3 \qquad \begin{vmatrix} a & 4 & 3 \\ b & 1+c & 2+d \\ 0 & c & d \end{vmatrix} = 3 \qquad \begin{vmatrix} a & 8 & 3 \\ b & 2 & 2 \\ 0 & 2c & d \end{vmatrix} = 6$$
$$det(2A) = 24 \qquad det(A^{-1}) = \frac{1}{3}$$

7. (15 points) For each of the following sets with operations, determine whether it forms a vector space. If it does, just say "Yes". If it does not, say "No" and give an axiom or other property it violates and show why.

a. The set of all power series centered at 2,
$$S = \left\{a = \sum_{n=0}^{\infty} a_n (x-2)^n\right\}$$
 with $a \oplus b = \sum_{n=0}^{\infty} (a_n + b_n)(x-2)^n$ and $a \odot a = \sum_{n=0}^{\infty} \alpha a_n (x-2)^n$

Solution: Yes, it is a vector space.

b. $F_{odd}[-1,1] = \{f : [-1,1] \to \mathbb{R} \mid f(-x) = -f(x)\}$ with $(f \oplus g)(x) = f(-x) + g(-x)$ and $(\alpha \odot f)(x) = \alpha f(-x)$

Solution: No, it violates A_8 since $(1 \odot f)(x) = f(-x) = -f(x) \neq f(x)$

c. $F_{\text{even}}[-1,1] = \{f : [-1,1] \rightarrow \mathbb{R} \mid f(-x) = f(x)\}$ with $(f \oplus g)(x) = f(-x) + g(-x)$ and $(\alpha \odot f)(x) = \alpha f(-x)$

Solution: Yes, it is a vector space since $(f \oplus g)(x) = f(-x) + g(-x) = f(x) + g(x)$ and $(\alpha \odot f)(x) = \alpha f(-x) = \alpha f(x)$