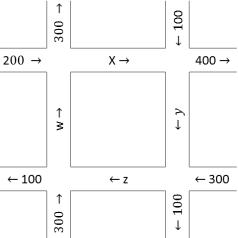
Name		
Math 311	Exam 1 Version B	Spring 2015
Section 503		P. Yasskin

Section 503	P. Yasskin	2	/10	б	/15
Points indicated. Show all work.		3	/10	7	/15
		4	/10	Total	/110
			1 . 1		1

1. (30 points) Solve the traffic flow system shown at the right. Find the smallest non-negative values of w, x, y, z. In your augmented matrix, keep the variables in the order w, x, y, z.



5

/20

/30

2. (10 points) By definition, a matrix, A, is anti-idempotent if $A^2 = -A$. Prove if A is anti-idempotent, then $\mathbf{1} - A$ is non-singular and $(\mathbf{1} - A)^{-1} = \mathbf{1} + \frac{1}{2}A$.

3. (10 points) If A and B are 80×60 matrices while C is a 60×50 matrix, prove (A+B)C = AC + BC.

HINT: Prove equality of the *ij*-component of each side.

4. (10 points) A matrix A satisfies $E_1E_2E_3A = B$ where

$$E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_{3} = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & * & * \\ 0 & 2 & 7 \\ 0 & 0 & -2 \end{pmatrix}$$

and the *'s represent unknown non-zero numbers. Find $\det A$.

5. (20 points) Phosphoric acid (H_3PO_4) combines with sodium hydroxide (NaOH) to produce trisodium phosphate (Na_3PO_4) and water (H_2O) according to the chemical equation:

$$aH_3PO_4 + bNaOH \rightarrow cNa_3PO_4 + dH_2O$$

To balance this chemical equation, you must solve the system

$$H: 3a+b = 2d$$

$$P: \qquad a = c$$

$$O: 4a+b = 4c+d$$

$$Na: b = 3c$$

a. Write out the augmented matrix for this system of 4 equations in 4 unknowns. DO NOT SOLVE.

b. Compute the determinant of the matrix of coefficients.

- c. What property of the augmented matrix says there is at least one solution? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is non-zero.
 - ii. The fact that the determinant of the matrix of coefficients is zero.
 - iii. The fact that the system is homogeneous (the right hand sides are all zero).
 - iv. The fact that the matrix of coefficients is square (4×4) .
- **d**. What additional property says there are infinitely many solutions? (Circle one.)
 - i. The fact that the determinant of the matrix of coefficients is non-zero.
 - ii. The fact that the determinant of the matrix of coefficients is zero.
 - iii. The fact that the system is homogeneous (the right hand sides are all zero).
 - iv. The fact that the matrix of coefficients is square (4×4) .

6. (15 points) Let
$$A = \begin{pmatrix} a & 4 & 3 \\ b & 1 & 2 \\ 0 & c & d \end{pmatrix}$$
. Given that $det(A) = 2$, determine each of the following:

$$\begin{vmatrix} 0 & c & d \\ b & 1 & 2 \\ a & 4 & 3 \end{vmatrix} = \underline{\qquad} \begin{vmatrix} a & 4+c & 3+d \\ b & 1 & 2 \\ 0 & c & d \end{vmatrix} = \underline{\qquad} \begin{vmatrix} a & 12 & 3 \\ b & 3 & 2 \\ 0 & 3c & d \end{vmatrix} = \underline{\qquad}$$

$$\det(3A) = \underline{\qquad} \qquad \det(A^{-1}) = \underline{\qquad}$$

- 7. (15 points) For each of the following sets with operations, determine whether it forms a vector space. If it does, just say "Yes". If it does not, say "No" and give an axiom or other property it violates and show why.
 - **a**. The set of infinite sequences, $S = \{a = [a_1, a_2, \dots, a_n, \dots]\}$, with $a \oplus b = [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots]$ and $\alpha \odot a = [\alpha a_1, \alpha a_2, \dots, \alpha a_n, \dots]$

b.
$$P_{3,0} = \{p = p_0 + p_1 x + p_2 x^2 \in P_3 \mid p(0) = 0\}$$
 with $p \oplus q = (p_0 + q_0) + (p_1 + q_1)x + (p_2 + q_2)x^2$ and $\alpha \odot p = \alpha p_2 + \alpha p_1 x + \alpha p_0 x^2$

c.
$$P_{3,0} = \{p = p_0 + p_1 x + p_2 x^2 \in P_3 \mid p(0) = 0\}$$
 with $p \oplus q = (p_0 + q_2) + (p_1 + q_1)x + (p_2 + q_0)x^2$ and $\alpha \odot p = \alpha p_0 + \alpha p_1 x + \alpha p_2 x^2$