Name		1	/15	4	/27
Math 311 Exam 2 Ve Section 502	rsion A Spring 2015 P. Yasskin	2	/38	5 E.C.	/10
Points indicated. Show all we		3	/25	Total	/115

1. (15 points) Let P_5 be the vector space of polynomials of degree less than 5.

Consider the subspace $V = Span(v_1, v_2, v_3, v_4)$ where $v_1 = 2 + 3x^2$, $v_2 = x - 3x^3$, $v_3 = x^2 + x^3 - x^4$, $v_4 = 2 - x + 3x^4$ Find a basis for *V* What is dim *V*? **2.** (38 points) Consider the vector space V = Span(1, sin(2x), cos(2x)) with the usual addition and scalar multiplication of functions. Two bases are:

 $e_1 = 1$ $e_2 = \sin(2x)$ $e_3 = \cos(2x)$ and $E_1 = \sin^2(x)$ $E_2 = \cos^2(x)$ $E_3 = \sin(x)\cos(x)$ Note: You do NOT need to prove they are bases. Hints: Here are some useful identities:

 $\sin(2x) = 2\sin(x)\cos(x), \quad \cos(2x) = \cos^2(x) - \sin^2(x), \quad \sin^2(x) = \frac{1 - \cos(2x)}{2}, \quad \cos^2(x) = \frac{1 + \cos(2x)}{2}$

a. (5) Find the change of basis matrix $C_{E \leftarrow e}$ from the *e* basis to the *E* basis by using the identities.

b. (5) Find the change of basis matrix $C_{e \leftarrow E}$ from the *E* basis to the *e* basis by using the identities.

c. (2) Verify $\underset{E \leftarrow e}{C}$ and $\underset{e \leftarrow E}{C}$ are inverses.

d. (4) For the function $f = \sin(2x) + 4\sin^2(x)$, what are its components $(f)_e$ and $(f)_E$?

e. (5) Find the matrix $\underset{e \leftarrow e}{A}$ of the derivative operator $D = \frac{d}{dx}$ relative to the *e* basis.

f. (5) Find the matrix $\underset{E \leftarrow E}{B}$ of the derivative operator $D = \frac{d}{dx}$ relative to the *E* basis. Do NOT use the change of basis matrices.

- g. (2) A and B are related by a similarity transformation: $B = SAS^{-1}$. What is S?
- h. (3) What is Im(D)? Give a basis. What is $\dim(\text{Im}(D))$? HINT: Let $f = a \cdot 1 + b \cdot \sin(2x) + c \cdot \cos(2x)$.

i. (3) What is Ker(D)? Give a basis. What is dim(Ker(D))?

- j. (2) Is *D* onto? Why or why not?
- **k**. (2) Is *D* 1-1? Why or why not?

3. (25 points) Consider the vector space *S* of symmetric 2×2 matrices. The following are symmetric, bilear forms on *S*. Which one(s) are inner products? Why or why not? You do not need to check they are symmetric or bilinear, just that they are positive definite.

HINTS: Let $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$. Compute $\langle A, A \rangle$. Look for perfect squares or complete the squares. **a.** (9) $\langle A, B \rangle = tr(AGB^{T})$ where $G = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

b. (8)
$$\langle A,B \rangle = tr(AGB^{\mathsf{T}})$$
 where $G = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$

c. (8)
$$\langle A, B \rangle = tr(AGB^{\mathsf{T}})$$
 where $G = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

4. (27 points) Consider the vector space S of symmetric 2×2 matrices with the inner product

$$\langle A,B \rangle = tr(AGB^{\mathsf{T}})$$
 where $G = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$.
Find the angle between the matrices $A = \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$.

a. (8)

b. (19) A basis for *S* is $V_1 = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ $V_2 = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ $V_3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

Apply the Gram-Schmidt Procedure to the (V_1, V_2, V_3) basis to produce an orthogonal basis (W_1, W_2, W_3) and an orthonormal basis (U_1, U_2, U_3) .

5. (10 points EC) Consider the vector space $V = (\mathbb{R}^+)^2 = \{(x_1, x_2) \mid x_1 > 0 \text{ and } x_2 > 0\}$ consisting of ordered pairs of positive numbers with addition and multiplication defined by

$$(x_1, x_2) \oplus (y_1, y_2) = (x_1y_1, x_2y_2)$$
 and $a \odot (x_1, x_2) = (x_1^a, x_2^a)$

So vector addition is real number multiplication of corresponding components and scalar multiplication is real number exponentiation of each component. Note the zero vector is $\vec{0} = (1, 1)$.

a. (5) Is $u_1 = (1,2)$ and $u_2 = (3,1)$ a basis? Why or why not?

b. (5) Is $v_1 = (1,1)$ and $v_2 = (3,1)$ a basis? Why or why not?