Name \qquad

Math 311	Exam 3 Version A	Spring 2015
Section 502		P. Yasskin

Points indicated. Show all work.

1	$/ 20$	3	$/ 30$
2	$/ 36$	4	$/ 26$
		Total	$/ 112$

1. (20 points) Compute $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ for $\vec{F}=(-y, x, z)$ over the "clam shell" surface, S, parametrized by

$$
\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r \sin (5 \theta))
$$

for $r \leq 3$ oriented upward.

HINTS: Use Stokes Theorem.
What is the value of r on the boundary?
2. (36 points) Let $V=\operatorname{Span}\left(e^{2 x}+e^{-2 x}, e^{2 x}-e^{-2 x}\right)$ be the vector space of functions spanned by the basis

$$
e_{1}=e^{2 x}+e^{-2 x}, \quad e_{2}=e^{2 x}-e^{-2 x}
$$

Consider the linear operator $L: V \rightarrow V$ given by $L(f)=3 \frac{d f}{d x}$. Our goals are to compute the eigenvalues and eigenfunctions of the linear operator L, to find the similarity transformation which diagonalizes the matrix of L and use this similarity transformation to compute a matrix power.
a. (5 pts) Find the matrix of L relative to the $\left(e_{1}, e_{2}\right)$ basis. Call it $\underset{e \leftarrow e}{A}$.
b. (3 pts) Find the characteristic polynomial for $\underset{e \leftarrow e}{A}$.

Factor it and identify the eigenvalues of $\underset{e \leftarrow e}{A}$. These are also the eigenvalues of L.
c. (8 pts) Find the eigenvector(s) of $\underset{e \leftarrow e}{A}$ for each eigenvalue, as vectors in \mathbb{R}^{2}. Name them \vec{v}_{1} and \vec{v}_{2}.
d. (6 pts) Convert the eigenvectors of $\underset{e \leftarrow e}{A}$ into eigenfunctions of L as functions in V. Name them f_{1} and f_{2} and simplify them.
Then compute $L\left(f_{1}\right)$ and $L\left(f_{2}\right)$ to verify f_{1} and f_{2} are eigenfunctions.
Hint: Remember that the components of \vec{v}_{1} and \vec{v}_{2} are components of f_{1} and f_{2} relative to the $\left(e_{1}, e_{2}\right)$ basis.
e. (3 pts) Using the eigenfunctions as a new $\left(f_{1}, f_{2}\right)$ basis for V, find the matrix of L relative to the $\left(f_{1}, f_{2}\right)$ basis. Call it $\underset{f \leftarrow f}{D}$.
f. (5 pts) Find the change of basis matrices $\underset{e \leftarrow f}{C}$ and $\underset{f \leftarrow e}{C}$ between the (e_{1}, e_{2}) basis to the $\left(f_{1}, f_{2}\right)$ bases. Be sure to identify which is which.
g. (2 pts) A and D are related by a similarity transformation $A=S^{-1} D S$. Identify S as $\underset{e \leftarrow f}{C}$ or $\underset{f \leftarrow e}{C}$.
h. (4 pts) Compute A^{12} and A^{25}.
3. (30 points) The density, ρ, of an ideal gas is related to its pressure, P, and its absolute temperature, T, by the equation $\rho=\frac{P}{k T}$ where k is a constant which depends on the particular ideal gas. We are considering an ideal gas for which $k=10^{-4} \mathrm{~atm} \cdot \mathrm{~m}^{3} / \mathrm{kg} /{ }^{\circ} \mathrm{K}$. At the current time, $t=t_{0}$, a flying robotic nanobot is located at $(x, y, z)=(2,1,3)^{\top} \mathrm{m}$ and has velocity $\vec{v}=(.4, .5, .2)^{\top} \mathrm{m} / \mathrm{sec}$. The nanobot measures the current pressure is $P=2 \mathrm{~atm}$ while its gradient is $\vec{\nabla} P=(-.03, .01, .02) \mathrm{atm} / \mathrm{m}$. Similarly, the nanobot measures the current temperature is $T=250^{\circ} \mathrm{K}$ while its gradient is $\vec{\nabla} T=(3,-2,-4)^{\circ} \mathrm{K} / \mathrm{m}$.
a. (2 pts) Find the current density, ρ.
b. (6 pts) Find the Jacobian matrix of the density $\frac{D(\rho)}{D(P, T)}$ in general (in terms of symbols like $\left.\frac{\partial \rho}{\partial T}\right)$, then in terms of P and T, and finally at the current time $t=t_{0}$.
c. (4 pts) Find the Jacobian matrix $\frac{D(P, T)}{D(x, y, z)}$ in general (in terms of symbols like $\frac{\partial P}{\partial y}$) and then at the current time $t=t_{0}$.
d. (4 pts) Find the Jacobian matrix $\frac{D(x, y, z)}{D(t)}$ in general and then at $t=t_{0}$.
e. (6 pts) Find the time rate of change of the pressure as seen by the nanobot, at the current time $t=t_{0}$. Is the pressure currently increasing or decreasing?
f. (8 pts) Find the time rate of change of the density as seen by the nanobot, at the current time $t=t_{0}$. Is the density currently increasing or decreasing?
4. (26 points) Compute the integral $\iint x d A$ over the region in the first quadrant bounded by $y=1+x^{2}, \quad y=3+x^{2}, \quad y=4-x^{2}, \quad$ and $y=5-x^{2}$.

a. (4 pts) Define the curvilinear coordinates u and v by $y=u+x^{2}$ and $y=v-x^{2}$. What are the 4 boundaries in terms of u and v ?
b. (4 pts) Solve for x and y in terms of u and v. Express the results as a position vector.
c. (4 pts) Find the coordinate tangent vectors:
d. (8 pts) Compute the Jacobian factor:
e. (6 pts) Compute the integral:

