Name \qquad ID. \qquad
MATH 311
Exam 1
Section 200
Spring 2001
P. Yasskin

1	$/ 15$	5	$/ 10$
2	$/ 30$	6	$/ 10$
3	$/ 5$	7	$/ 10$
4	$/ 10$	8	$/ 10$

1. (15 points) Consider the three points

$$
P=(1,2,3) \quad Q=(1,3,4) \quad R=(2,3,3)
$$

a. (5 pts) Find parametric equations of the plane containing P, Q and R.
b. (5 pts) Find a non-parametric equation of the plane containing P, Q and R.
c. (5 pts) Find an equation of the line through P perpendicular to the plane containing P, Q and R.
2. (30 points) Consider the equations

$$
\begin{array}{r}
2 x+4 y+6 z=4 \\
v+y=2 \\
w+z=b \\
2 v+w+x+4 y+4 z=3
\end{array}
$$

a. (5 pts) Write out the augmented matrix for this system.
b. (10 pts) For what value(s) of b do there exist solutions?
c. (10 pts) For those value(s) of b, find all solutions.
d. (5 pts) Circle the geometric description of the solution set: point, line, 2-plane, 3-plane, 4-plane, \mathbf{R}^{5}
3. (5 points) In \mathbf{R}^{5} with coordinates (v, w, x, y, z), write out an equation of the 3 -plane through the point $P=(5,4,3,2,1)$ with tangent vectors

$$
\vec{a}=(2,1,3,0,4) \quad \vec{b}=(1,-1,2,-2,3) \quad \vec{c}=(2,1,3,-1,0)
$$

$$
\left(\begin{array}{l}
v \\
w \\
x \\
y \\
z
\end{array}\right)=
$$

4. (10 points) Duke Skywater is flying the Millennium Eagle along the curve

$$
\vec{r}(t)=(2 \cos t, 3 \sin t, t)
$$

At $t=\frac{\pi}{2}$, he releases a garbage pod which travels along his tangent line with constant velocity (equal to his velocity at the time of release). Where is the garbage pod at $t=\pi$?
5. (10 points) Duke Skywater is flying the Millennium Eagle through the galactic polaron field. At $t=20$, Duke's position is $\vec{r}=(20,10,30)$ lightyears and his velocity is $\vec{v}=(.1, .3, .2) \frac{\text { lightyears }}{\text { year }}$. At that time, he measures the density of polarons to be $\rho=15 \times 10^{6} \frac{\text { polarons }}{\text { lightyear }^{3}}$ and the gradient of this density to be $\vec{\nabla} \rho=\left(2 \times 10^{6},-1 \times 10^{6}, 3 \times 10^{6}\right) \frac{\text { polarons }}{\text { lightyear }}$.
a. What does he measure as the time rate of change the polaron density, $\frac{d \rho}{d t}$?
b. Using a linear approximation, what would he expect the polaron density to be at the point $\vec{x}=(21,12,29)$?
6. (10 points) Duke Skywater is flying the Millennium Eagle through the galactic hyperon field. At $t=20$, Duke's position is $\vec{r}=(20,10,30)$ lightyears and his velocity is $\vec{v}=(.1, .3, .2) \frac{\text { lightyears }}{\text { year }}$. At that time, he measures the hyperon field and its Jacobian to be

$$
\vec{H}=\left(\begin{array}{c}
200 \\
150 \\
300
\end{array}\right) \text { Hans } \quad D \vec{H}=\left(\begin{array}{ccc}
30 & -10 & 20 \\
-40 & 10 & 5 \\
-10 & 0 & 10
\end{array}\right) \frac{\text { Hans }}{\text { lightyear }}
$$

a. What does he measure as the time rate of change the hyperon field, $\frac{d \vec{H}}{d t}$?
b. Using a linear approximation, what would he expect the hyperon field to be at $t=22$?
7. (10 points) Consider the vector space \mathbf{R}^{+}of all positive real numbers with the operations of Vector Addition: $\quad x \oplus y=x y \quad$ (real number addition)
Scalar Multiplication: $\quad \alpha \odot x=x^{\alpha} \quad$ (real number exponentiation)
Translate each of the following statements into ordinary arithmetic.
a. For all x we have $0 \odot x=\overrightarrow{0}$.
b. For all a we have $a \odot \overrightarrow{0}=\overrightarrow{0}$.
c. If $a \odot x=\overrightarrow{0}$ then either $a=0$ or $x=\overrightarrow{0}$.
8. (10 points) Consider the linear function $L: R^{3} \rightarrow R^{2}$ given by

$$
L(\vec{u})=\binom{\int_{0}^{1}\left(u_{1}+u_{2} x+u_{3} x^{2}\right) d x}{\left.\frac{d}{d x}\left(u_{1}+u_{2} x+u_{3} x^{2}\right)\right|_{x=1}}
$$

Find the matrix A of the linear function, so that you can rewrite it as

$$
L(\vec{u})=A \vec{u}
$$

