Name \qquad ID. \qquad

Exam 1
Solutions

Spring 2001
P. Yasskin

1	$/ 15$	5	$/ 10$
2	$/ 30$	6	$/ 10$
3	$/ 5$	7	$/ 10$
4	$/ 10$	8	$/ 10$

1. (15 points) Consider the three points

$$
P=(1,2,3) \quad Q=(1,3,4) \quad R=(2,3,3)
$$

a. (5 pts) Find parametric equations of the plane containing P, Q and R.

$$
\begin{aligned}
& \overrightarrow{P Q}=Q-P=(0,1,1) \quad \overrightarrow{P R}=R-P=(1,1,0) \quad X=P+s \overrightarrow{P Q}+t \overrightarrow{P R} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+s\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+t\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1+t \\
2+s+t \\
3+s
\end{array}\right)
\end{aligned}
$$

b. (5 pts) Find a non-parametric equation of the plane containing P, Q and R.

$$
\begin{aligned}
& \vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right|=\vec{i}(-1)-\vec{j}(-1)+\vec{k}(-1)=(-1,1,-1) \\
& \vec{N} \cdot X=\vec{N} \cdot P \quad-x+y-z=-1+2-3=-2
\end{aligned}
$$

c. (5 pts) Find an equation of the line through P perpendicular to the plane containing P, Q and R.

$$
X=P+t \vec{N} \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1-t \\
2+t \\
3-t
\end{array}\right)
$$

2. (30 points) Consider the equations

$$
\begin{array}{r}
2 x+4 y+6 z=4 \\
v+y=2 \\
w+z=b \\
2 v+w+x+4 y+4 z=3
\end{array}
$$

a. (5 pts) Write out the augmented matrix for this system.

$$
\left(\begin{array}{lllll|l}
0 & 0 & 2 & 4 & 6 & 4 \\
1 & 0 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 0 & 1 & b \\
2 & 1 & 1 & 4 & 4 & 3
\end{array}\right)
$$

b. (10 pts) For what value(s) of b do there exist solutions?

$$
\begin{aligned}
\frac{1}{2} R_{1} \text { and reorder rows : } & \left(\begin{array}{ccccc|c}
1 & 0 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 0 & 1 & b \\
0 & 0 & 1 & 2 & 3 & 2 \\
2 & 1 & 1 & 4 & 4 & 3
\end{array}\right) \\
R_{4}-2 R_{1}-R_{2}-R_{3} \rightarrow R_{4}: & \left(\begin{array}{ccccc|c}
1 & 0 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 0 & 1 & b \\
0 & 0 & 1 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & -3-b
\end{array}\right)
\end{aligned}
$$

So there are solutions only if $b=-3$.
c. (10 pts) For those value(s) of b, find all solutions.

For $b=-3$, the equations reduce to

$$
\begin{aligned}
v+y & =2 \\
w+z & =-3 \\
x+2 y+3 z & =2
\end{aligned}
$$

So y and z are arbitrary and the solution is

$$
\left(\begin{array}{l}
v \\
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2-s \\
-3-t \\
2-2 s-3 t \\
s \\
t
\end{array}\right)=\left(\begin{array}{c}
2 \\
-3 \\
2 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
0 \\
-1 \\
-3 \\
0 \\
1
\end{array}\right)
$$

d. (5 pts) Circle the geometric description of the solution set: point, line, 2-plane, 3-plane, 4-plane, \mathbf{R}^{5}
3. (5 points) In \mathbf{R}^{5} with coordinates (v, w, x, y, z), write out an equation of the 3 -plane through the point $P=(5,4,3,2,1)$ with tangent vectors

$$
\vec{a}=(2,1,3,0,4) \quad \vec{b}=(1,-1,2,-2,3) \quad \vec{c}=(2,1,3,-1,0)
$$

$$
\left(\begin{array}{l}
v \\
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)+r\left(\begin{array}{l}
2 \\
1 \\
3 \\
0 \\
4
\end{array}\right)+s\left(\begin{array}{c}
1 \\
-1 \\
2 \\
-2 \\
3
\end{array}\right)+t\left(\begin{array}{c}
2 \\
1 \\
3 \\
-1 \\
0
\end{array}\right)
$$

4. (10 points) Duke Skywater is flying the Millennium Eagle along the curve

$$
\vec{r}(t)=(2 \cos t, 3 \sin t, t)
$$

At $t=\frac{\pi}{2}$, he releases a garbage pod which travels along his tangent line with constant velocity (equal to his velocity at the time of release). Where is the garbage pod at $t=\pi$?

$$
\begin{array}{ll}
\vec{r}(t)=(2 \cos t, 3 \sin t, t) & \vec{r}\left(\frac{\pi}{2}\right)=\left(2 \cos \frac{\pi}{2}, 3 \sin \frac{\pi}{2}, \frac{\pi}{2}\right)=\left(0,3, \frac{\pi}{2}\right) \\
\vec{v}(t)=(-2 \sin t, 3 \cos t, 1) & \vec{v}\left(\frac{\pi}{2}\right)=\left(-2 \sin \frac{\pi}{2}, 3 \cos \frac{\pi}{2}, 1\right)=(-2,0,1)
\end{array}
$$

The tangent line is
$(x, y, z)=\vec{r}_{\tan }(t)=\vec{r}\left(\frac{\pi}{2}\right)+\vec{v}\left(\frac{\pi}{2}\right)\left(t-\frac{\pi}{2}\right)=\left(0,3, \frac{\pi}{2}\right)+\left(t-\frac{\pi}{2}\right)(-2,0,1)$
At $t=\pi$, the garbage pod is at
$(x, y, z)=\vec{r}_{\tan }(\pi)\left(0,3, \frac{\pi}{2}\right)+\left(\frac{\pi}{2}\right)(-2,0,1)=(-\pi, 3, \pi)$
5. (10 points) Duke Skywater is flying the Millennium Eagle through the galactic polaron field. At $t=20$, Duke's position is $\vec{r}=(20,10,30)$ lightyears and his velocity is $\vec{v}=(.1, .3, .2) \frac{\text { lightyears }}{\text { year }}$. At that time, he measures the density of polarons to be $\rho=15 \times 10^{6} \frac{\text { polarons }}{\text { lightyear }^{3}}$ and the gradient of this density to be $\vec{\nabla} \rho=\left(2 \times 10^{6},-1 \times 10^{6}, 3 \times 10^{6}\right) \frac{\text { polarons }}{\text { lightyear }^{4}}$.
a. What does he measure as the time rate of change the polaron density, $\frac{d \rho}{d t}$?

$$
\frac{d \rho}{d t}=\vec{\nabla} \rho \cdot \vec{v}=\left(2 \times 10^{6},-1 \times 10^{6}, 3 \times 10^{6}\right) \cdot(.1, .3, .2)=(.2-.3+.6) \times 10^{6}=.5 \times 10^{6}=5 \times 10^{5}
$$

b. Using a linear approximation, what would he expect the polaron density to be at the point $\vec{x}=(21,12,29)$?

$$
\begin{aligned}
\rho_{\tan }(\vec{x})=\rho(\vec{r}) & +\vec{\nabla} \rho \cdot(\vec{x}-\vec{r}) \\
\rho_{\mathrm{tan}}(21,12,29) & =15 \times 10^{6}+\left(2 \times 10^{6},-1 \times 10^{6}, 3 \times 10^{6}\right) \cdot(1,2,-1) \\
= & 15 \times 10^{6}+(2-2-3) \times 10^{6}=12 \times 10^{6}
\end{aligned}
$$

6. (10 points) Duke Skywater is flying the Millennium Eagle through the galactic hyperon field. At $t=20$, Duke's position is $\vec{r}=(20,10,30)$ lightyears and his velocity is $\vec{v}=(.1, .3, .2) \frac{\text { lightyears }}{\text { year }}$. At that time, he measures the hyperon field and its Jacobian to be

$$
\vec{H}=\left(\begin{array}{c}
200 \\
150 \\
300
\end{array}\right) \text { Hans } \quad D \vec{H}=\left(\begin{array}{ccc}
30 & -10 & 20 \\
-40 & 10 & 5 \\
-10 & 0 & 10
\end{array}\right) \frac{\text { Hans }}{\text { lightyear }}
$$

a. What does he measure as the time rate of change the hyperon field, $\frac{d \vec{H}}{d t}$?

$$
\frac{d \vec{H}}{d t}=D \vec{H} \vec{v}=\left(\begin{array}{ccc}
30 & -10 & 20 \\
-40 & 10 & 5 \\
-10 & 0 & 10
\end{array}\right)\left(\begin{array}{l}
.1 \\
.3 \\
.2
\end{array}\right)=\left(\begin{array}{c}
3-3+4 \\
-4+3+1 \\
-1+0+2
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)
$$

b. Using a linear approximation, what would he expect the hyperon field to be at $t=22$?

$$
\begin{aligned}
& \vec{H}_{\mathrm{tan}}(t)=\vec{H}(a)+\frac{d \vec{H}}{d t}(t-a) \\
& \vec{H}_{\mathrm{tan}}(22)=\left(\begin{array}{c}
200 \\
150 \\
300
\end{array}\right)+\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)(22-20)=\left(\begin{array}{l}
208 \\
150 \\
302
\end{array}\right) \\
& \text { OR } \quad \vec{r}_{\mathrm{tan}}(22)=\vec{r}_{\mathrm{tan}}(20)+\vec{v}(20)(22-20)=(20,10,30)+2(.1, .3, .2)=(20.2,10.6,30.4) \\
& \vec{H}_{\mathrm{tan}}\left(\vec{r}_{\mathrm{tan}}(t)\right)=\vec{H}(\vec{r}(a))+D \vec{H}(\vec{r}(t)-\vec{r}(a)) \\
& \vec{H}_{\mathrm{tan}}\left(\vec{r}_{\mathrm{tan}}(22)\right)=\left(\begin{array}{c}
200 \\
150 \\
300
\end{array}\right)+\left(\begin{array}{ccc}
30 & -10 & 20 \\
-40 & 10 & 5 \\
-10 & 0 & 10
\end{array}\right)\left(\begin{array}{l}
.2 \\
.6 \\
.4
\end{array}\right)=\left(\begin{array}{l}
208 \\
150 \\
302
\end{array}\right)
\end{aligned}
$$

7. (10 points) Consider the vector space \mathbf{R}^{+}of all positive real numbers with the operations of Vector Addition: $\quad x \oplus y=x y \quad$ (real number addition)
Scalar Multiplication: $\quad \alpha \odot x=x^{\alpha} \quad$ (real number exponentiation)
Translate each of the following statements into ordinary arithmetic.
a. For all x we have $0 \odot x=\overrightarrow{0}$.

For all x we have $x^{0}=1$.
b. For all a we have $a \odot \overrightarrow{0}=\overrightarrow{0}$.

For all a we have $1^{a}=1$.
c. If $a \odot x=\overrightarrow{0}$ then either $a=0$ or $x=\overrightarrow{0}$.

$$
\text { If } x^{a}=1 \text { then either } a=0 \text { or } x=1 .
$$

8. (10 points) Consider the linear function $L: R^{3} \rightarrow R^{2}$ given by

$$
L(\vec{u})=\binom{\int_{0}^{1}\left(u_{1}+u_{2} x+u_{3} x^{2}\right) d x}{\left.\frac{d}{d x}\left(u_{1}+u_{2} x+u_{3} x^{2}\right)\right|_{x=1}}
$$

Find the matrix A of the linear function, so that you can rewrite it as

$$
\begin{aligned}
& L(\vec{u})=A \vec{u} \\
& L\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{\int_{0}^{1}(1) d x}{\left.\frac{d}{d x}(1)\right|_{x=1}}=\binom{1}{0} \\
& L\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{\int_{0}^{1}(x) d x}{\left.\frac{d}{d x}(x)\right|_{x=1}}=\binom{\frac{1}{2}}{1} \quad A=\left(\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
0 & 1 & 2
\end{array}\right) \\
& L\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{\int_{0}^{1}\left(x^{2}\right) d x}{\left.\frac{d}{d x}\left(x^{2}\right)\right|_{x=1}}=\binom{\frac{1}{3}}{2}
\end{aligned}
$$

OR

$$
\begin{aligned}
L(\vec{u}) & =\binom{\int_{0}^{1}\left(u_{1}+u_{2} x+u_{3} x^{2}\right) d x}{\left.\frac{d}{d x}\left(u_{1}+u_{2} x+u_{3} x^{2}\right)\right|_{x=1}}=\binom{\left[u_{1} x+u_{2} \frac{x^{2}}{2}+u_{3} \frac{x^{3}}{3}\right]_{0}^{1}}{\left.\left(u_{2}+2 u_{3} x\right)\right|_{x=1}} \\
& =\binom{u_{1}+u_{2} \frac{1}{2}+u_{3} \frac{1}{3}}{u_{2}+2 u_{3}}=\left(\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \quad A=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

