Name \qquad ID \qquad

Exam 2
Section 200

Spring 2001
P. Yasskin

1	$/ 60$
2	$/ 20$
3	$/ 20$

1. (60 points) Let P_{n} be the vector space of polynomials of degree $\leq n$. Consider the linear map $I: P_{1} \rightarrow P_{2}$ given by

$$
I(p)(x)=2 \int_{1}^{x} p(t) d t
$$

Hint: For some parts it may be useful to write $p(t)=a+b t \in P_{1}$ and/or $q(x)=\alpha+\beta x+\gamma x^{2} \in P_{2}$.
a. (3) Identify the domain of I, a basis for the domain, and the dimension of the domain.
b. (3) Identify the codomain of I, a basis for the codomain, and the dimension of the codomain.
c. (5) Identify the kernel of I, a basis for the kernel, and the dimension of the kernel.
d. (5) Identify the range of I, a basis for the range, and the dimension of the range.
e. (2) Is the function I one-to-one? Why?
f. (2) Is the function I onto? Why?
g. (2) Verify the dimensions in a, b, c and d agree with the Nullity-Rank Theorem.
h. (5) Find the matrix of I relative to the standard bases: (Call it $\underset{E+e}{A}$.)

$$
e_{1}=1, \quad e_{2}=t \text { for } P_{1} \text { and } E_{1}=1, \quad E_{2}=x, \quad E_{3}=x^{2} \text { for } P_{2}
$$

i. (6) Another basis for P_{1} is $f_{1}=1+2 t, \quad f_{2}=1+3 t$. Find the change of basis matrices between the e and f bases. (Call them C and C.) Be sure to identify which is which! $f-e \quad e+f$
j. (6) Consider the polynomial $q=3+4 t$. Find $[q]_{e}$ and $[q]_{f}$, the components of q relative to the e and f bases, respectively.
k. (3) A polynomial r has components $[r]_{f}=\binom{2}{1}$ relative to the f basis. What is r ?
I. (5) Find the matrix of I relative to the f basis for P_{1} and the E basis for P_{2}. (Call it B.)
m. (5) Find $\underset{E+f}{B}$ by a second method.
n. (6) A polynomial r has components $[r]_{f}=\binom{2}{1}$ relative to the f basis. Find $[I(r)]_{E}$, the components of $I(r)$ relative to the E basis. What is $I(r)$?
o. (2) Find $I(r)$ by a second method.
2. (20 points) Consider a linear map $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ whose matrix is $A=\left(\begin{array}{cccc}1 & -2 & 0 & 3 \\ 2 & -4 & 1 & 2 \\ 0 & 0 & 1 & -4\end{array}\right)$.
a. (2) What are n and p ?
b. (6) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.
c. (6) Identify the range of L, a basis for the range, and the dimension of the range.
d. (2) Is the function L one-to-one? Why?
e. (2) Is the function L onto? Why?
f. (2) Verify the dimensions in a, b and c agree with the Nullity-Rank Theorem.
3. (20 points) Consider the parabolic coordinate system

$$
x=u^{2}-v^{2} \quad y=2 u v
$$

a. (4) Describe the u-coordinate curve for which $v=2$. (Give an $x y$-equation and describe the shape.)
b. (4) Find \vec{e}_{u}, the vector tangent to the u-curve at the point $(u, v)=(3,2)$.
c. (4) Describe the v-coordinate curve for which $u=3$.
(Give an $x y$-equation and describe the shape.)
d. (4) Find \vec{e}_{v}, the vector tangent to the v-curve at the point $(u, v)=(3,2)$.
e. (4) Compute $\left|\vec{e}_{u}\right|,\left|\vec{e}_{v}\right|$ and $\vec{e}_{u} \cdot \vec{e}_{v}$. Find the angle between \vec{e}_{u} and \vec{e}_{v}.

