Name \qquad ID. \qquad Exam 2
MATH 311
Section 200

Fall 2001
P. Yasskin

1	$/ 10$	4	$/ 10$
2	$/ 10$	5	$/ 60$
3	$/ 10$		

1. (10 points) Let P_{1} be the vector space of polynomials of degree ≤ 1. Suppose $L: P_{1} \rightarrow \mathbf{R}$ is a linear map which satisfies

$$
L(2+3 t)=1, \quad L(1+4 t)=-2 .
$$

Compute $L(5-2 t)$.
2. (10 points) Which of the following is not a subspace of $C^{1}[-1,1]$? Why?

$$
\begin{gathered}
P=\left\{f \in C^{1}[-1,1] \mid f(-1)=f(1)\right\} \quad Q=\left\{f \in C^{1}[-1,1] \left\lvert\, \frac{f(-1)+f(1)}{2}=f(0)\right.\right\} \\
R=\left\{f \in C^{1}[-1,1] \mid \int_{0}^{1} f(t) d t=1\right\} \quad S=\left\{f \in C^{1}[-1,1] \mid f^{\prime}(0)=f(0)\right\}
\end{gathered}
$$

3. (10 points) Duke Skywater is flying the Millennium Eagle through the Asteroid Belt. At the current time, his position is $\vec{r}=(4,-1,2)$ and his velocity is $\vec{v}=(3,2,-1)$. He measures that the electric field and its Jacobian are currently

$$
\vec{E}=\left(\begin{array}{l}
12 \\
2 \\
9
\end{array}\right) \quad \text { and } \quad \overrightarrow{J E}=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 4 & 3 \\
1 & 2 & 9
\end{array}\right)
$$

Use a linear (affine) approximation to estimate what the electric field will be 2 sec from now.
4. (10 points) Let $L: R^{5} \rightarrow R^{4}$ be a linear map whose matrix is A. If A is row reduced, one obtains the matrix

$$
\left(\begin{array}{lllll}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

What is the dimension of the kernel of L ? What is the dimension of the image of L ? Be sure to explain why.
5. (60 points) Let $M(2,2)$ be the vector space of 2×2 matrices. Let P_{2} be the vector space of polynomials of degree ≤ 2. Consider the linear map $L: M(2,2) \rightarrow P_{2}$ given by

$$
L(M)=\left(\begin{array}{ll}
1 & x
\end{array}\right) M\binom{1}{x}
$$

Hint: For some parts it may be useful to write $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and/or $p(x)=\alpha+\beta x+\gamma x^{2}$.
a. (3) Identify the domain of L, a basis for the domain, and the dimension of the domain.
b. (3) Identify the codomain of L, a basis for the codomain, and the dimension of the codomain.
c. (6) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.
d. (6) Identify the image of L, a basis for the image, and the dimension of the image.
e. (2) Is the function L one-to-one? Why?
f. (2) Is the function L onto? Why?
g. (2) Verify the dimensions in a, b, c and d agree with the Nullity-Rank Theorem.
h. (6) Find the matrix of L relative to the standard bases: (Call it A.)

$$
\begin{gathered}
e_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad e_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { for } M(2,2) \\
\text { and } E_{1}=1, \quad E_{2}=x, \quad E_{3}=x^{2} \text { for } P_{2}
\end{gathered}
$$

i. (6) Another basis for P_{2} is $F_{1}=1+x, \quad F_{2}=1+x^{2}, \quad F_{3}=x+x^{2}$. Find the change of basis matrices between the E and F bases. (Call them $\underset{F-E}{C}$ and $\underset{E+F}{C}$.) Be sure to identify which is which!
j. (6) Consider the polynomial $q=2+4 x$. Find $[q]_{E}$ and $[q]_{F}$, the components of q relative to the E and F bases, respectively. Check $[q]_{F}$.
k. (5) Find the matrix of L relative to the e basis for $M(2,2)$ and the F basis for P_{2}. (Call it B.)
I. (5) Find B by a second method.

F-e
m. (6) Consider the matrix $N=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Find $[N]_{E}$, the components of N relative to the E basis and $[L(N)]_{F}$, the components of $L(N)$ relative to the F basis. Use $[L(N)]_{F}$ to find $L(N)$?
n. (2) Recompute $L(N)$ using the definition of L.

