Name		ID				
			1	/10	4	/10
MATH 311	Exam 2	Fall 2001	2	/10	5	/60
Section 200		P. Yasskin	3	/10		

1. (10 points) Let P_1 be the vector space of polynomials of degree ≤ 1 . Suppose $L: P_1 \rightarrow \mathbf{R}$ is a linear map which satisfies

$$L(2+3t) = 1,$$
 $L(1+4t) = -2.$

Compute L(5-2t).

2. (10 points) Which of the following is not a subspace of $C^{1}[-1,1]$? Why?

$$P = \left\{ f \in C^{1}[-1,1] \mid f(-1) = f(1) \right\} \qquad Q = \left\{ f \in C^{1}[-1,1] \mid \frac{f(-1) + f(1)}{2} = f(0) \right\}$$
$$R = \left\{ f \in C^{1}[-1,1] \mid \int_{0}^{1} f(t) \, dt = 1 \right\} \qquad S = \left\{ f \in C^{1}[-1,1] \mid f'(0) = f(0) \right\}$$

3. (10 points) Duke Skywater is flying the Millennium Eagle through the Asteroid Belt. At the current time, his position is $\vec{r} = (4, -1, 2)$ and his velocity is $\vec{v} = (3, 2, -1)$. He measures that the electric field and its Jacobian are currently

$$\vec{E} = \begin{pmatrix} 12 \\ 2 \\ 9 \end{pmatrix}$$
 and $\vec{JE} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 3 \\ 1 & 2 & 9 \end{pmatrix}$.

Use a linear (affine) approximation to estimate what the electric field will be 2 sec from now.

4. (10 points) Let $L: \mathbb{R}^5 \to \mathbb{R}^4$ be a linear map whose matrix is A. If A is row reduced, one obtains the matrix

$\left(\right)$	1	3	0	0	2	
	0	0	1	0	-1	
	0	0	0	1	2	
	0	0	0	0	0	J

What is the dimension of the kernel of *L*? Be sure to explain why.

What is the dimension of the image of L?

5. (60 points) Let M(2,2) be the vector space of 2×2 matrices. Let P_2 be the vector space of polynomials of degree ≤ 2 . Consider the linear map $L: M(2,2) \rightarrow P_2$ given by

$$L(M) = (1 x)M \begin{pmatrix} 1 \\ x \end{pmatrix}$$

Hint: For some parts it may be useful to write $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and/or $p(x) = \alpha + \beta x + \gamma x^2$.

a. (3) Identify the domain of *L*, a basis for the domain, and the dimension of the domain.

- **b**. (3) Identify the codomain of *L*, a basis for the codomain, and the dimension of the codomain.
- c. (6) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.

d. (6) Identify the image of *L*, a basis for the image, and the dimension of the image.

- e. (2) Is the function *L* one-to-one? Why?
- f. (2) Is the function *L* onto? Why?
- g. (2) Verify the dimensions in a, b, c and d agree with the Nullity-Rank Theorem.
- **h**. (6) Find the matrix of *L* relative to the standard bases: (Call it *A*.) $_{E \leftarrow e}$

$$e_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad e_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ for } M(2,2)$$

and $E_{1} = 1, \quad E_{2} = x, \quad E_{3} = x^{2} \text{ for } P_{2}$

i. (6) Another basis for P_2 is $F_1 = 1 + x$, $F_2 = 1 + x^2$, $F_3 = x + x^2$. Find the change of basis matrices between the *E* and *F* bases. (Call them $\underset{F \leftarrow E}{C}$ and $\underset{E \leftarrow F}{C}$.) Be sure to identify which is which!

j. (6) Consider the polynomial q = 2 + 4x. Find $[q]_E$ and $[q]_F$, the components of q relative to the *E* and *F* bases, respectively. Check $[q]_F$.

k. (5) Find the matrix of *L* relative to the *e* basis for M(2,2) and the *F* basis for P_2 . (Call it $B_{F \leftarrow e}$.)

I. (5) Find $\underset{F \leftarrow e}{B}$ by a second method.

m. (6) Consider the matrix $N = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Find $[N]_E$, the components of *N* relative to the *E* basis and $[L(N)]_F$, the components of L(N) relative to the *F* basis. Use $[L(N)]_F$ to find L(N)?

n. (2) Recompute L(N) using the definition of *L*.