Name \qquad ID \qquad

Exam 2
Fall 2001
P. Yasskin

1	$/ 10$	4	$/ 10$
2	$/ 10$	5	$/ 60$
3	$/ 10$		

1. (10 points) Let P_{1} be the vector space of polynomials of degree ≤ 1. Suppose $L: P_{1} \rightarrow \mathbf{R}$ is a linear map which satisfies

$$
L(2+3 t)=1, \quad L(1+4 t)=-2 .
$$

Compute $L(5-2 t)$.

$$
\begin{aligned}
& 5-2 t=a(2+3 t)+b(1+4 t)=(2 a+b)+(3 a+4 b) t \\
& 2 a+b=5 \\
& 3 a+4 b=-2 \\
& \binom{a}{b}=\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
3
\end{array}\right)=\binom{5}{-2} \\
& 5-2 t=\frac{22}{5}(2+3 t)-\frac{19}{5}(1+4 t) \\
& L(5-2 t)=\frac{22}{5} L(2+3 t)-\frac{19}{5} L(1+4 t)=\frac{22}{5} 1-\frac{19}{5}(-2)=\frac{22+38}{5}=12
\end{aligned}
$$

2. (10 points) Which of the following is not a subspace of $C^{1}[-1,1]$? Why?

$$
\begin{gathered}
P=\left\{f \in C^{1}[-1,1] \mid f(-1)=f(1)\right\} \quad Q=\left\{f \in C^{1}[-1,1] \left\lvert\, \frac{f(-1)+f(1)}{2}=f(0)\right.\right\} \\
R=\left\{f \in C^{1}[-1,1] \mid \int_{0}^{1} f(t) d t=1\right\} \quad S=\left\{f \in C^{1}[-1,1] \mid f^{\prime}(0)=f(0)\right\}
\end{gathered}
$$

R is not a subspace because if $f, g \in R$, then $\int_{0}^{1} f(t) d t=1$ and $\int_{0}^{1} g(t) d t=1$ but $\int_{0}^{1}(f+g)(t) d t=2$. So $f+g \notin R$.
3. (10 points) Duke Skywater is flying the Millennium Eagle through the Asteroid Belt. At the current time, his position is $\vec{r}=(4,-1,2)$ and his velocity is $\vec{v}=(3,2,-1)$. He measures that the electric field and its Jacobian are currently

$$
\vec{E}=\left(\begin{array}{c}
12 \\
2 \\
9
\end{array}\right) \quad \text { and } \quad \overrightarrow{J E}=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 4 & 3 \\
1 & 2 & 9
\end{array}\right)
$$

Use a linear (affine) approximation to estimate what the electric field will be 2 sec from now.

$$
\begin{aligned}
\vec{E}(\vec{r}(t)) & \approx \vec{E}\left(\vec{r}\left(t_{0}\right)\right)+\vec{J} \cdot\left(\vec{r}(t)-\vec{r}\left(t_{0}\right)\right) \approx \vec{E}\left(\vec{r}\left(t_{0}\right)\right)+\overrightarrow{J E} \cdot \vec{v}\left(t_{0}\right)\left(t-t_{0}\right) \\
& \approx\left(\begin{array}{c}
12 \\
2 \\
9
\end{array}\right)+\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 4 & 3 \\
1 & 2 & 9
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)(2)=\left(\begin{array}{c}
12 \\
2 \\
9
\end{array}\right)+2\left(\begin{array}{c}
5 \\
5 \\
-2
\end{array}\right)=\left(\begin{array}{c}
22 \\
12 \\
5
\end{array}\right)
\end{aligned}
$$

4. (10 points) Let $L: R^{5} \rightarrow R^{4}$ be a linear map whose matrix is A. If A is row reduced, one obtains the matrix

$$
\left(\begin{array}{lllll}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

What is the dimension of the kernel of L ? What is the dimension of the image of L ? Be sure to explain why.
$\operatorname{Ker}(L)=\{X \mid A X=0\} \quad$ This has 2 free parameters since there are 2 columns without leading 1's. So $\operatorname{dim} \operatorname{Ker}(L)=2$.
$\operatorname{dim} \operatorname{Im}(L)=$ \# linearly independent columns = column rank = row rank $=$ \# linearly independent rows $=$ \# leading 1's $=3$.

It is OK to do one of these and then use the Nullity-Rank Theorem:
$\operatorname{dim} \operatorname{Ker}(L)+\operatorname{dim} \operatorname{Im}(L)=\operatorname{dim} \operatorname{Dom}(L)=5$.
5. (60 points) Let $M(2,2)$ be the vector space of 2×2 matrices. Let P_{2} be the vector space of polynomials of degree ≤ 2. Consider the linear map $L: M(2,2) \rightarrow P_{2}$ given by

$$
L(M)=\left(\begin{array}{ll}
1 & x
\end{array}\right) M\binom{1}{x}
$$

Hint: For some parts it may be useful to write $\quad M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and/or $p(x)=\alpha+\beta x+\gamma x^{2}$.
a. (3) Identify the domain of L, a basis for the domain, and the dimension of the domain.

$$
\operatorname{Dom}(L)=M(2,2) \quad \text { Basis_Dom }(L)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$ $\operatorname{dim} \operatorname{Dom}(L)=4$

b. (3) Identify the codomain of L, a basis for the codomain, and the dimension of the codomain.

$$
\operatorname{Codom}(L)=P_{2} \quad \text { Basis_Codom }(L)=\left\{1, x, x^{2}\right\} \quad \operatorname{dim} \operatorname{Codom}(L)=3
$$

c. (6) Identify the kernel of L, a basis for the kernel, and the dimension of the kernel.

$$
\begin{gathered}
L\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{x}=\left(\begin{array}{ll}
1 & x
\end{array}\right)\binom{a+b x}{c+d x}=a+(b+c) x+d x^{2} \\
\operatorname{Ker}(L)=\{M \mid L(M)=0\}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+(b+c) x+d x^{2}=0\right\}=\left\{\left(\begin{array}{ll}
0 & b \\
-b & 0
\end{array}\right)\right\} \\
=\operatorname{Span}\left\{\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)\right\} \quad \text { Basis_Ker }(L)=\left\{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\} \quad \operatorname{dim} \operatorname{Ker}(L)=1
\end{gathered}
$$

d. (6) Identify the image of L, a basis for the image, and the dimension of the image.

$$
\begin{aligned}
\operatorname{Im}(L)=\{L(M)\} & =\left\{a+(b+c) x+d x^{2}\right\}=\operatorname{Span}\left\{1, x, x^{2}\right\}=P_{2} \\
\quad \operatorname{Basis} \operatorname{Im}(L) & =\left\{1, x, x^{2}\right\} \quad \operatorname{dim} \operatorname{Im}(L)=3
\end{aligned}
$$

e. (2) Is the function L one-to-one? Why?
L is not one-to-one because $\operatorname{Ker}(L) \neq\{0\}$.
f. (2) Is the function L onto? Why?
L is onto because $\operatorname{Im}(L)=P_{2}=\operatorname{Codom}(L)$.
g. (2) Verify the dimensions in a, b, c and d agree with the Nullity-Rank Theorem.
$\operatorname{dim} \operatorname{Ker}(L)+\operatorname{dim} \operatorname{Im}(L)=\operatorname{dim} \operatorname{Dom}(L) \quad 1+3=4$
h. (6) Find the matrix of L relative to the standard bases: (Call it A.)

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad e_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { for } M(2,2) \\
& \text { and } E_{1}=1, \quad E_{2}=x, E_{3}=x^{2} \text { for } P_{2} \\
& L\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & x
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{x}=\left(\begin{array}{ll}
1 & x
\end{array}\right)\binom{a+b x}{c+d x}=a+(b+c) x+d x^{2} \\
& L\left(e_{1}\right)=1=E_{1} \\
& L\left(e_{2}\right)=x=E_{2} \\
& L\left(e_{3}\right)=x=E_{2} \\
& L(e 4)=x^{2}=E_{3}
\end{aligned} \quad A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

i. (6) Another basis for P_{2} is $F_{1}=1+x, \quad F_{2}=1+x^{2}, \quad F_{3}=x+x^{2}$. Find the change of basis matrices between the E and F bases. (Call them $\underset{F-E}{C}$ and $\underset{E \leftarrow F}{C}$.) Be sure to identify which is which!

$$
\begin{aligned}
& \begin{array}{l}
F_{1}=1+x=E_{1}+E_{2} \\
F_{2}=1+x^{2}=E_{1}+E_{3} \\
F_{3}=x+x^{2}=E_{2}+E_{3}
\end{array} \quad C=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{lll|lll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\substack{R_{2} \\
R_{3} \\
R_{1}}}\left(\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0
\end{array}\right) \xrightarrow{R_{3}-R_{1}-R_{2}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & -2 & 1 & -1 & -1
\end{array}\right) \\
& \xrightarrow{\frac{-1}{2} R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \xrightarrow{\substack{R_{1}-R_{3} \\
R_{2}-R_{3}}}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
0 & 1 & 0 & \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& \underset{F-E}{C=}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

j. (6) Consider the polynomial $q=2+4 x$. Find $[q]_{E}$ and $[q]_{F}$, the components of q relative to the E and F bases, respectively. Check $[q]_{F}$.
$q=2 E_{1}+4 E_{2} \quad[q]_{E}=\left(\begin{array}{l}2 \\ 4 \\ 0\end{array}\right) \quad[q]_{F}=\underset{F-E}{C}[q]_{E}=\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right)\left(\begin{array}{c}2 \\ 4 \\ 0\end{array}\right)=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$ $3 F_{1}-1 F_{2}+1 F_{3}=3(1+x)-1\left(1+x^{2}\right)+1\left(x+x^{2}\right)=2+4 x=q$
k. (5) Find the matrix of L relative to the e basis for $M(2,2)$ and the F basis for P_{2}. (Call it $\underset{F-e}{B}$.)

$$
\underset{F-e}{B}=\underset{F-E}{C} \quad \underset{E-e}{A}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

I. (5) Find B by a second method.

$$
\begin{aligned}
L\left(e_{1}\right)=1 & =a F_{1}+b F_{2}+c F_{3}=a(1+x)+b\left(1+x^{2}\right)+c\left(x+x^{2}\right)=\frac{1}{2}(1+x)+\frac{1}{2}\left(1+x^{2}\right)-\frac{1}{2}\left(x+x^{2}\right) \\
L\left(e_{2}\right)=x & =d F_{1}+e F_{2}+f F_{3}=d(1+x)+e\left(1+x^{2}\right)+f\left(x+x^{2}\right)=\frac{1}{2}(1+x)-\frac{1}{2}\left(1+x^{2}\right)+\frac{1}{2}\left(x+x^{2}\right) \\
L\left(e_{3}\right)=x & =d F_{1}+e F_{2}+f F_{3}=d(1+x)+e\left(1+x^{2}\right)+f\left(x+x^{2}\right)=\frac{1}{2}(1+x)-\frac{1}{2}\left(1+x^{2}\right)+\frac{1}{2}\left(x+x^{2}\right) \\
L(e 4)=x^{2} & =g F_{1}+h F_{2}+i F_{3}=g(1+x)+h\left(1+x^{2}\right)+i\left(x+x^{2}\right)=-\frac{1}{2}(1+x)+\frac{1}{2}\left(1+x^{2}\right)+\frac{1}{2}\left(x+x^{2}\right) \\
& \quad\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

m. (6) Consider the matrix $N=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Find $[N]_{e}$, the components of N relative to the e-basis and $[L(N)]_{F}$, the components of $L(N)$ relative to the F basis. Use $[L(N)]_{F}$ to find $L(N)$?

$$
\begin{aligned}
& N=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=1 e_{1}+2 e_{2}+3 e_{3}+4 e_{4} \quad[N]_{e}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \\
& {[L(N)]_{F}=\underset{F-e}{B}[N]_{e}=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
\frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
4
\end{array}\right)}
\end{aligned}
$$

$$
L(N)=1 F_{1}+4 F_{3}=1(1+x)+4\left(x+x^{2}\right)=1+5 x+4 x^{2}
$$

n. (2) Recompute $L(N)$ using the definition of L.

$$
L(N)=\left(\begin{array}{ll}
1 & x
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{1}{x}=1+5 x+4 x^{2}
$$

