Name \qquad ID. \qquad

Fall 2001
MATH 311
Exam 3
Section 200
P. Yasskin

1	$/ 35$
2	$/ 35$
3	$/ 30$

1. (35 points) Compute $\iint_{\partial C} \vec{F} \cdot d \vec{S}$ over the complete surface of the box

$$
0 \leq x \leq 2 \quad 0 \leq y \leq 3 \quad 0 \leq z \leq 4
$$

where $\vec{F}=\left(x^{2} y^{2} z^{3}, x y^{3} z^{3}, x y^{2} z^{4}\right)$.
2. (35 points) Consider the cone C given by

$$
z=\sqrt{x^{2}+y^{2}} \text { for } z \leq 4
$$

and the vector field $\vec{F}=(-y z, x z,-x y)$.
We want to compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}$ with

normal pointing up and into the cone.
a. (5) Compute $\vec{\nabla} \times \vec{F}$.
b. (10) Parametrize the cone using cylindrical coordinates r and θ as the parameters and give the range of the parameters. Then explicitly compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$.

RECALL: C is the cone $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 4$ with normal pointing up and into the cone and $\vec{F}=(-y z, x z,-x y)$.
c. (10) Describe 2 other ways to compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$. Be sure to name or quote any Theorem you use and discuss the orientation of any curves or surfaces.
i.
ii.
d. (10) Recompute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ by one of these two methods.
3. (30 points) A hypersurface S in \mathbf{R}^{4} with coordinates (w, x, y, z), may be parametrized by $(w, x, y, z)=\vec{R}(r, \theta, \varphi)=(r \cos \theta, r \sin \theta, r \cos \varphi, r \sin \varphi)$
for $0 \leq r \leq 3, \quad 0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq 2 \pi$.
a. (15) Find the tangent vectors, the normal vector and length of the normal vector.
$\vec{R}_{r}=$
$\vec{R}_{\theta}=$
$\vec{R}_{\varphi}=$
$\vec{N}=$
$|\vec{N}|=$
b. (5) Find the hyperarea of the hypersurface.
$A=$

RECALL: S is the hypersurface parametrized by

$$
(w, x, y, z)=\vec{R}(r, \theta, \varphi)=(r \cos \theta, r \sin \theta, r \cos \varphi, r \sin \varphi)
$$

for $0 \leq r \leq 3, \quad 0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq 2 \pi$.
c. (5) Compute $P=\iiint_{S} \sqrt{2 w^{2}+2 x^{2}} d S$ over the hypersurface.
d. (5) Compute $Q=\iiint_{S}(w d y d x d z-5 z d w d x d y)$ over the hypersurface.

