Name		_ ID		
			1	/35
MATH 311		Fall 2001	2	/35
Section 200		P. Yasskin	3	/30

1. (35 points) Compute $\iint_{\partial C} \vec{F} \cdot d\vec{S}$ over the complete surface of the box $0 \le x \le 2$ $0 \le y \le 3$ $0 \le z \le 4$ where $\vec{F} = (x^2y^2z^3, xy^3z^3, xy^2z^4)$.

2. (35 points) Consider the cone *C* given by

 $z = \sqrt{x^2 + y^2} \quad \text{for } z \le 4$ and the vector field $\vec{F} = (-yz, xz, -xy).$ We want to compute $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ with

normal pointing up and into the cone.

a. (5) Compute $\vec{\nabla} \times \vec{F}$.

b. (10) Parametrize the cone using cylindrical coordinates r and θ as the parameters and give the range of the parameters. Then explicitly compute $\iint \vec{\nabla} \times \vec{F} \cdot d\vec{S}$.

RECALL: *C* is the cone $z = \sqrt{x^2 + y^2}$ for $z \le 4$ with normal pointing up and into the cone and $\vec{F} = (-yz, xz, -xy)$.

c. (10) Describe 2 other ways to compute $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$. Be sure to name or quote any Theorem you use and discuss the orientation of any curves or surfaces.

i.

ii.

d. (10) Recompute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ by **one** of these two methods.

3. (30 points) A hypersurface *S* in \mathbf{R}^4 with coordinates (w, x, y, z), may be parametrized by $(w, x, y, z) = \vec{R}(r, \theta, \varphi) = (r \cos \theta, r \sin \theta, r \cos \varphi, r \sin \varphi)$

for $0 \le r \le 3$, $0 \le \theta \le 2\pi$ and $0 \le \varphi \le 2\pi$.

a. (15) Find the tangent vectors, the normal vector and length of the normal vector.

$$\vec{R}_r =$$

 $\vec{R}_{ heta} =$
 $\vec{R}_{arphi} =$
 $\vec{N} =$

 $\left| \overrightarrow{N} \right| =$

b. (5) Find the hyperarea of the hypersurface.

$$A =$$

RECALL: S is the hypersurface parametrized by

 $(w, x, y, z) = \vec{R}(r, \theta, \varphi) = (r \cos \theta, r \sin \theta, r \cos \varphi, r \sin \varphi)$ for $0 \le r \le 3$, $0 \le \theta \le 2\pi$ and $0 \le \varphi \le 2\pi$.

c. (5) Compute $P = \iiint_{S} \sqrt{2w^2 + 2x^2} \, dS$ over the hypersurface.

d. (5) Compute $Q = \iiint_{S} (w dy dx dz - 5z dw dx dy)$ over the hypersurface.