Name \qquad ID \qquad

Fall 2001
P. Yasskin

1	$/ 35$
2	$/ 35$
3	$/ 30$

1. (35 points) Compute $\iint_{\partial C} \vec{F} \cdot d \vec{S}$ over the complete surface of the box

$$
0 \leq x \leq 2 \quad 0 \leq y \leq 3 \quad 0 \leq z \leq 4
$$

where $\vec{F}=\left(x^{2} y^{2} z^{3}, x y^{3} z^{3}, x y^{2} z^{4}\right)$.
$\nabla \cdot \vec{F}=\nabla \cdot\left(x^{2} y^{2} z^{3}, x y^{3} z^{3}, x y^{2} z^{4}\right)=2 x y^{2} z^{3}+3 x y^{2} z^{3}+4 x y^{2} z^{3}=9 x y^{2} z^{3}$
By Gauss' Theorem

$$
\begin{aligned}
\iint_{\partial C} \vec{F} \cdot d \vec{S} & =\iiint_{C} \vec{\nabla} \cdot F d V=\int_{0}^{4} \int_{0}^{3} \int_{0}^{2} 9 x y^{2} z^{3} d x d y d z=9\left[\frac{x^{2}}{2}\right]_{0}^{2}\left[\frac{y^{3}}{3}\right]_{0}^{3}\left[\frac{z^{4}}{4}\right]_{0}^{4} \\
& =9 \cdot 2 \cdot 9 \cdot 64=10368
\end{aligned}
$$

2. (35 points) Consider the cone C given by

$$
z=\sqrt{x^{2}+y^{2}} \text { for } z \leq 4
$$

and the vector field $\vec{F}=(-y z, x z,-x y)$.
We want to compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}$ with
normal pointing up and into the cone.
a. (5) Compute $\vec{\nabla} \times \vec{F}$.

$$
\vec{\nabla} \times(-y z, x z, x y)=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
-y z & x z & -x y
\end{array}\right|=(-2 x, 0,2 z)
$$

b. (10) Parametrize the cone using cylindrical coordinates r and θ as the parameters and give the range of the parameters. Then explicitly compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}$.
$\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$ with $0 \leq r \leq 4, \quad 0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
& \vec{R}_{r}=\left(\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \widehat{\mathbf{k}} \\
\vec{R}_{\theta}=\left(\begin{array}{cc}
\cos \theta, & \sin \theta, \\
-r \sin \theta, & r \cos \theta,
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

$\vec{N}=\vec{R}_{r} \times \vec{R}_{\theta}=(-r \cos \theta,-r \sin \theta, r) \quad$ which points up and in.
$\vec{\nabla} \times \vec{F}=(-2 x, 0,2 z)=(-2 r \cos \theta, 0,2 r)$
$\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\iint_{C} \vec{\nabla} \times \vec{F} \cdot \vec{N} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{4}\left(2 r^{2} \cos ^{2} \theta+2 r^{2}\right) d r d \theta$
$=\left.2 \frac{r^{3}}{3}\right|_{0} ^{4} \int_{0}^{2 \pi}\left(\cos ^{2} \theta+1\right) d \theta=\frac{128}{3}(\pi+2 \pi)=128 \pi$

RECALL: C is the cone $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 4$ with normal pointing up and into the cone and $\vec{F}=(-y z, x z,-x y)$.
c. (10) Describe 2 other ways to compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$. Be sure to name or quote any Theorem you use and discuss the orientation of any curves or surfaces.
i. By Stokes' Theorem, $\iint_{C} \vec{\nabla} \times \vec{F} \cdot \vec{S}=\int_{\partial C} \vec{F} \cdot d \vec{s}$ where ∂C is the circle $x^{2}+y^{2}=16$ and $z=4$ traversed counterclockwise.
ii. By Stokes' Theorem again, $\int_{\partial C} \vec{F} \cdot \overrightarrow{d s}=\iint_{D} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ where D is the disk $x^{2}+y^{2} \leq 16$ and $z=4$ with normal pointing up.
d. (10) Recompute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}$ by one of these two methods.
i. $\vec{r}(t)=(4 \cos \theta, 4 \sin \theta, 4)$

$$
\vec{v}(t)=(-4 \sin \theta, 4 \cos \theta, 0)
$$

$$
\vec{F}=(-y z, x z,-x y)=(-16 \sin \theta, 16 \cos \theta,-16 \sin \theta \cos \theta)
$$

$$
\int_{\partial C} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F} \cdot \vec{v} d \theta=\int_{0}^{2 \pi}\left(64 \sin ^{2} \theta+64 \cos ^{2} \theta\right) d \theta=128 \pi
$$

OR
ii. We parametrize the disk D.

$$
\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 4) \quad \text { with } 0 \leq r \leq 4, \quad 0 \leq \theta \leq 2 \pi
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\vec{R}_{r}=\left(\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \widehat{\mathbf{k}} \\
\cos \theta, & \sin \theta, & 0
\end{array}\right)
\end{array} \\
& \vec{R}_{\theta}=\left(\begin{array}{ll}
-r \sin \theta, & r \cos \theta,
\end{array} 0\right) \\
& \vec{N}=\vec{R}_{r} \times \vec{R}_{\theta}=(0,0, r) \quad \text { which points up. } \\
& \vec{\nabla} \times \vec{F}=(-2 x, 0,2 z)=(-2 r \cos \theta, 0,8) \\
& \iint_{D} \vec{\nabla} \times \vec{F} \cdot \overrightarrow{d S}=\iint_{D} \vec{\nabla} \times \vec{F} \cdot \vec{N} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{4}(8 r) d r d \theta=2 \pi\left[4 r^{2}\right]_{0}^{4}=128 \pi
\end{aligned}
$$

3. (30 points) A hypersurface S in \mathbf{R}^{4} with coordinates (w, x, y, z), may be parametrized by

$$
(w, x, y, z)=\vec{R}(r, \theta, \varphi)=(r \cos \theta, r \sin \theta, r \cos \varphi, r \sin \varphi)
$$

for $0 \leq r \leq 3, \quad 0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq 2 \pi$.
a. (15) Find the tangent vectors, the normal vector and length of the normal vector.

$$
\begin{aligned}
& \begin{array}{lll}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}
\end{array} \\
& \vec{R}_{r}=(\quad \cos \theta, \quad \sin \theta, \quad \cos \varphi, \quad \sin \varphi \quad) \\
& \vec{R}_{\theta}=\left(\begin{array}{rrr}
-r \sin \theta, & r \cos \theta, & 0,
\end{array}\right) \\
& \vec{R}_{\varphi}=(\quad 0, \quad 0, \quad-r \sin \varphi, r \cos \varphi) \\
& \vec{N}=\widehat{\mathbf{i}}\left|\begin{array}{ccc}
\sin \theta & \cos \varphi & \sin \varphi \\
r \cos \theta & 0 & 0 \\
0, & -r \sin \varphi & r \cos \varphi
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{ccc}
\cos \theta & \cos \varphi & \sin \varphi \\
-r \sin \theta & 0 & 0 \\
0 & -r \sin \varphi & r \cos \varphi
\end{array}\right| \\
& +\widehat{\mathbf{k}}\left|\begin{array}{ccc}
\cos \theta & \sin \theta & \sin \varphi \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & r \cos \varphi
\end{array}\right|-\hat{\boldsymbol{I}}\left|\begin{array}{ccc}
\cos \theta & \sin \theta & \cos \varphi \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & -r \sin \varphi
\end{array}\right| \\
& =\widehat{\mathbf{i}}\left[-r \cos \theta\left(r \cos ^{2} \varphi+r \sin ^{2} \varphi\right)\right]-\widehat{\mathbf{j}}\left[r \sin \theta\left(r \cos ^{2} \varphi+r \sin ^{2} \varphi\right)\right] \\
& +\widehat{\mathbf{k}}\left[r \cos \varphi\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)\right]-\hat{\mathbf{I}}\left[-r \sin \varphi\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)\right] \\
& =\left(-r^{2} \cos \theta,-r^{2} \sin \theta, r^{2} \cos \varphi, r^{2} \sin \varphi\right) \\
& |\vec{N}|=\sqrt{\left(-r^{2} \cos \theta\right)^{2}+\left(-r^{2} \sin \theta\right)^{2}+\left(r^{2} \cos \varphi\right)^{2}+\left(r^{2} \sin \varphi\right)^{2}}=\sqrt{2 r^{4}}=r^{2} \sqrt{2}
\end{aligned}
$$

b. (5) Find the hyperarea of the hypersurface.

$$
A=\iiint_{S}|\vec{N}| d r d \theta d \varphi=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{3} r^{2} \sqrt{2} d r d \theta d \varphi=\left.(2 \pi)^{2} \sqrt{2} \frac{r^{3}}{3}\right|_{0} ^{3}=36 \pi^{2} \sqrt{2}
$$

RECALL: S is the hypersurface parametrized by

$$
(w, x, y, z)=\vec{R}(r, \theta, \varphi)=(r \cos \theta, r \sin \theta, r \cos \varphi, r \sin \varphi)
$$

for $0 \leq r \leq 3,0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq 2 \pi$.
c. (5) Compute $P=\iiint_{S} \sqrt{2 w^{2}+2 x^{2}} d S$ over the hypersurface.

$$
P=\iiint_{S} \sqrt{2 r^{2}}|\vec{N}| d r d \theta d \varphi=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{3} 2 r^{3} d r d \theta d \varphi=\left.(2 \pi)^{2} 2 \frac{r^{4}}{4}\right|_{0} ^{3}=162 \pi^{2}
$$

d. (5) Compute $Q=\iiint_{S}(w d y d x d z-5 z d w d x d y)$ over the hypersurface.
$Q=\iiint_{S}\left[(r \cos \theta) \frac{\partial(y, x, z)}{\partial(r, \theta, \varphi)}-5(r \sin \varphi) \frac{\partial(w, x, y)}{\partial(r, \theta, \varphi)}\right] d r d \theta d \varphi$ $\frac{\partial(y, x, z)}{\partial(r, \theta, \varphi)}=-\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)}=-N_{1}=r^{2} \cos \theta \quad \frac{\partial(w, x, y)}{\partial(r, \theta, \varphi)}=-N_{4}=-r^{2} \sin \varphi$
$Q=\iiint_{S}\left[(r \cos \theta)\left(r^{2} \cos \theta\right)-5(r \sin \varphi)\left(-r^{2} \sin \varphi\right)\right] d r d \theta d \varphi$
$=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{3}\left[r^{3} \cos ^{2} \theta+5 r^{3} \sin ^{2} \varphi\right] d r d \theta d \varphi=\left.2 \pi \frac{r^{4}}{4}\right|_{0} ^{3}\left[\int_{0}^{2 \pi} \cos ^{2} \theta d \theta+5 \int_{0}^{2 \pi} \sin ^{2} \varphi d \varphi\right]$
$=\pi \frac{81}{2}(\pi+5 \pi)=243 \pi^{2}$

