Name \qquad ID. \qquad

Final Exam
Fall 2001
MATH 311
Solutions
P. Yasskin

1	$/ 10$	4	$/ 20$
2	$/ 20$	$5-7$	$/ 30$
3	$/ 20$		

1. (10 points) Let P_{2}^{0} be the subset of P_{2} consisting of those polynomials of degree 2 or less whose constant term is zero. In particular

$$
P_{2}^{0}=\left\{p=a x+b x^{2}\right\}
$$

a. (8) Show P_{2}^{0} is a subspace of P_{2}.

Let $p, q \in P_{2}^{0}$. Then $p=a x+b x^{2}$ and $q=c x+d x^{2}$. So $p+q=(a+c) x+(b+d) x^{2} \in P_{2}^{0}$. Further $k p=(k a) x+(k b) x^{2} \in P_{2}^{0}$. So P_{2}^{0} is closed under addition and scalar multiplication and so is a subspace.
b. (2) What is the dimension of P_{2}^{0} ? Why?
$\operatorname{dim} P_{2}^{0}=2$ because a basis is $\left\{x, x^{2}\right\}$ which has 2 vectors.
2. (20 points) Again let P_{2}^{0} be the subset of P_{2} consisting of those polynomials of degree 2 or less whose constant term is zero. Consider the function $\langle *, *\rangle$ of two polynomials given by

$$
\langle p, q\rangle=\int_{0}^{1} \frac{4 p q}{x^{2}} d x
$$

a. (5) Show the function $\langle *, *\rangle$ is an inner product on P_{2}^{0}.
i. symmetric: $\langle q, p\rangle=\int_{0}^{1} \frac{4 q p}{x^{2}} d x=\int_{0}^{1} \frac{4 p q}{x^{2}} d x=\langle p, q\rangle$
ii. bilinear: $\langle p, a q+b r\rangle=\int_{0}^{1} \frac{4 p(a q+b r)}{x^{2}} d x=a \int_{0}^{1} \frac{4 p q}{x^{2}} d x+b \int_{0}^{1} \frac{4 p r}{x^{2}} d x=a\langle p, q\rangle+b\langle p, r\rangle$
iii. positive definite: $\langle p, p\rangle=\int_{0}^{1} \frac{4 p^{2}}{x^{2}} d x \geq 0$ because the integral of a non-negative quantity is non-negative.
If $\langle p, p\rangle=\int_{0}^{1} \frac{4 p^{2}}{x^{2}} d x=0$, then $\frac{4 p^{2}}{x^{2}}=0$, or $p=0$.
b. (10) Apply the Gram Schmidt procedure to the basis $p_{1}=x, p_{2}=x^{2}$ to produce an orthogonal basis q_{1}, q_{2} and an orthonormal basis r_{1}, r_{2}.
$q_{1}=p_{1}=x$
$\left\langle q_{1}, q_{1}\right\rangle=\int_{0}^{1} \frac{4 q_{1}^{2}}{x^{2}} d x=\int_{0}^{1} \frac{4 x^{2}}{x^{2}} d x=\int_{0}^{1} 4 d x=\left.4 x\right|_{0} ^{1}=4$
$\left|q_{1}\right|=2$
$r_{1}=\frac{q_{1}}{\left|q_{1}\right|}=\frac{x}{2}$
$\left\langle p_{2}, q_{1}\right\rangle=\int_{0}^{1} \frac{4 p_{2} q_{1}}{x^{2}} d x=\int_{0}^{1} \frac{4 x^{2} x}{x^{2}} d x=\int_{0}^{1} 4 x d x=\left.2 x^{2}\right|_{0} ^{1}=2$
$q_{2}=p_{2}-\frac{\left\langle p_{2}, q_{1}\right\rangle}{\left\langle q_{1}, q_{1}\right\rangle} q_{1}=x^{2}-\frac{2}{4} x=x^{2}-\frac{x}{2}$
$\left\langle q_{2}, q_{2}\right\rangle=\int_{0}^{1} \frac{4 q_{2}^{2}}{x^{2}} d x=\int_{0}^{1} \frac{4\left(x^{2}-\frac{x}{2}\right)^{2}}{x^{2}} d x=\int_{0}^{1} 4\left(x-\frac{1}{2}\right)^{2} d x=\left.\frac{4\left(x-\frac{1}{2}\right)^{3}}{3}\right|_{0} ^{1}=\frac{1}{6}-\frac{-1}{6}=\frac{1}{3}$
$\left|q_{2}\right|=\frac{1}{\sqrt{3}}$
$r_{2}=\frac{q_{2}}{\left|q_{2}\right|}=\sqrt{3}\left(x^{2}-\frac{x}{2}\right)$
Summary:

$$
q_{1}=x, \quad q_{2}=x^{2}-\frac{x}{2} \quad r_{1}=\frac{x}{2}, \quad r_{2}=\sqrt{3}\left(x^{2}-\frac{x}{2}\right)
$$

c. (5) Find the change of basis matrices $\underset{r \leftarrow p}{C}$ and $\underset{p \leftarrow r}{C}$.

$$
\begin{aligned}
& r_{1}=\frac{x}{2} \\
& r_{2}=\sqrt{3}\left(x^{2}-\frac{x}{2}\right)=-\frac{1}{2} p_{1}+0 p_{2} \\
& \underset{r \leftarrow p}{C} p_{1}+\sqrt{3} p_{2}
\end{aligned} \quad \underset{p \leftarrow r}{C^{-1}}=\frac{1}{\frac{\sqrt{3}}{2}}\left(\begin{array}{cc}
\sqrt{3} & \frac{\sqrt{3}}{2} \\
0 & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{2} \\
0 \\
0 & 1 \\
0 & \frac{1}{\sqrt{3}}
\end{array}\right) .
$$

3. (20 points) Again let P_{2}^{0} be the subset of P_{2} consisting of those polynomials of degree 2 or less whose constant term is zero. Consider the function $L: P_{2}^{0} \rightarrow P_{2}$ given by

$$
L(p)=p-\frac{d p}{d x}
$$

a. (4) Show the function L is linear.
$L(a p+b q)=(a p+b q)-\frac{d(a p+b q)}{d x}=a\left(p-\frac{d p}{d x}\right)+b\left(q-\frac{d q}{d x}\right)=a L(p)+b L(q)$
b. (6) Find the kernel of L. Give a basis.

Let $p=a x+b x^{2}$. Then $L(p)=0$ says
$\left(a x+b x^{2}\right)-\frac{d\left(a x+b x^{2}\right)}{d x}=\left(a x+b x^{2}\right)-(a+2 b x)=(-a)+(a-2 b) x+b x^{2}=0$.
This implies $a=b=0$, and so $p=0$.
Therefore $\operatorname{Ker}(L)=\{0\}$. There is no basis.
c. (6) Find the image of L. Give a basis.
$L(p)=\left(a x+b x^{2}\right)-\frac{d\left(a x+b x^{2}\right)}{d x}=\left(a x+b x^{2}\right)-(a+2 b x)=a(x-1)+b\left(x^{2}-2 x\right)$
Therefore $\operatorname{Im}(L)=\left\{a(x-1)+b\left(x^{2}-2 x\right)\right\}=\operatorname{Span}\left(x-1, x^{2}-2 x\right)$
Basis is $\left\{x-1, x^{2}-2 x\right\}$.
d. (2) Is L onto? Why?
L is not onto because $\operatorname{Codom}(L)=P_{2}$ while $\operatorname{Im}(L)=\operatorname{Span}\left(x-1, x^{2}-2 x\right) \neq P_{2}$
e. (2) Is L one-to-one? Why?
L is one-to-one because $\operatorname{Ker}(L)=\{0\}$.
4. (20 points) Again let P_{2}^{0} be the subset of P_{2} consisting of those polynomials of degree 2 or less whose constant term is zero. Again consider the function $L: P_{2}^{0} \rightarrow P_{2}$ given by

$$
L(p)=p-\frac{d p}{d x} .
$$

a. (10) Find the matrix of L relative to the bases

$$
p_{1}=x, \quad p_{2}=x^{2} \quad \text { for } P_{2}^{0} \quad \text { and } \quad e_{1}=1, \quad e_{2}=x, \quad e_{3}=x^{2} \quad \text { for } P_{2} .
$$

Call it A.

$$
\left.\begin{array}{ll}
L\left(p_{1}\right)=L(x)=x-\frac{d x}{d x}=x-1=-e_{1}+e_{2} & A=\left(\begin{array}{cc}
-1 & 0 \\
1 & -2 \\
L\left(p_{2}\right)=L\left(x^{2}\right)=x^{2}-\frac{d x^{2}}{d x}=x^{2}-2 x=-2 e_{2}+e_{3}
\end{array} \quad e \leftarrow p\right.
\end{array}\right)
$$

b. (5) Find the matrix of L relative to the bases

$$
r_{1}, r_{2} \text { for } P_{2}^{0} \quad \text { and } \quad e_{1}=1, \quad e_{2}=x, \quad e_{3}=x^{2} \text { for } P_{2}
$$

where r_{1}, r_{2} is the orthonormal basis you found in problem 2. Call it B.

$$
\underset{e \leftarrow r}{B}=\underset{e \prec-p}{A} \underset{p \leftarrow r}{C}=\left(\begin{array}{cc}
-1 & 0 \\
1 & -2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
0 & \sqrt{3}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{1}{2} & -\frac{5 \sqrt{3}}{2} \\
0 & \sqrt{3}
\end{array}\right)
$$

c. (5) Recompute B by another method.

$$
\begin{aligned}
L\left(r_{1}\right) & =L\left(\frac{x}{2}\right)=\frac{x}{2}-\frac{d \frac{x}{2}}{d x}=\frac{x}{2}-\frac{1}{2}=-\frac{1}{2} e_{1}+\frac{1}{2} e_{2} \\
L\left(r_{2}\right) & =L\left(\sqrt{3}\left(x^{2}-\frac{x}{2}\right)\right)=\sqrt{3}\left(x^{2}-\frac{x}{2}\right)-\frac{d \sqrt{3}\left(x^{2}-\frac{x}{2}\right)}{d x} \\
& =\sqrt{3}\left(x^{2}-\frac{x}{2}\right)-\sqrt{3}\left(2 x-\frac{1}{2}\right)=\frac{\sqrt{3}}{2} e_{1}-\frac{5 \sqrt{3}}{2} e_{2}+\sqrt{3} e_{3}
\end{aligned} \quad \begin{array}{cc}
e \leftarrow r
\end{array} \quad\left(\begin{array}{rc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{1}{2} & -\frac{5 \sqrt{3}}{2} \\
0 & \sqrt{3}
\end{array}\right)
$$

5. (30 points) Do this problem, if you did the Volume of Desserts or Planet X Project.

Find the z-component of the center of mass of the apple whose surface is given in spherical coordinates by

$$
\rho=1-\cos \varphi
$$

and whose density is 1 .
HINT: The φ-integrals can be done using the substitution

$$
u=1-\cos \varphi .
$$

$\begin{array}{ll}x=\rho \sin \varphi \cos \theta \\ y=\rho \sin \varphi \sin \theta \\ z=\rho \cos \varphi & d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta\end{array} \quad \begin{aligned} & u=1-\cos \varphi \\ & d u=\sin \varphi d \varphi\end{aligned}$

$$
\begin{aligned}
M= & \iiint 1 d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1-\cos \varphi} \rho^{2} \sin \varphi d \rho d \varphi d \theta=2 \pi \int_{0}^{\pi}\left[\frac{\rho^{3}}{3}\right]_{0}^{1-\cos \varphi} \sin \varphi d \varphi \\
& =\frac{2 \pi}{3} \int_{0}^{\pi}(1-\cos \varphi)^{3} \sin \varphi d \varphi=\left.\frac{2 \pi}{3} \frac{(1-\cos \varphi)^{4}}{4}\right|_{0} ^{\pi}=\frac{2 \pi}{3} \frac{(2)^{4}}{4}=\frac{8 \pi}{3}
\end{aligned}
$$

$$
z-m o m=\iiint z d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1-\cos \varphi} \rho \cos \varphi \rho^{2} \sin \varphi d \rho d \varphi d \theta=2 \pi \int_{0}^{\pi}\left[\frac{\rho^{4}}{4}\right]_{0}^{1-\cos \varphi} \cos \varphi \sin \varphi d \varphi
$$

$$
=\frac{\pi}{2} \int_{0}^{\pi}(1-\cos \varphi)^{4} \cos \varphi \sin \varphi d \varphi=\frac{\pi}{2} \int_{0}^{2} u^{4}(1-u) d u=\frac{\pi}{2}\left[\frac{u^{5}}{5}-\frac{u^{6}}{6}\right]_{0}^{2}=\frac{\pi}{2}\left[\frac{2^{5}}{5}-\frac{2^{6}}{6}\right]
$$

$$
=\frac{2^{5} \pi}{2}\left[\frac{1}{5}-\frac{1}{3}\right]=2^{4} \pi \frac{3-5}{15}=-\frac{32 \pi}{15}
$$

$$
\bar{z}=\frac{z-m o m}{M}=-\frac{32 \pi}{15} \frac{3}{8 \pi}=-\frac{4}{5}
$$

6. (30 points) Do this problem, if you did the Interpretation of Div and Curl Project.

Find the divergence of the vector field $\vec{F}=\left(x z^{2}, y z^{2}, 0\right)$ at the point $(x, y, z)=(0,0, c)$.
a. by using the derivative defintion:

$$
\vec{\nabla} \cdot \vec{F}=z^{2}+z^{2}=\left.2 z^{2} \quad \vec{\nabla} \cdot \vec{F}\right|_{(0,0, c)}=2 c^{2}
$$

b. by using the integral definition:

HINTS: For a sphere of radius ρ centered at (a, b, c), if you use standard spherical coordinates, the normal vector is

$$
\vec{N}=\left(\rho^{2} \sin ^{2} \varphi \cos \theta, \rho^{2} \sin ^{2} \varphi \sin \theta, \rho^{2} \cos \varphi \sin \varphi\right)
$$

The φ-integral can be done using the substitution $u=\cos \varphi$.
You can ignore terms in the integral proportional to ρ^{n} with $n>3$ since they drop out of the limit.
$\left.\vec{\nabla} \cdot \vec{F}\right|_{(0,0, c)}=\lim _{\rho \rightarrow 0} \frac{3}{4 \pi \rho^{3}} \iint \vec{F} \cdot d \vec{S}$
where the integral is over the sphere of radius ρ centered at $(0,0, c)$.
$\vec{\sim} \underset{\sim}{\vec{R}}(\varphi, \theta)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, c+\rho \cos \varphi)$
$\vec{N}=\left(\rho^{2} \sin ^{2} \varphi \cos \theta, \rho^{2} \sin ^{2} \varphi \sin \theta, \rho^{2} \cos \varphi \sin \varphi\right) \quad$ (Given)
$\vec{F}=\left(x z^{2}, y z^{2}, 0\right)=\left(\rho \sin \varphi \cos \theta(c+\rho \cos \varphi)^{2}, \rho \sin \varphi \sin \theta(c+\rho \cos \varphi)^{2}, 0\right)$
$\vec{F} \cdot \vec{N}=\rho^{2} \sin ^{2} \varphi \cos \theta \rho \sin \varphi \cos \theta(c+\rho \cos \varphi)^{2}+\rho^{2} \sin ^{2} \varphi \sin \theta \rho \sin \varphi \sin \theta(c+\rho \cos \varphi)^{2}$ $=\rho^{3} \sin ^{3} \varphi(c+\rho \cos \varphi)^{2}$
$\iint \vec{F} \cdot \overrightarrow{d S}=\int_{0}^{\pi} \int_{0}^{2 \pi} \vec{F} \cdot \vec{N} d \theta d \varphi=\int_{0}^{\pi} \int_{0}^{2 \pi} \rho^{3} \sin ^{3} \varphi(c+\rho \cos \varphi)^{2} d \theta d \varphi=2 \pi \rho^{3} \int_{0}^{\pi} \sin ^{3} \varphi(c+\rho \cos \varphi)^{2} d \varphi$
Drop terms of order greater than ρ^{3} :

$$
\begin{aligned}
& \iint \vec{F} \cdot d \vec{S} \approx 2 \pi \rho^{3} \int_{0}^{\pi} c^{2} \sin ^{3} \varphi d \varphi=2 \pi \rho^{3} c^{2} \int_{0}^{\pi}\left(1-\cos ^{2} \varphi\right) \sin \varphi d \varphi \quad u=\cos \varphi \quad d u=-\sin \varphi d \varphi \\
& \iint \vec{F} \cdot d \vec{S} \approx-2 \pi \rho^{3} c^{2} \int_{1}^{-1}\left(1-u^{2}\right) d u=-2 \pi \rho^{3} c^{2}\left[u-\frac{u^{3}}{3}\right]_{1}^{-1}=-2 \pi \rho^{3} c^{2}\left[-\frac{2}{3}\right]+2 \pi \rho^{3} c^{2}\left[\frac{2}{3}\right]=\frac{8 \pi \rho^{3} c^{2}}{3} \\
& \left.\vec{\nabla} \cdot \vec{F}\right|_{(0,0, c)}=\lim _{\rho \rightarrow 0} \frac{3}{4 \pi \rho^{3}}\left(\frac{8 \pi \rho^{3} c^{2}}{3}\right)=2 c^{2}
\end{aligned}
$$

7. (30 points) Do this problem, if you did the Gauss' and Ampere's Laws Project.

Find the total charge in the cylinder $x^{2}+y^{2} \leq a^{2}, \quad 0 \leq z \leq 1 \quad$ if the electric field is

$$
\vec{E}=\frac{\hat{r}}{r}=\frac{\vec{r}}{r^{2}}=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}, 0\right)
$$

where $\vec{r}=(x, y, 0)$ and $r=\sqrt{x^{2}+y^{2}}$.
a. using the derivative form of Gauss' Law.

$$
\begin{aligned}
\rho & =\frac{1}{4 \pi} \vec{\nabla} \cdot \vec{E}=\frac{1}{4 \pi}\left[\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)+\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right)\right] \\
& =\frac{1}{4 \pi}\left[\frac{\left(x^{2}+y^{2}\right)-x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{\left(x^{2}+y^{2}\right)-y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}\right] \\
& =\frac{1}{4 \pi}\left[\frac{2\left(x^{2}+y^{2}\right)-2 x^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right]=0 \\
Q & =\iiint_{C} \rho d V=0
\end{aligned}
$$

b. using the integral form of Gauss' Law.
$4 \pi Q=\iint_{\partial C} \vec{E} \cdot d \vec{S}=\iint_{\text {top }} \vec{E} \cdot d \vec{S}+\iint_{\text {bottom }} \vec{E} \cdot d \vec{S}+\iint_{\text {sides }} \vec{E} \cdot d \vec{S}$
On the ends of the cylinder, the normal is $\vec{N}= \pm \hat{k}$ while \vec{E} is horizontal. So $\vec{E} \cdot \vec{N}=0$ and $\iint_{\text {top }} \vec{E} \cdot \overrightarrow{d S}=\iint_{\text {bottom }} \vec{E} \cdot \overrightarrow{d S}=0$
The sides are parametrized by $R(\theta, z)=(a \cos \theta, a \sin \theta, z)$.

$$
\begin{aligned}
& \vec{R}_{\theta}=(-a \sin \theta, a \cos \theta, 0) \quad \vec{N}=\vec{R}_{\theta} \times \vec{R}_{z}=(a \cos \theta, a \sin \theta, 0) \\
& \vec{R}_{z}=(0, \quad 0, \quad 1) \\
& \vec{E}=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}, 0\right)=\left(\frac{a \cos \theta}{a^{2}}, \frac{a \sin \theta}{a^{2}}, 0\right)=\left(\frac{\cos \theta}{a}, \frac{\sin \theta}{a}, 0\right) \\
& \vec{E} \cdot \vec{N}=\cos ^{2} \theta+\sin ^{2} \theta=1 \\
& 4 \pi Q=\iint_{\text {sides }} \vec{E} \cdot d \vec{S}=\iint \vec{E} \cdot \vec{N} d \theta d z=\int_{0}^{1} \int_{0}^{2 \pi} 1 d \theta d z=2 \pi \quad Q=\frac{1}{2}
\end{aligned}
$$

c. What do these results tell you about the location of the electric charge? Why?

Part (a) says $\rho=0$. So there is no charge wherever \vec{E} and $\vec{\nabla} \cdot \vec{E}$ are defined which is everywhere but $r=0$ which is the z-axis. However, part (b) says $Q=\frac{1}{2}$. So there must be charge along the z-axis.

