Name		ID				
			1	/10	4	/20
MATH 311	Final Exam	Fall 2001	2	/20	5-7	/30
Section 200	Solutions	P. Yasskin	3	/20		

1. (10 points) Let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. In particular

$$P_2^0 = \{p = ax + bx^2\}$$

a. (8) Show P_2^0 is a subspace of P_2 .

Let $p, q \in P_2^0$. Then $p = ax + bx^2$ and $q = cx + dx^2$. So $p + q = (a + c)x + (b + d)x^2 \in P_2^0$. Further $kp = (ka)x + (kb)x^2 \in P_2^0$. So P_2^0 is closed under addition and scalar multiplication and so is a subspace.

b. (2) What is the dimension of P_2^0 ? Why?

dim $P_2^0 = 2$ because a basis is $\{x, x^2\}$ which has 2 vectors.

2. (20 points) Again let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. Consider the function $\langle *, * \rangle$ of two polynomials given by

$$\langle p,q\rangle = \int_0^1 \frac{4pq}{x^2} \, dx$$

a. (5) Show the function $\langle *, * \rangle$ is an inner product on P_2^0 .

i. symmetric:
$$\langle q,p \rangle = \int_0^1 \frac{4qp}{x^2} dx = \int_0^1 \frac{4pq}{x^2} dx = \langle p,q \rangle$$

ii. bilinear: $\langle p,aq+br \rangle = \int_0^1 \frac{4p(aq+br)}{x^2} dx = a \int_0^1 \frac{4pq}{x^2} dx + b \int_0^1 \frac{4pr}{x^2} dx = a \langle p,q \rangle + b \langle p,r \rangle$

iii. positive definite: $\langle p, p \rangle = \int_0^1 \frac{4p^2}{x^2} dx \ge 0$ because the integral of a non-negative quantity is non-negative.

If
$$\langle p, p \rangle = \int_0^1 \frac{4p^2}{x^2} dx = 0$$
, then $\frac{4p^2}{x^2} = 0$, or $p = 0$

b. (10) Apply the Gram Schmidt procedure to the basis $p_1 = x$, $p_2 = x^2$ to produce an orthogonal basis q_1, q_2 and an orthonormal basis r_1, r_2 .

$$q_{1} = p_{1} = x$$

$$\langle q_{1}, q_{1} \rangle = \int_{0}^{1} \frac{4q_{1}^{2}}{x^{2}} dx = \int_{0}^{1} \frac{4x^{2}}{x^{2}} dx = \int_{0}^{1} 4dx = 4x|_{0}^{1} = 4$$

$$|q_{1}| = 2$$

$$r_{1} = \frac{q_{1}}{|q_{1}|} = \frac{x}{2}$$

$$\langle p_{2}, q_{1} \rangle = \int_{0}^{1} \frac{4p_{2}q_{1}}{x^{2}} dx = \int_{0}^{1} \frac{4x^{2}x}{x^{2}} dx = \int_{0}^{1} 4x dx = 2x^{2}|_{0}^{1} = 2$$

$$q_{2} = p_{2} - \frac{\langle p_{2}, q_{1} \rangle}{\langle q_{1}, q_{1} \rangle} q_{1} = x^{2} - \frac{2}{4}x = x^{2} - \frac{x}{2}$$

$$\langle q_{2}, q_{2} \rangle = \int_{0}^{1} \frac{4q_{2}^{2}}{x^{2}} dx = \int_{0}^{1} \frac{4\left(x^{2} - \frac{x}{2}\right)^{2}}{x^{2}} dx = \int_{0}^{1} 4\left(x - \frac{1}{2}\right)^{2} dx = \frac{4\left(x - \frac{1}{2}\right)^{3}}{3} \Big|_{0}^{1} = \frac{1}{6} - \frac{-1}{6} = \frac{1}{3}$$

$$|q_{2}| = \frac{1}{\sqrt{3}}$$

$$r_{2} = \frac{q_{2}}{|q_{2}|} = \sqrt{3}\left(x^{2} - \frac{x}{2}\right)$$
Summary:

 $q_1 = x,$ $q_2 = x^2 - \frac{x}{2}$ $r_1 = \frac{x}{2},$ $r_2 = \sqrt{3}\left(x^2 - \frac{x}{2}\right)$

c. (5) Find the change of basis matrices $\underset{r \leftarrow p}{C}$ and $\underset{p \leftarrow r}{C}$.

$$r_{1} = \frac{x}{2} = \frac{1}{2}p_{1} + 0p_{2}$$

$$r_{2} = \sqrt{3}\left(x^{2} - \frac{x}{2}\right) = -\frac{\sqrt{3}}{2}p_{1} + \sqrt{3}p_{2}$$

$$C_{p \leftarrow r} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \sqrt{3} \end{pmatrix}$$

$$C_{r \leftarrow p} = C_{p \leftarrow r}^{-1} = \frac{1}{\frac{\sqrt{3}}{2}} \begin{pmatrix} \sqrt{3} & \frac{\sqrt{3}}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & \frac{1}{\sqrt{3}} \end{pmatrix}$$

3. (20 points) Again let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. Consider the function $L: P_2^0 \to P_2$ given by

$$L(p) = p - \frac{dp}{dx}.$$

a. (4) Show the function L is linear.

$$L(ap+bq) = (ap+bq) - \frac{d(ap+bq)}{dx} = a\left(p - \frac{dp}{dx}\right) + b\left(q - \frac{dq}{dx}\right) = aL(p) + bL(q)$$

b. (6) Find the kernel of *L*. Give a basis.

Let $p = ax + bx^2$. Then L(p) = 0 says $(ax + bx^2) - \frac{d(ax + bx^2)}{dx} = (ax + bx^2) - (a + 2bx) = (-a) + (a - 2b)x + bx^2 = 0$. This implies a = b = 0, and so p = 0. Therefore $Ker(L) = \{0\}$. There is no basis.

c. (6) Find the image of L. Give a basis.

 $L(p) = (ax + bx^{2}) - \frac{d(ax + bx^{2})}{dx} = (ax + bx^{2}) - (a + 2bx) = a(x - 1) + b(x^{2} - 2x)$ Therefore $Im(L) = \{a(x - 1) + b(x^{2} - 2x)\} = Span(x - 1, x^{2} - 2x)$ Basis is $\{x - 1, x^{2} - 2x\}$.

- d. (2) ls L onto? Why?
 - L is not onto because $Codom(L) = P_2$ while $Im(L) = Span(x 1, x^2 2x) \neq P_2$
- e. (2) Is L one-to-one? Why?
 - *L* is one-to-one because $Ker(L) = \{0\}$.

4. (20 points) Again let P_2^0 be the subset of P_2 consisting of those polynomials of degree 2 or less whose constant term is zero. Again consider the function $L: P_2^0 \rightarrow P_2$ given by

$$L(p) = p - \frac{dp}{dx}.$$

a. (10) Find the matrix of *L* relative to the bases

$$p_1 = x$$
, $p_2 = x^2$ for P_2^0 and $e_1 = 1$, $e_2 = x$, $e_3 = x^2$ for P_2 .
If it A.

Cal

$$L(p_1) = L(x) = x - \frac{dx}{dx} = x - 1 = -e_1 + e_2$$

$$L(p_2) = L(x^2) = x^2 - \frac{dx^2}{dx} = x^2 - 2x = -2e_2 + e_3$$

$$A = \begin{pmatrix} -1 & 0 \\ 1 & -2 \\ 0 & 1 \end{pmatrix}$$

b. (5) Find the matrix of *L* relative to the bases

 r_1, r_2 for P_2^0 and $e_1 = 1$, $e_2 = x$, $e_3 = x^2$ for P_2 where r_1, r_2 is the orthonormal basis you found in problem 2. Call it *B*.

$$B_{e \leftarrow r} = A C_{e \leftarrow p} C_{p \leftarrow r} = \begin{pmatrix} -1 & 0 \\ 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \sqrt{3} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & -\frac{5\sqrt{3}}{2} \\ \frac{1}{2} & -\frac{5\sqrt{3}}{2} \\ 0 & \sqrt{3} \end{pmatrix}$$

c. (5) Recompute *B* by another method.

$$L(r_1) = L\left(\frac{x}{2}\right) = \frac{x}{2} - \frac{d\frac{x}{2}}{dx} = \frac{x}{2} - \frac{1}{2} = -\frac{1}{2}e_1 + \frac{1}{2}e_2$$

$$L(r_2) = L\left(\sqrt{3}\left(x^2 - \frac{x}{2}\right)\right) = \sqrt{3}\left(x^2 - \frac{x}{2}\right) - \frac{d\sqrt{3}\left(x^2 - \frac{x}{2}\right)}{dx} \qquad B = e^{-r} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & -\frac{5\sqrt{3}}{2} \\ \frac{1}{2} & -\frac{5\sqrt{3}}{2} \\ 0 & \sqrt{3} \end{pmatrix}$$

$$= \sqrt{3}\left(x^2 - \frac{x}{2}\right) - \sqrt{3}\left(2x - \frac{1}{2}\right) = \frac{\sqrt{3}}{2}e_1 - \frac{5\sqrt{3}}{2}e_2 + \sqrt{3}e_3$$

5. (30 points) Do this problem, if you did the Volume of Desserts or Planet X Project.

Find the *z*-component of the center of mass of the apple whose surface is given in spherical coordinates by

 $\rho = 1 - \cos \varphi$

and whose density is 1.

HINT: The φ -integrals can be done using the substitution

$$u = 1 - \cos \varphi$$
.

$$\begin{aligned} x &= \rho \sin \varphi \cos \theta \\ y &= \rho \sin \varphi \sin \theta \\ z &= \rho \cos \varphi \end{aligned} \qquad \begin{aligned} & dV &= \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta \\ du &= \sin \varphi \, d\varphi \end{aligned} \qquad \qquad \begin{aligned} & u &= 1 - \cos \varphi \\ du &= \sin \varphi \, d\varphi \end{aligned}$$

$$M = \iiint 1 \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^{1-\cos\varphi} \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = 2\pi \int_0^{\pi} \left[\frac{\rho^3}{3} \right]_0^{1-\cos\varphi} \sin\varphi \, d\varphi$$
$$= \frac{2\pi}{3} \int_0^{\pi} (1-\cos\varphi)^3 \sin\varphi \, d\varphi = \frac{2\pi}{3} \frac{(1-\cos\varphi)^4}{4} \Big|_0^{\pi} = \frac{2\pi}{3} \frac{(2)^4}{4} = \frac{8\pi}{3}$$

$$\begin{aligned} z - mom &= \iiint z \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^{1-\cos\varphi} \rho \cos\varphi \, \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = 2\pi \int_0^{\pi} \left[\frac{\rho^4}{4} \right]_0^{1-\cos\varphi} \cos\varphi \sin\varphi \, d\varphi \\ &= \frac{\pi}{2} \int_0^{\pi} (1 - \cos\varphi)^4 \cos\varphi \sin\varphi \, d\varphi = \frac{\pi}{2} \int_0^2 u^4 (1 - u) \, du = \frac{\pi}{2} \left[\frac{u^5}{5} - \frac{u^6}{6} \right]_0^2 = \frac{\pi}{2} \left[\frac{2^5}{5} - \frac{2^6}{6} \right] \\ &= \frac{2^5 \pi}{2} \left[\frac{1}{5} - \frac{1}{3} \right] = 2^4 \pi \frac{3 - 5}{15} = -\frac{32\pi}{15} \\ \bar{z} = \frac{z - mom}{M} = -\frac{32\pi}{15} \frac{3}{8\pi} = -\frac{4}{5} \end{aligned}$$

6. (30 points) Do this problem, if you did the Interpretation of Div and Curl Project.

Find the divergence of the vector field $\vec{F} = (xz^2, yz^2, 0)$ at the point (x, y, z) = (0, 0, c).

a. by using the derivative defintion:

$$\vec{\nabla} \cdot \vec{F} = z^2 + z^2 = 2z^2 \qquad \vec{\nabla} \cdot \vec{F} \Big|_{(0,0,c)} = 2c^2$$

b. by using the integral definition: HINTS: For a sphere of radius a contored at (a, b, a) if you

HINTS: For a sphere of radius ρ centered at (a, b, c), if you use standard spherical coordinates, the normal vector is

 $\vec{N} = \left(\rho^2 \sin^2 \varphi \cos \theta, \rho^2 \sin^2 \varphi \sin \theta, \rho^2 \cos \varphi \sin \varphi\right)$

The φ -integral can be done using the substitution $u = \cos \varphi$. You can ignore terms in the integral proportional to ρ^n with n > 3 since they drop out of the limit.

 $\vec{\nabla} \cdot \vec{F} \Big|_{(0,0,c)} = \lim_{\rho \to 0} \frac{3}{4\pi\rho^3} \iint \vec{F} \cdot d\vec{S}$

where the integral is over the sphere of radius ρ centered at (0,0,c).

 $\vec{R}(\phi,\theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, c + \rho \cos \phi)$ $\vec{N} = (\rho^2 \sin^2 \phi \cos \theta, \rho^2 \sin^2 \phi \sin \theta, \rho^2 \cos \phi \sin \phi)$ (Given)

$$\vec{F} = (xz^2, yz^2, 0) = (\rho \sin\varphi \cos\theta (c + \rho \cos\varphi)^2, \rho \sin\varphi \sin\theta (c + \rho \cos\varphi)^2, 0)$$

$$\vec{F} \cdot \vec{N} = \rho^2 \sin^2\varphi \cos\theta \rho \sin\varphi \cos\theta (c + \rho \cos\varphi)^2 + \rho^2 \sin^2\varphi \sin\theta \rho \sin\varphi \sin\theta (c + \rho \cos\varphi)^2$$

$$= \rho^3 \sin^3\varphi (c + \rho \cos\varphi)^2$$

$$\iint \vec{F} \cdot d\vec{S} = \int_0^\pi \int_0^{2\pi} \vec{F} \cdot \vec{N} d\theta \, d\varphi = \int_0^\pi \int_0^{2\pi} \rho^3 \sin^3 \varphi (c + \rho \cos \varphi)^2 \, d\theta \, d\varphi = 2\pi \rho^3 \int_0^\pi \sin^3 \varphi (c + \rho \cos \varphi)^2 \, d\varphi$$

Drop terms of order greater than ρ^3 :

$$\iint \vec{F} \cdot d\vec{S} \approx 2\pi\rho^3 \int_0^{\pi} c^2 \sin^3\varphi \, d\varphi = 2\pi\rho^3 c^2 \int_0^{\pi} (1 - \cos^2\varphi) \sin\varphi \, d\varphi \qquad u = \cos\varphi \qquad du = -\sin\varphi \, d\varphi$$
$$\iint \vec{F} \cdot d\vec{S} \approx -2\pi\rho^3 c^2 \int_1^{-1} (1 - u^2) \, du = -2\pi\rho^3 c^2 \Big[u - \frac{u^3}{3} \Big]_1^{-1} = -2\pi\rho^3 c^2 \Big[-\frac{2}{3} \Big] + 2\pi\rho^3 c^2 \Big[\frac{2}{3} \Big] = \frac{8\pi\rho^3 c^2}{3}$$

$$\vec{\nabla} \cdot \vec{F} \Big|_{(0,0,c)} = \lim_{\rho \to 0} \frac{3}{4\pi\rho^3} \left(\frac{8\pi\rho^3 c^2}{3}\right) = 2c^2$$

7. (30 points) Do this problem, if you did the Gauss' and Ampere's Laws Project.

Find the total charge in the cylinder $x^2 + y^2 \le a^2$, $0 \le z \le 1$ if the electric field is $\vec{E} = \frac{\hat{r}}{r} = \frac{\vec{r}}{r^2} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$

where $\vec{r} = (x, y, 0)$ and $r = \sqrt{x^2 + y^2}$.

a. using the derivative form of Gauss' Law.

$$\rho = \frac{1}{4\pi} \vec{\nabla} \cdot \vec{E} = \frac{1}{4\pi} \left[\frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) + \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) \right]$$

= $\frac{1}{4\pi} \left[\frac{(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} + \frac{(x^2 + y^2) - y(2y)}{(x^2 + y^2)^2} \right]$
= $\frac{1}{4\pi} \left[\frac{2(x^2 + y^2) - 2x^2 - 2y^2}{(x^2 + y^2)^2} \right] = 0$
 $Q = \iiint_C \rho \, dV = 0$

b. using the integral form of Gauss' Law.

$$4\pi Q = \iint_{\partial C} \vec{E} \cdot d\vec{S} = \iint_{top} \vec{E} \cdot d\vec{S} + \iint_{bottom} \vec{E} \cdot d\vec{S} + \iint_{sides} \vec{E} \cdot d\vec{S}$$
On the ends of the cylinder, the normal is $\vec{N} = \pm \hat{k}$ while \vec{E} is horizontal. So $\vec{E} \cdot \vec{N} = 0$ and

$$\iint_{top} \vec{E} \cdot d\vec{S} = \iint_{bottom} \vec{E} \cdot d\vec{S} = 0$$
The sides are parametrized by $R(\theta, z) = (a\cos\theta, a\sin\theta, z)$.
 $\vec{R}_{\theta} = (-a\sin\theta, a\cos\theta, 0)$ $\vec{N} = \vec{R}_{\theta} \times \vec{R}_{z} = (a\cos\theta, a\sin\theta, 0)$
 $\vec{R}_{z} = (0, 0, 1)$
 $\vec{E} = \left(\frac{x}{x^{2} + y^{2}}, \frac{y}{x^{2} + y^{2}}, 0\right) = \left(\frac{a\cos\theta}{a^{2}}, \frac{a\sin\theta}{a^{2}}, 0\right) = \left(\frac{\cos\theta}{a}, \frac{\sin\theta}{a}, 0\right)$
 $\vec{E} \cdot \vec{N} = \cos^{2}\theta + \sin^{2}\theta = 1$
 $4\pi Q = \iint_{sides} \vec{E} \cdot d\vec{S} = \iint_{0} \vec{E} \cdot \vec{N} d\theta dz = \int_{0}^{1} \int_{0}^{2\pi} 1 d\theta dz = 2\pi$ $Q = \frac{1}{2}$

c. What do these results tell you about the location of the electric charge? Why?

Part (a) says $\rho = 0$. So there is no charge wherever \vec{E} and $\vec{\nabla} \cdot \vec{E}$ are defined which is everywhere but r = 0 which is the *z*-axis. However, part (b) says $Q = \frac{1}{2}$. So there must be charge along the *z*-axis.