Name \qquad ID.
ID_

Exam 1
Solutions
Fall 2002
P. Yasskin

1	$/ 15$	4	$/ 15$
2	$/ 15$	5	$/ 20$
3	$/ 15$	6	$/ 20$

1. (15 points) Compute

$$
\operatorname{det}\left(\begin{array}{ccccc}
2 & 5 & 4 & -1 & 4 \\
0 & 1 & -2 & 1 & 2 \\
1 & 3 & 0 & -2 & 1 \\
2 & 6 & 3 & -4 & -1 \\
-2 & -6 & -3 & 0 & 1
\end{array}\right)
$$

2. (15 points) Use row operations on the augmented matrix to solve the system of equations

$$
\begin{aligned}
2 u+4 v-2 w-2 x+2 y-4 z & =4 \\
u+2 v-2 w-3 x+y-3 z & =-3 \\
3 u+6 v-2 w-x+3 y-5 z & =b
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cccccc|c}
2 & 4 & -2 & -2 & 2 & -4 & 4 \\
1 & 2 & -2 & -3 & 1 & -3 & -3 \\
3 & 6 & -2 & -1 & 3 & -5 & b
\end{array}\right) \begin{array}{c}
R_{2} \\
R_{1}
\end{array} \quad \Rightarrow \quad\left(\begin{array}{cccccc|c}
1 & 2 & -2 & -3 & 1 & -3 & -3 \\
2 & 4 & -2 & -2 & 2 & -4 & 4 \\
3 & 6 & -2 & -1 & 3 & -5 & b
\end{array}\right) \begin{array}{l}
\\
R_{2}-2 R_{1} \\
R_{3}-3 R_{1}
\end{array} \\
& \Rightarrow\left(\begin{array}{cccccc|c}
1 & 2 & -2 & -3 & 1 & -3 & -3 \\
0 & 0 & 2 & 4 & 0 & 2 & 10 \\
0 & 0 & 4 & 8 & 0 & 4 & b+9
\end{array}\right) \begin{array}{l}
R_{1}+R_{2} \\
R_{2} / 2 \\
R_{3}-2 R_{2}
\end{array} \quad \Rightarrow \quad\left(\begin{array}{cccccc|c}
1 & 2 & 0 & 1 & 1 & -1 & 7 \\
0 & 0 & 1 & 2 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & b-11
\end{array}\right)
\end{aligned}
$$

a. For what value(s) of b do there exist solutions.

$$
b=11
$$

b. For those value(s) of b write the set of all solutions in parametric form.
u and w are leading variables. $\quad v, x, y$ and z are free variables.
$u=7-2 p-r-s+t$
$x=r$
$v=p$
$y=s$
$w=5-2 r-t$
$z=t$
c. Interpret the solution set as a k-plane in \mathbb{R}^{n} for some k and n.

4-plane in \mathbb{R}^{6}
3. (15 points) Find the equation of the plane tangent to the graph of the function $f(x, y)=3 x \sin y-2 y \cos x$ at the point $(x, y)=\left(0, \frac{\pi}{2}\right)$.

$$
\begin{array}{ll}
f(x, y)=3 x \sin y-2 y \cos x & f\left(0, \frac{\pi}{2}\right)=0-2 \frac{\pi}{2} \cos 0=-\pi \\
f_{x}(x, y)=3 \sin y+2 y \sin x & f_{x}\left(0, \frac{\pi}{2}\right)=3 \sin \frac{\pi}{2}+0=3 \\
f_{y}(x, y)=3 x \cos y-2 \cos x & f_{y}\left(0, \frac{\pi}{2}\right)=0-2 \cos 0=-2 \\
z=f\left(0, \frac{\pi}{2}\right)+f_{x}\left(0, \frac{\pi}{2}\right)(x-0)+f_{y}\left(0, \frac{\pi}{2}\right)\left(y-\frac{\pi}{2}\right) \\
z=-\pi+3(x)-2\left(y-\frac{\pi}{2}\right) \quad \text { or } \quad z=3 x-2 y
\end{array}
$$

4. (15 points) Find the equation of the line perpendicular to the surface $F(x, y, z)=x^{2} y+y^{3} z+z^{4} x=29$ at the point $P=(x, y, z)=(3,2,1)$.

$$
\vec{\nabla} F=\left(2 x y+z^{4}, x^{2}+3 y^{2} z, y^{3}+4 z^{3} x\right)
$$

$$
\vec{v}=\left.\vec{\nabla} F\right|_{(3,2,1)}=\left(2 \cdot 3 \cdot 2+1^{4}, 3^{2}+3 \cdot 2^{2} \cdot 1,2^{3}+4 \cdot 1^{3} \cdot 3\right)=(13,21,20)
$$

$$
X=P+t \vec{v} \quad(x, y, z)=(3,2,1)+t(13,21,20) \quad \begin{aligned}
& x=3+13 t \\
& y=2+21 t \\
& z=1+20 t
\end{aligned}
$$

5. (20 points) Consider the matrix $A=\left(\begin{array}{ccc}-2 & -5 & 1 \\ 1 & 3 & -1 \\ 3 & 7 & -1\end{array}\right)$.
a. Find A^{-1} or show it does not exist.
A^{-1} does not exist because there is a row of zeros.
b. Consider the equations $A X=\mathbf{0}$, i.e.

$$
\begin{array}{r}
-2 x-5 y+z=0 \\
x+3 y-z=0 \\
3 x+7 y-z=0
\end{array}
$$

How many solutions are there?
Circle one: (Do not solve the equations.)

$$
\text { No Solutions } \quad \text { Unique Solution } \quad \infty \text {-Many Solutions }
$$

Explain why:

The equations are homogeneous. So there is at least one solution: $(0,0,0)$. A is not invertible. So there is not a unique solution.

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
-2 & -5 & 1 & 1 & 0 & 0 \\
1 & 3 & -1 & 0 & 1 & 0 \\
3 & 7 & -1 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
R_{2} \\
R_{1}
\end{array} \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 3 & -1 & 0 & 1 & 0 \\
-2 & -5 & 1 & 1 & 0 & 0 \\
3 & 7 & -1 & 0 & 0 & 1
\end{array}\right) \begin{array}{l}
\\
R_{2}+2 R_{1} \\
R_{3}-3 R_{1}
\end{array} \\
& \Rightarrow\left(\begin{array}{ccc|ccc}
1 & 3 & -1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 2 & 0 \\
0 & -2 & 2 & 0 & -3 & 1
\end{array}\right) \begin{array}{l}
R_{1}-3 R_{2} \\
R_{3}+2 R_{2}
\end{array} \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & -3 & -5 & 0 \\
0 & 1 & -1 & 1 & 2 & 0 \\
0 & 0 & 0 & 2 & 1 & 1
\end{array}\right)
\end{aligned}
$$

6. (20 points) Consider the matrix $A=\left(\begin{array}{ccc}-2 & -5 & 1 \\ 1 & 3 & -1 \\ 3 & 7 & 0\end{array}\right)$.
a. Find A^{-1} or show it does not exist.

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
-2 & -5 & 1 & 1 & 0 & 0 \\
1 & 3 & -1 & 0 & 1 & 0 \\
3 & 7 & 0 & 0 & 0 & 1
\end{array}\right) \begin{array}{l}
R_{2} \\
R_{1}
\end{array} \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 3 & -1 & 0 & 1 & 0 \\
-2 & -5 & 1 & 1 & 0 & 0 \\
3 & 7 & 0 & 0 & 0 & 1
\end{array}\right) \begin{array}{l}
\\
R_{2}+2 R_{1} \\
R_{3}-3 R_{1}
\end{array} \\
& \Rightarrow\left(\begin{array}{ccc|ccc}
1 & 3 & -1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 2 & 0 \\
0 & -2 & 3 & 0 & -3 & 1
\end{array}\right){ }_{R_{1}-3 R_{2}}^{R_{3}+2 R_{2}} \quad \Rightarrow \quad\left(\begin{array}{ccc|ccc}
1 & 0 & 2 & -3 & -5 & 0 \\
0 & 1 & -1 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 & 1 & 1
\end{array}\right) \begin{array}{l}
R_{1}-2 R_{3} \\
R_{2}+R_{3}
\end{array} \\
& \Rightarrow \quad\left(\begin{array}{lll|ccc}
1 & 0 & 0 & -7 & -7 & -2 \\
0 & 1 & 0 & 3 & 3 & 1 \\
0 & 0 & 1 & 2 & 1 & 1
\end{array}\right) \quad \text { So } \quad A^{-1}=\left(\begin{array}{ccc}
-7 & -7 & -2 \\
3 & 3 & 1 \\
2 & 1 & 1
\end{array}\right) \\
& \text { Check: }\left(\begin{array}{ccc}
-2 & -5 & 1 \\
1 & 3 & -1 \\
3 & 7 & 0
\end{array}\right)\left(\begin{array}{ccc}
-7 & -7 & -2 \\
3 & 3 & 1 \\
2 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

b. Consider the equations $A X=\hat{\jmath}$, i.e.

$$
\begin{aligned}
-2 x-5 y+z & =0 \\
x+3 y-z & =1 \\
3 x+7 y & =0
\end{aligned}
$$

How many solutions are there?
Circle one:

\section*{| No Solutions \quad Unique Solution ∞-Many Solutions |
| :--- | :--- |}

Find all solutions if there are any.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=X=A^{-1} \hat{\jmath}=\left(\begin{array}{ccc}
-7 & -7 & -2 \\
3 & 3 & 1 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-7 \\
3 \\
1
\end{array}\right)
$$

