Name_____ ID____

MATH 311

Exam 2

Spring 2003

Section 200

P. Yasskin

1	/20	4	/15
2	/15	5	/15
3	/20	6	/15

Throughout the exam, let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix} \in (P_2)^2$$
 and $\vec{q}(2) = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$

The standard basis of $(P_2)^2$ is

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} x \\ 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $e_4 = \begin{pmatrix} 0 \\ x \end{pmatrix}$

1. (20 points) Another basis for $(P_2)^2$ is

$$E_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $E_2 = \begin{pmatrix} 1+x \\ 0 \end{pmatrix}$ $E_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $E_4 = \begin{pmatrix} 0 \\ 1+x \end{pmatrix}$

a. (5) Find the change of basis matrices $C_{E\leftarrow e}$ and $C_{e\leftarrow E}$.

b. (5) Find $(\vec{q})_e$ the components of $\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix}$ relative to the *e*-basis.

c. (5) Find $(\vec{q})_E$ the components of \vec{q} relative to the *E*-basis by using the change of basis matrix.

d. (5) If $(\vec{r})_E = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, what is \vec{r} ?

2. (15 points) Consider the subspace S of $(P_3)^2$ spanned by $\begin{pmatrix} 1+x \\ 1-x \end{pmatrix}$, $\begin{pmatrix} 2+x \\ 2-x \end{pmatrix}$, $\begin{pmatrix} 3+x \\ 3-x \end{pmatrix}$, $\begin{pmatrix} 1-x \\ 1+x \end{pmatrix}$. Pare the spanning set down to a basis for S and find the dimension of S.

3. (20 points) Now consider the linear map $L:(P_2)^2\to P_2$ given by $L(\vec{p})=p_1+p_2$. (Just add the two component polynomials.) For example, if $\vec{q}=\begin{pmatrix} -3+2x\\1+3x \end{pmatrix}$ then

$$L(\vec{q}) = L\begin{pmatrix} -3 + 2x \\ 1 + 3x \end{pmatrix} = (-3 + 2x) + (1 + 3x) = -2 + 5x$$

a. (5) Find the matrix of L relative to the e-basis on $(P_2)^2$ and the f-basis on P_2 where $f_1=1$ and $f_2=x$. Call it A.

b. (5) Find the matrix of L relative to the E-basis on $(P_2)^2$ and the f-basis on P_2 by using the change of basis matrix. Call it B.

c. (5) Find the matrix of L relative to the E-basis on $(P_2)^2$ and the f-basis on P_2 from the definition.

d. (5) If $(\vec{r})_E = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, what are $[L(\vec{r})]_f$ and $L(\vec{r})$?

- **4.** (15 points) Again consider the linear map $L:(P_2)^2\to P_2$ given by $L(\vec{p})=p_1+p_2$. When necessary, let $\vec{p}=\begin{pmatrix}p_1\\p_2\end{pmatrix}=\begin{pmatrix}a+bx\\c+dx\end{pmatrix}$.
 - **a.** (5) Find the kernel of L. Give a basis and the dimension.

b. (5) Find the image of L. Give a basis and the dimension.

- **c.** (2) Is L one-to-one? Why?
- **d.** (2) Is L onto? Why?
- e. (1) Check that the Nullity-Rank Theorem is satisfied.

5. (15 points) Verify that the following function is an inner product on $(P_2)^2$:

$$\langle , \rangle : (P_2)^2 \times (P_2)^2 \to \mathbb{R}$$
 given by $\langle \vec{p}, \vec{q} \rangle = \int_{-1}^1 p_1(x)q_1(x) + p_2(x)q_2(x) dx$

For example,
$$\left\langle \left(\begin{array}{c} 1+x \\ 2x \end{array} \right), \left(\begin{array}{c} -x \\ 2-x \end{array} \right) \right\rangle = \int_{-1}^{1} (1+x)(-x) + (2x)(2-x) \, dx = \int_{-1}^{1} (3x-3x^2) \, dx = -2$$

- a. Symmetric:
- b. Bilinear:

c. Positive Definite:

6. (15 points) Using the inner product of problem 5, find the angle between the vectors $\begin{pmatrix} 1 \\ x \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -x \end{pmatrix}$.