Name		ID
MATH 311	Final Exam	Spring 2003
Section 200	Solutions	P. Yasskin

1	/25	3	/25
2	/25	4	/25

Work Out: (25 points each)

1. Consider an ideal gas whose density, ρ , temperature, T, and pressure, P, are functions of position. Thus if we consider a two dimensional space \mathbb{R}^2 whose coordinates are (ρ, T) then the ideal gas law, $P = k\rho T$, defines a function $P : \mathbb{R}^2 \to \mathbb{R}$. (Here k is a constant which may appear in your answers.) Further, the formulas which give (ρ, T) as functions of position (x, y, z) define a function $F : \mathbb{R}^3 \to \mathbb{R}^2$. The composition $P \circ F : \mathbb{R}^3 \to \mathbb{R}$ then gives P as a function of position. At the point X = (2, 3, 4), ρ , T and their gradients are

$$\rho(X) = 2$$
 $T(X) = 78$ $\vec{\nabla}\rho(X) = (0.1, 0.2, -0.1)$ $\vec{\nabla}T(X) = (0.2, -0.3, 0.4)$

a. What is $JF(X) = \frac{d(\rho, T)}{d(x, y, z)}(X)$, the Jacobian matrix of F at X?

b. What are JP and $JP(\rho(X), T(X))$, the Jacobian matrix of P and the Jacobian matrix of P at X?

c. What is $J(P \circ F)(X)$, the Jacobian matrix of $P \circ F$ at X?



e. At the time
$$t = 0$$
, you are at $X = (2,3,4)$ and moving with velocity $\vec{v} = (-1,1,2)$. Use the linear approximation to estimate the temperature T at time $t = 2$.

The remainder of the exam is customized for each student.

Exam 1 #2: Find the non-parametric equation for the plane tangent to the surface $x^3y^2 + xz^3 = 31$ at the point (x,y,z) = (1,2,3).

Exam 1 #4: Let
$$M = \begin{pmatrix} 2 & 5 & 4 & -1 \\ 0 & 1 & -2 & 1 \\ 1 & 3 & 0 & -2 \\ 2 & 6 & 3 & x \end{pmatrix}$$

a. Compute $\det M$ (as a function of x).

b. For what value(s) of x does M^{-1} exist? Why?

Exam 1 #5: Let
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
.

a. Compute A^{-1} . Check it.

b. Solve the equations

$$3x + 2y = 2$$

$$x-z=1$$

$$y + 2z = 3$$

Exam 1 #6: (Multiple Choice: Circle one) If C = AB, then $(C^{\mathsf{T}})^{-1} =$

a.
$$A^{\mathsf{T}}B^{-1} + A^{-1}B^{\mathsf{T}}$$

b.
$$B^{-1}A^{\mathsf{T}} + B^{\mathsf{T}}A^{-1}$$

c.
$$(A^{-1})^{\mathsf{T}}(B^{-1})^{\mathsf{T}}$$

d.
$$(B^{\mathsf{T}})^{-1}(A^{\mathsf{T}})^{-1}$$

Now prove it. You may use any result proved in class or in the book or on homework.

Exam 2 #1: Let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix} \in (P_2)^2$$
 and $\vec{q}(2) = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$

The standard basis of $(P_2)^2$ is

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} x \\ 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $e_4 = \begin{pmatrix} 0 \\ x \end{pmatrix}$

Another basis for $(P_2)^2$ is

$$E_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $E_2 = \begin{pmatrix} 1+x \\ 0 \end{pmatrix}$ $E_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $E_4 = \begin{pmatrix} 0 \\ 1+x \end{pmatrix}$

a. Find the change of basis matrices C and C. $E \leftarrow e$

- **b.** Find $(\vec{q})_e$ the components of $\vec{q} = \begin{pmatrix} 2x 3 \\ 3x + 1 \end{pmatrix}$ relative to the *e*-basis.
- **c.** Find $(\vec{q})_E$ the components of \vec{q} relative to the *E*-basis by using the change of basis matrix.

d. If
$$(\vec{r})_E = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, what is \vec{r} ?

Exam 2 #2: Let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix} \in (P_2)^2$$
 and $\vec{q}(2) = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$

Consider the subspace S of $(P_3)^2$ spanned by $\begin{pmatrix} 1+x \\ 1-x \end{pmatrix}$, $\begin{pmatrix} 2+x \\ 2-x \end{pmatrix}$, $\begin{pmatrix} 3+x \\ 3-x \end{pmatrix}$, $\begin{pmatrix} 1-x \\ 1+x \end{pmatrix}$. Pare the spanning set down to a basis for S and find the dimension of S.

Exam 2 #3: Let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \left(\begin{array}{c} 2x - 3 \\ 3x + 1 \end{array}\right) \in (P_2)^2$$
 and $\vec{q}(2) = \left(\begin{array}{c} 1 \\ 7 \end{array}\right)$

The standard basis of $(P_2)^2$ is

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} x \\ 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $e_4 = \begin{pmatrix} 0 \\ x \end{pmatrix}$

Another basis for $(P_2)^2$ is

$$(P_2)^2$$
 is
$$E_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad E_2 = \begin{pmatrix} 1+x \\ 0 \end{pmatrix} \quad E_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad E_4 = \begin{pmatrix} 0 \\ 1+x \end{pmatrix}$$

The change of basis matrices are

$$C_{e \leftarrow E} = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\qquad
C_{E \leftarrow e} = \begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Now consider the linear map $L:(P_2)^2\to P_2$ given by $L(\vec{p})=p_1+p_2$. (Just add the two component polynomials.) For example, if $\vec{q}=\begin{pmatrix} -3+2x\\1+3x \end{pmatrix}$ then

$$L(\vec{q}) = L\left(\frac{-3+2x}{1+3x}\right) = (-3+2x) + (1+3x) = -2+5x$$

a. Find the matrix of L relative to the e-basis on $(P_2)^2$ and the f-basis on P_2 where $f_1=1$ and $f_2=x$. Call it A.

b. Find the matrix of L relative to the E-basis on $(P_2)^2$ and the f-basis on P_2 by using the change of basis matrix. Call it B.

c. Find the matrix of L relative to the E-basis on $(P_2)^2$ and the f-basis on P_2 from the definition.

d. If $(\vec{r})_E = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, what are $[L(\vec{r})]_f$ and $L(\vec{r})$?

Exam 2 #4: Let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix} \in (P_2)^2$$
 and $\vec{q}(2) = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$

Consider the linear map $L:(P_2)^2\to P_2$ given by $L(\vec{p})=p_1+p_2$. When necessary, let $\vec{p}=\begin{pmatrix}p_1\\p_2\end{pmatrix}=\begin{pmatrix}a+bx\\c+dx\end{pmatrix}$.

a. Find the kernel of L. Give a basis and the dimension.

b. Find the image of L. Give a basis and the dimension.

- ${f c.}$ Is L one-to-one? Why?
- **d.** Is L onto? Why?
- e. Check that the Nullity-Rank Theorem is satisfied.

Exam 2 #5: Let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix} \in (P_2)^2$$
 and $\vec{q}(2) = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$

Verify that the following function is an inner product on $(P_2)^2$:

$$\langle , \rangle : (P_2)^2 \times (P_2)^2 \to \mathbb{R}$$
 given by $\langle \vec{p}, \vec{q} \rangle = \int_{-1}^1 p_1(x)q_1(x) + p_2(x)q_2(x) dx$

For example,
$$\left\langle \left(\begin{array}{c} 1+x \\ 2x \end{array} \right), \left(\begin{array}{c} -x \\ 2-x \end{array} \right) \right\rangle = \int_{-1}^{1} (1+x)(-x) + (2x)(2-x) \, dx = \int_{-1}^{1} (3x-3x^2) \, dx = -2$$

- a. Symmetric:
- **b.** Bilinear:

c. Positive Definite:

Exam 2 #6: Let $(P_2)^2$ be the vector space of ordered pairs of polynomials of degree less than 2. For example,

$$\vec{q} = \begin{pmatrix} 2x - 3 \\ 3x + 1 \end{pmatrix} \in (P_2)^2$$
 and $\vec{q}(2) = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$

Using the following inner product on $(P_2)^2$:

$$\langle \ , \ \rangle : (P_2)^2 \times (P_2)^2 \to \mathbb{R} \quad \text{given by} \quad \langle \overrightarrow{p}, \overrightarrow{q} \rangle = \int_{-1}^1 p_1(x) q_1(x) + p_2(x) q_2(x) \, dx$$

find the angle between the vectors $\begin{pmatrix} 1 \\ x \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -x \end{pmatrix}$.

Exam 3 #2: Consider the parametric curve $r(t) = \left(2t, t^2, \frac{1}{3}t^3\right)$ for $0 \le t \le 2$.

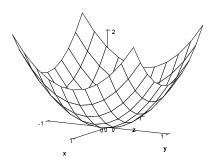
a. Compute $\int_{(0,0,0)}^{(4,4,8/3)} (xy + 3z) ds$ along this curve

b. Compute $\int_{(0,0,0)}^{(4,4,8/3)} \vec{F} \cdot d\vec{s}$ along this curve where $\vec{F} = (3z,2y,x)$.

Exam 3 #3: Consider the parametric surface

$$\vec{R}(p,q) = (p,q,p^2 + q^2)$$

for
$$-1 \le p \le 1$$
 and $-1 \le q \le 1$.



a. Find the total mass $M = \iint \delta \, dS$ on this surface if the surface density is $\delta = \sqrt{4z+1}$.

b. Find the flux $\iint \vec{F} \cdot d\vec{S}$ of the vector field $\vec{F} = (3x, 3y, 3z)$ through this surface with normal pointing down.

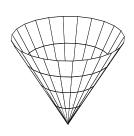
Exam 3 #4: Use 2 methods to compute

$$\iint_{C} \vec{F} \cdot d\vec{S} \quad \text{for} \quad \vec{F} = (5xz, 5yz, z^{2})$$

over the conical surface C given by

$$z = \sqrt{x^2 + y^2} \le 3$$

with normal pointing down and out.



a. METHOD 1: Compute $\iint_C \vec{F} \cdot d\vec{S}$ directly as a surface integral using the parametrization $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

HINT: Find \vec{e}_r , \vec{e}_θ , \vec{N} and \vec{F} on the cone.

Recall: $\vec{F} = (5xz, 5yz, z^2)$ and C is the conical surface $z = \sqrt{x^2 + y^2} \le 3$ with normal pointing down and out.

b. METHOD 2: Compute $\iint_C \vec{F} \cdot d\vec{S}$ by applying Gauss' Theorem

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$$
 to the solid cone V whose boundary is $\partial V = C + D$

where $\ C$ is the conical surface and $\ D$ is the disk at the top of the cone.