Consider the elliptic coordinate system:

$$
\begin{aligned}
& x=4 t \cos \varphi \\
& y=3 t \sin \varphi
\end{aligned}
$$

The t-curve for $\varphi=\varphi_{0}$ is the radial ray

$$
\frac{y}{x}=\frac{3}{4} \tan \varphi_{0}
$$

which may be parametrized by

$$
\vec{r}_{1}(t)=\binom{4 t \cos \varphi_{0}}{3 t \sin \varphi_{0}}
$$

The φ-curve for $t=t_{0}$ is the ellipse

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=t_{0}^{2}
$$

which may be parametrized by

$$
\vec{r}_{2}(\varphi)=\binom{4 t_{0} \cos \varphi}{3 t_{0} \sin \varphi}
$$

We take the $x y$-coordinate tangent basis vectors to be

$$
\begin{aligned}
& \hat{\imath}_{1}=\hat{\imath}_{x}=\hat{\imath}=\binom{1}{0} \\
& \hat{\imath}_{2}=\hat{\imath}_{y}=\hat{\jmath}=\binom{0}{1}
\end{aligned}
$$

So the $x y$-basis is $\hat{\imath}=\left(\hat{\imath}_{1}, \hat{\imath}_{2}\right)$ and any vector $\vec{v}=\binom{v^{1}}{v^{2}}$ can be written as

$$
\vec{v}=\hat{\imath} \vec{v}_{i}=\hat{\imath}_{1} v^{1}+\hat{\imath}_{2} v^{2}=\hat{\imath} v^{1}+\hat{\jmath} v^{2}
$$

where the components of \vec{v} relative to the $\hat{\imath}$ basis are $\vec{v}_{i}=\binom{v^{1}}{v^{2}}$ which since we are in the standard basis are exactly the same as \vec{v} itself.

1) Find the $t \varphi$-coordinate tangent basis vectors

$$
\begin{aligned}
& \vec{e}_{1}=\vec{e}_{t}=\frac{d}{d t} \vec{r}_{1}(t) \\
& \vec{e}_{2}=\vec{e}_{\varphi}=\frac{d}{d t} \vec{r}_{2}(\varphi)
\end{aligned}
$$

So the $t \varphi$-basis is $\vec{e}=\left(\vec{e}_{1}, \vec{e}_{2}\right)$ and any vector $\vec{v}=\binom{v^{1}}{v^{2}}$ can be written as

$$
\vec{v}=\vec{e} \vec{v}_{e}=\vec{e}_{1} v_{e}^{1}+\vec{e}_{2} v_{e}^{2}
$$

where the components of \vec{v} relative to the \vec{e} basis are $\vec{v}_{e}=\binom{v_{e}^{1}}{v_{e}^{2}}$.
2) Find the change of basis matrix, C, from the \vec{e}-basis to the $\hat{\imath}$-basis.
3) Find the change of basis matrix, $\underset{e \leftarrow i}{C}$, from the $\hat{\imath}$-basis to the \vec{e}-basis.
4) Given that the $\hat{\imath}$-components of \vec{v} are $\vec{v}_{i}=\binom{v^{1}}{v^{2}}$, find the \vec{e}-components \vec{v}_{e}.
5) Verify that you have the correct \vec{v}_{e} by computing $\vec{e} \vec{v}_{e}$ to see you do in fact get back \vec{v}.

Consider the linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given (in the standard basis) by

$$
L\binom{v^{1}}{v^{2}}=\binom{4 v^{1}-3 v^{2}}{2 v^{1}+v^{2}}
$$

6) Find the matrix of L relative to the standard basis $\hat{\imath}$ on both the domain and co-domain. Call it L.

Compute it by finding $L\left(\hat{\imath}_{p}\right)$ and expanding in the i-basis.
7) Find the matrix of L relative to the i-basis on the domain and the e-basis on the co-domain. Call it L. Compute it using a change of basis matrix. Verify it by computing finding $L\left(\hat{l}_{p}\right)$.
8) Find the matrix of L relative to the e-basis on the domain and the i-basis on the co-domain. Call it L. Compute it using a change of basis matrix. Verify it by computing finding $L\left(\vec{e}_{q}\right)$.
9) Find the matrix of L relative to the $t \varphi$-basis \vec{e} on both the domain and co-domain. Call it L. Compute it using change of basis matrices. Verify it by computing finding $L\left(\vec{e}_{q}\right)$.
10) Convert the vector $\vec{v}=\binom{1}{2}$ into the e-basis using the change of basis matrix. Compute $[L(\vec{v})]_{e}$, the components of $L(\vec{v})$ relative to the e-basis by using $\underset{e \leftarrow e}{L}$. Use this to compute $L(\vec{v})=\vec{e}[L(\vec{v})]_{e}$. Verify $L(\vec{v})$ agrees with the original definition of L.
11) Compute the components of the inner product (the standard dot product) relative to the i-basis. (Trivial) Call it $g_{p q}^{i}$.
12) Compute the components of the inner product relative to the e-basis by finding all the inner products. Call it $g_{r s}^{e}$. Verify this is correct by using change of basis matrices.
13) Convert the vector $\vec{v}=\binom{1}{2}$ and $\vec{u}=\binom{3}{4}$ into the e-basis using the change of basis matrix. Compute $\langle\vec{v}, \vec{u}\rangle=\vec{v}_{e}^{T} g^{e} \vec{u}_{e}$. Verify this is equal to $\vec{v} \cdot \vec{u}=\vec{v}_{i}^{T} g^{i} \vec{u}_{i}$.
14) Find the inverse of g^{i}. Call it g_{i}.
15) Find the inverse of g^{e}. Call it g_{e}.
16) Given the vector $\vec{v}=\binom{1}{2}$, find the co-vector $v^{b}=g(v,$.$) . Give the components relative to both the$ i-basis and the e-basis, which are called $v^{b i}$ and $v^{b e}$.

