MATH 460

Sections 500

Consider the elliptic coordinate system:

$$x = 4t\cos\varphi$$
$$y = 3t\sin\varphi$$

The *t*-curve for $\varphi = \varphi_0$ is the radial ray

$$\frac{y}{x} = \frac{3}{4}\tan\varphi_0$$

$$\vec{r}_1(t) = \begin{pmatrix} 4t\cos\varphi_0\\ 3t\sin\varphi_0 \end{pmatrix}$$

The φ -curve for $t = t_0$ is the ellipse

$$\frac{x^2}{16} + \frac{y^2}{9} = t_0^2$$

which may be parametrized by

$$\vec{r}_2(\varphi) = \left(\begin{array}{c} 4t_0 \cos\varphi \\ 3t_0 \sin\varphi \end{array}\right)$$

We take the *xy*-coordinate tangent basis vectors to be

$$\hat{i}_{1} = \hat{i}_{x} = \hat{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\hat{i}_{2} = \hat{i}_{y} = \hat{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

So the *xy*-basis is $\hat{i} = (\hat{i}_1, \hat{i}_2)$ and any vector $\vec{v} = \begin{pmatrix} v^1 \\ v^2 \end{pmatrix}$ can be written as

$$\vec{v} = \hat{i}\vec{v}_i = \hat{i}_1v^1 + \hat{i}_2v^2 = \hat{i}v^1 + \hat{j}v^2$$

where the components of \vec{v} relative to the \hat{i} basis are $\vec{v}_i = \begin{pmatrix} v^1 \\ v^2 \end{pmatrix}$ which since we are in the standard basis are exactly the same as \vec{v} itself.

exactly the same as v fisen.

1) Find the $t\varphi$ -coordinate tangent basis vectors

$$\vec{e}_1 = \vec{e}_t = \frac{d}{dt}\vec{r}_1(t)$$
$$\vec{e}_2 = \vec{e}_{\varphi} = \frac{d}{dt}\vec{r}_2(\varphi)$$

So the $t\varphi$ -basis is $\vec{e} = (\vec{e}_1, \vec{e}_2)$ and any vector $\vec{v} = \begin{pmatrix} v^1 \\ v^2 \end{pmatrix}$ can be written as $\vec{v} = \vec{e}\vec{v}_e = \vec{e}_1v_e^1 + \vec{e}_2v_e^2$

where the components of \vec{v} relative to the \vec{e} basis are $\vec{v}_e = \begin{pmatrix} v_e^1 \\ v_e^2 \end{pmatrix}$.

- 2) Find the change of basis matrix, C, from the \vec{e} -basis to the \hat{i} -basis.
- **3)** Find the change of basis matrix, C, from the \hat{i} -basis to the \vec{e} -basis.
- **4)** Given that the *i*-components of \vec{v} are $\vec{v}_i = \begin{pmatrix} v^1 \\ v^2 \end{pmatrix}$, find the \vec{e} -components \vec{v}_e .
- **5**) Verify that you have the correct \vec{v}_e by computing $\vec{e} \vec{v}_e$ to see you do in fact get back \vec{v} .

Consider the linear map $L : \mathbb{R}^2 \to \mathbb{R}^2$ given (in the standard basis) by

$$L\left(\begin{array}{c}v^{1}\\v^{2}\end{array}\right) = \left(\begin{array}{c}4v^{1}-3v^{2}\\2v^{1}+v^{2}\end{array}\right)$$

- **6)** Find the matrix of L relative to the standard basis \hat{i} on both the domain and co-domain. Call it L. Compute it by finding $L(\hat{i}_p)$ and expanding in the *i*-basis.
- 7) Find the matrix of L relative to the *i*-basis on the domain and the *e*-basis on the co-domain. Call it L. Compute it using a change of basis matrix. Verify it by computing finding $L(\hat{i}_p)$.
- 8) Find the matrix of L relative to the e-basis on the domain and the i-basis on the co-domain. Call it L. Compute it using a change of basis matrix. Verify it by computing finding $L(\vec{e}_a)$.
- **9)** Find the matrix of L relative to the $t\varphi$ -basis \vec{e} on both the domain and co-domain. Call it L.

Compute it using change of basis matrices. Verify it by computing finding $L(\vec{e}_a)$.

10) Convert the vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ into the *e*-basis using the change of basis matrix. Compute $[L(\vec{v})]_e$, the

components of $L(\vec{v})$ relative to the *e*-basis by using *L*. Use this to compute $L(\vec{v}) = \vec{e}[L(\vec{v})]_e$. Verify $L(\vec{v})$ agrees with the original definition of L.

11) Compute the components of the inner product (the standard dot product) relative to the *i*-basis. (Trivial) Call it g_{pa}^{i} .

12) Compute the components of the inner product relative to the *e*-basis by finding all the inner products. Call it g_{rs}^{e} . Verify this is correct by using change of basis matrices.

13) Convert the vector
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ into the *e*-basis using the change of basis matrix.

Compute $\langle \vec{v}, \vec{u} \rangle = \vec{v}_e^T g^e \vec{u}_e$. Verify this is equal to $\vec{v} \cdot \vec{u} = \vec{v}_i^T g^i \vec{u}_i$.

- **14**) Find the inverse of g^i . Call it g_i .
- **15)** Find the inverse of g^e . Call it g_e .

16) Given the vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the co-vector $v^{\flat} = g(v, .)$. Give the components relative to both the

i-basis and the *e*-basis, which are called $v^{\flat i}$ and $v^{\flat e}$.