Consider the elliptic coordinate system:

$$
\begin{equation*}
\binom{x}{y}=\vec{R}(t, \varphi)=\binom{4 t \cos \varphi}{3 t \sin \varphi} \tag{i}
\end{equation*}
$$

This can be inverted to give:

$$
\binom{t}{\varphi}=\vec{R}^{-1}(x, y)=\binom{\sqrt{\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}}}{\arctan \left(\frac{4 y}{3 x}\right)+\left\{\begin{array}{ll}
0 & \text { in I and IV } \tag{ii}\\
\pi & \text { in II and III }
\end{array}\right\}}
$$

The $x y$-coordinate tangent basis vectors are:

$$
\hat{\imath}_{x}=\binom{1}{0} \quad \hat{\imath}_{y}=\binom{0}{1}
$$

The $t \varphi$-coordinate tangent basis vectors are:

$$
\vec{e}_{t}=\frac{\partial}{\partial t} \vec{R}(t, \varphi)=\binom{4 t \cos \varphi}{3 t \sin \varphi} \quad \vec{e}_{\varphi}=\frac{\partial}{\partial \varphi} \vec{R}(t, \varphi)=\binom{-4 t \sin \varphi}{3 t \cos \varphi}
$$

So we can write the $t \varphi$-basis vectors as linear combinations of the $x y$-basis vectors:

$$
\begin{align*}
\vec{e}_{t} & =4 t \cos \varphi \hat{\imath}_{x}+3 t \sin \varphi \hat{\imath}_{y} \tag{1}\\
\vec{e}_{\varphi} & =-4 t \sin \varphi \hat{\imath}_{x}+3 t \cos \varphi \hat{\imath}_{y}
\end{align*}
$$

1) Invert (1) to write the $x y$-basis vectors as linear combinations of the $t \varphi$-basis vectors

$$
\begin{align*}
& \hat{\imath}_{x}=\ldots \vec{e}_{t}+\ldots \vec{e}_{\varphi} \tag{2}\\
& \hat{\imath}_{y}= \\
& \vec{e}_{t}+\ldots
\end{align*}
$$

Let θ^{x} and θ^{y} be the dual basis to $\hat{\imath}_{x}$ and $\hat{\imath}_{y}$:

$$
\theta^{x}\left(\hat{\imath}_{x}\right)=1 \quad \theta^{x}\left(\hat{\imath}_{y}\right)=0 \quad \theta^{y}\left(\hat{\imath}_{x}\right)=0 \quad \theta^{y}\left(\hat{\imath}_{y}\right)=1
$$

Let ω^{t} and ω^{φ} be the dual basis to \vec{e}_{t} and \vec{e}_{φ} :

$$
\omega^{t}\left(\vec{e}_{t}\right)=1 \quad \omega^{t}\left(\vec{e}_{\varphi}\right)=0 \quad \omega^{\varphi}\left(\vec{e}_{t}\right)=0 \quad \omega^{\varphi}\left(\vec{e}_{\varphi}\right)=1
$$

2) Express ω^{t} and ω^{φ} as linear combinations of θ^{x} and θ^{y}.

$$
\omega^{t}=\ldots \theta^{x}+\ldots \theta^{y}
$$

3) Express θ^{x} and θ^{y} as linear combinations of ω^{t} and ω^{φ}.

$$
\begin{align*}
& \theta^{x}=_\omega^{t}+\ldots \omega^{\varphi} \tag{4}\\
& \theta^{y}=\ldots \omega^{t}+\ldots \quad \omega^{\varphi}
\end{align*}
$$

4) Consider a function $f(x, y)$. Use the chain rule and $\left({ }^{*}\right)$ to express $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial \varphi}$ as linear combinations of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$. Then drop the f 's.

$$
\begin{align*}
& \frac{\partial}{\partial t}=-\frac{\partial}{\partial x}+\quad \frac{\partial}{\partial y} \tag{5}\\
& \frac{\partial}{\partial \varphi}=-\quad \frac{\partial}{\partial x}+\square \frac{\partial}{\partial y}
\end{align*}
$$

5) Consider a function $g(t, \varphi)$. Use the chain rule and (${ }^{* *}$) to express $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ as linear combinations of $\frac{\partial g}{\partial t}$ and $\frac{\partial g}{\partial \varphi}$. Express the coefficients as functions of t and φ. Then drop the g 's.

$$
\begin{align*}
& \frac{\partial}{\partial x}=-\quad \frac{\partial}{\partial t}+\quad \frac{\partial}{\partial \varphi} \tag{6}\\
& \frac{\partial}{\partial y}=-\quad \frac{\partial}{\partial t}+\quad \frac{\partial}{\partial \varphi}
\end{align*}
$$

6) What do you observe about equations (1) and (2) vs. (5) and (6)?
7) Start with equation $\left(^{*}\right)$ and express the differentials of x and y as linear combinations of the differentials of t and φ.

$$
\begin{align*}
& d x=\ldots d t+\ldots \quad d \varphi \tag{7}\\
& d y=_d t+\ldots \quad d \varphi
\end{align*}
$$

8) Start with equation (**) and express the differentials of t and φ as linear combinations of the differentials of x and y. Express the coefficients as functions of t and φ.

$$
\begin{align*}
& d t=_d x+\ldots \tag{8}\\
& d \varphi=\square \\
& d y \\
& d x+ \\
& d y
\end{align*}
$$

9) What do you observe about equations (3) and (4) vs. (7) and (8)?
10) In any basis, the components of the metric are defined by $g_{p q}^{e}=\vec{e}_{p} \cdot \vec{e}_{q}$. In rectangular coordinates, the metric is $g_{p q}^{i}=\delta_{p q}$ which says that $\hat{\imath}_{x}$ and \hat{l}_{y} are perpendicular unit vectors. Find $g_{p q}^{e}$, the components of the metric in elliptical coordinates, by taking the dot products of \vec{e}_{t} and \vec{e}_{φ} as given in (1). Then find the inverse matrix $g_{e}^{p q}$.

We now need to define covariant derivatives. For the derivative of a function, f, the covariant derivative is just the directional derivative:

$$
\nabla_{\vec{v}} f=\vec{v} \cdot \vec{\nabla} f=\sum_{p} v^{p} \frac{\partial f}{\partial x^{p}} \equiv \sum_{p} v^{p} f_{, p}
$$

where partial derivatives are denoted by a comma. If the direction is a coordinate basis vectors, i.e. $\vec{v}=\vec{e}_{p}$, then:

$$
\nabla_{p} f \equiv \nabla_{\vec{e}_{p}} f=\frac{\partial f}{\partial x^{p}} \equiv f_{, p}
$$

For the derivative of a vector, \vec{u}, the covariant derivative is defined by the product rule with the understanding that any derivative of the standard rectangular basis vectors is 0 . So in rectangular coordinates, $\vec{u}=\sum_{q} u_{i}^{q} \hat{\imath}_{q}$:

$$
\nabla_{\vec{v}} \vec{u}=\sum_{q}\left[\left(\nabla_{\vec{v}} u_{i}^{q}\right) \hat{\imath}_{q}+u_{i}^{q}\left(\nabla_{\vec{v}} \hat{\imath}_{q}\right)\right]=\sum_{q}\left(\nabla_{\vec{\imath}} u_{i}^{q}\right) \hat{\imath}_{q}=\sum_{q} \sum_{p} v^{p} u_{i, p}^{q} \hat{l}_{q}
$$

If the direction is a rectangular basis vector, i.e. $\vec{v}=\hat{\imath}_{p}$, then:

$$
\nabla_{p} \vec{u} \equiv \nabla_{\hat{i}_{p}} \vec{u}=\sum_{q} u_{i, p}^{q} \hat{\imath}_{q}
$$

More generally, in any cordinate basis, $\vec{u}=\sum_{p} u_{e}^{q} \vec{e}_{q}$

$$
\begin{aligned}
\nabla_{\vec{v}} \vec{u} & =\sum_{q}\left[\left(\nabla_{\vec{v}} u_{e}^{q}\right) \vec{e}_{q}+u_{e}^{q}\left(\nabla_{\vec{v}} \vec{e}_{q}\right)\right]=\sum_{q} \sum_{p} v^{p}\left[\left(\nabla_{p} u_{e}^{q}\right) \vec{e}_{q}+u_{e}^{q}\left(\nabla_{p} \vec{e}_{q}\right)\right] \\
& =\sum_{q} \sum_{p} v^{p}\left[u_{e, p}^{q} \vec{e}_{q}+u_{e}^{q} \sum_{n} \Gamma_{q p}^{n} \vec{e}_{n}\right]
\end{aligned}
$$

where the connection coefficients, $\Gamma^{i}{ }_{j k}$, are defined by the equation

$$
\begin{equation*}
\nabla_{p} \vec{e}_{q}=\sum_{n} \Gamma_{q p}^{n} \vec{e}_{n} \tag{iii}
\end{equation*}
$$

In the last term we interchange the dummy indices q and n to arrive at:

$$
\begin{aligned}
\nabla_{\vec{v}} \vec{u} & =\sum_{p} \sum_{q} v^{p}\left[u_{e, p}^{q} \vec{e}_{q}+\sum_{n} u_{e}^{n} \Gamma_{n p}^{q} \vec{e}_{q}\right] \\
& =\sum_{p} \sum_{q} v^{p}\left[u_{e, p}^{q}+\sum_{n} \Gamma^{q}{ }_{n p} u_{e}^{n}\right] \vec{e}_{q} \equiv \sum_{p} \sum_{q} v^{p} u_{e ; p}^{q} \vec{e}_{q}
\end{aligned}
$$

where the components of the covariant derivative are denoted by a semicolon.

$$
\begin{equation*}
u_{e ; p}^{q}=u_{e, p}^{q}+\sum_{n} \Gamma^{q}{ }_{n p} u_{e}^{n} \tag{iv}
\end{equation*}
$$

If the direction is a coordinate basis vector, i.e. $\vec{v}=\vec{e}_{p}$, then:

$$
\nabla_{p} \vec{u} \equiv \nabla_{\vec{e}_{p}} \vec{u}=\sum_{q} u_{e ; p}^{q} \cdot \vec{e}_{q}
$$

We now want to find the connection coefficients in elliptical coordinates.
11) Start by applying ∇_{t} and ∇_{φ} to each equation in (1) and remember that any derivative of \hat{l}_{x} or $\hat{\imath}_{y}$ is 0 . The results for $\nabla_{t} \vec{e}_{t}, \nabla_{t} \vec{e}_{\varphi}, \nabla_{\varphi} \vec{e}_{t}$ and $\nabla_{\varphi} \vec{e}_{\varphi}$ should be linear combinations of $\hat{\imath}_{x}$ and $\hat{\imath}_{y}$. Reexpress them as linear combinations of \vec{e}_{t} and \vec{e}_{φ}. Use these to read off the 8 connection coefficients from (${ }^{* * *)}$.
12) Let $\vec{R}\left(r^{q}\right)=\left(x^{n}\left(r^{q}\right)\right)$ be an arbitrary coordinate system. The coordinate basis vectors are, $\vec{e}_{q}=\sum_{n} \frac{\partial x^{n}}{\partial r^{q}} \hat{l}_{n}$. Use this infromation to show the connection coefficients are symmetric:

$$
\begin{equation*}
\Gamma_{q p}^{n}=\Gamma_{p q}^{n} \tag{v}
\end{equation*}
$$

The generalization of (iv) to covariant tensors of rank 2, including the metric tensor, is:

$$
g_{p r ; n}=g_{p q, n}-\Gamma_{p n}^{m} g_{m q}-\Gamma_{q n}^{m} g_{p m}
$$

For the metric tensor in rectangular coordinates, $g_{p q}=\delta_{p q}$, and all the Γ 's are 0 . So

$$
g_{p r ; n}=0
$$

which is true in any basis. In a coordinate basis,

$$
\begin{equation*}
g_{p r ; n}=g_{p q, n}-\Gamma_{p n}^{m} g_{m q}-\Gamma_{q n}^{m} g_{p m}=0 \tag{vi}
\end{equation*}
$$

13) Use (v) and (vi) to show:

$$
\begin{equation*}
\Gamma_{p q}^{m}=\frac{1}{2} g_{e}^{m n}\left(g_{n q, p}^{e}+g_{n p, q}^{e}-g_{p q, n}^{e}\right) \tag{vii}
\end{equation*}
$$

14) Using $g_{p q}^{e}$ and $g_{e}^{m n}$ from $\# 10$, recompute the 8 connection coefficients for elliptical coordinates.
