
MATH 460 Tensors and General Relativity Fall 2017

Sections 500 Homework 2 P. Yasskin

Consider the elliptic coordinate system:

x

y
 Rt, 

4tcos

3t sin
    (i)

This can be inverted to give:

t


 R1x,y 

x
4

2


y
3

2

arctan
4y
3x


0 in I and IV

 in II and III

    (ii)

The xy-coordinate tangent basis vectors are:

îx 
1

0
îy 

0

1

The t-coordinate tangent basis vectors are:

et  
t

Rt, 
4tcos

3t sin
e  


Rt, 

4t sin

3tcos

So we can write the t-basis vectors as linear combinations of the xy-basis vectors:

et  4tcos îx  3t sin îy

e  4t sin îx  3tcos îy

    (1)

1) Invert (1) to write the xy-basis vectors as linear combinations of the t-basis vectors

îx  et  e

îy  et  e

    (2)

Let x and y be the dual basis to îx and îy:

xîx  1 xîy  0 yîx  0 yîy  1

Let t and  be the dual basis to et and e:

tet  1 te  0 et  0 e  1

2) Express t and  as linear combinations of x and y.

t  x  y

  x  y

    (3)

3) Express x and y as linear combinations of t and .

x  t  

y  t  

    (4)

1



4) Consider a function fx,y. Use the chain rule and (*) to express
f
t

and
f


as linear

combinations of
f
x

and
f
y

. Then drop the f ’s.


t

 
x

 
y




 
x

 
y

    (5)

5) Consider a function gt,. Use the chain rule and (**) to express
g
x

and
g
y

as linear

combinations of
g
t

and
g


. Express the coefficients as functions of t and . Then drop the g’s.


x

 
t

 



y

 
t

 


    (6)

6) What do you observe about equations (1) and (2) vs. (5) and (6)?

7) Start with equation (*) and express the differentials of x and y as linear combinations of the
differentials of t and .

dx  dt  d

dy  dt  d

    (7)

8) Start with equation (**) and express the differentials of t and  as linear combinations of the
differentials of x and y. Express the coefficients as functions of t and .

dt  dx  dy

d  dx  dy

    (8)

9) What do you observe about equations (3) and (4) vs. (7) and (8)?

10) In any basis, the components of the metric are defined by gpq
e  ep  eq. In rectangular

coordinates, the metric is gpq
i  pq which says that îx and îy are perpendicular unit vectors. Find gpq

e ,
the components of the metric in elliptical coordinates, by taking the dot products of et and e as given
in (1). Then find the inverse matrix ge

pq.

We now need to define covariant derivatives. For the derivative of a function, f, the covariant derivative is
just the directional derivative:

v f  v   f  
p
vp f
xp  

p
vpf ,p

where partial derivatives are denoted by a comma. If the direction is a coordinate basis vectors, i.e. v  ep,
then:

p f  ep f 
f
xp  f ,p

For the derivative of a vector, u, the covariant derivative is defined by the product rule with the
understanding that any derivative of the standard rectangular basis vectors is 0. So in rectangular
coordinates, u  

q
ui
qîq:

vu  
q

vui
qîq  ui

qvîq  
q

vui
qîq  

q

p
vpui,p

q îq
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If the direction is a rectangular basis vector, i.e. v  îp, then:

p u   îp u  
q
ui,p
q îq

More generally, in any cordinate basis, u  
p
ue
qeq

vu  
q

vue
qeq  ue

qveq  
q

p
vppue

qeq  ue
qpeq

 
q

p
vp ue,p

q eq  ue
q

n
 qp

n en

where the connection coefficients,  jk
i , are defined by the equation

peq  
n
 qp

n en     (iii)

In the last term we interchange the dummy indices q and n to arrive at:

vu  
p

q
vp ue,p

q eq 
n
ue
n np

q eq

 
p

q
vp ue,p

q 
n
 np

q ue
n eq  

p

q
vpue;p

q eq

where the components of the covariant derivative are denoted by a semicolon.

ue;p
q  ue,p

q 
n
 np

q ue
n     (iv)

If the direction is a coordinate basis vector, i.e. v  ep, then:

p u  ep u  
q
ue;p
q eq

We now want to find the connection coefficients in elliptical coordinates.

11) Start by applying  t and  to each equation in (1) and remember that any derivative of îx or îyis
0. The results for  tet,  te, et and e should be linear combinations of îx and îy. Reexpress
them as linear combinations of et and e. Use these to read off the 8 connection coefficients from (***).

12) Let Rrq  xnrq be an arbitrary coordinate system. The coordinate basis vectors are,
eq  

n

xn

rq
în. Use this infromation to show the connection coefficients are symmetric:

 qp
n   pq

n     (v)

The generalization of (iv) to covariant tensors of rank 2, including the metric tensor, is:

gpr;n  gpq,n   pn
m gmq   qn

m gpm

For the metric tensor in rectangular coordinates, gpq  pq, and all the ’s are 0. So

gpr;n  0,

which is true in any basis. In a coordinate basis,

gpr;n  gpq,n   pn
m gmq   qn

m gpm  0     (vi)

13) Use (v) and (vi) to show:

 pq
m  1

2
ge
mngnq,p

e  gnp,q
e  gpq,n

e      (vii)

14) Using gpq
e and ge

mn from #10, recompute the 8 connection coefficients for elliptical coordinates.
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