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Introduction

This is not a book on multivariable calculus. It is a lab manual on how to useMapleV to help with multi-
variable calculus problems. It is basically written to accompany chapters 13–17 of the bookCalculus, Fourth
Editionby James Stewart. However, the order of the material is organized by computational topic.

For a review of how to useMapleV to help with single variable calculus problems, see the lab manual
Single Variable CalcLabs with Maple for Stewart’s Calculus, Fourth Editionby Barrow et al.

Everything in this book refers to Release 5 ofMapleV. This book is accompanied by aMaplepackage
calledvec calc which can be installed on any computer runningMapleV. Appendix A contains instructions
for obtaining and installing the package. To use the commands in the package, you must first execute three
commands: The first command tellsMaplewhere the package library files are located. For example, on a
machine running Windows, you would enter:
> libname := libname, "C:\\Program Files\\Maple V Release
5\\local\\vec_calc";

In general, you must replace the path with the actual path to the library files as appropriate for your operating
system and installation. (See Appendix A.) The second command reads in the package commands:
> with(vec_calc);

And the third command defines many abbreviations for thevec calc commands:
> vc_aliases;

The output you should expect from these commands appears in Appendix A. If you desire, one or more of
these commands may be automatically executed when you startMaple. See Appendix A for details. After
starting thevec calc package, you may get help on any command by executing
> ?vec_calc

and following the hyperlinks.

The book has two parts. The first part (chapters 1 through 8) explain howMaplecan help with standard
vector calculus computations. Each chapter ends with a set of short homework problems. The second part
(chapters 9 and 10) contains assignments which could be used in a computer lab setting. Chapter 9 has shorter
(one week) lab assignments, while chapter 10 has longer (multi-week) lab projects.

Chapter 1 covers the geometry ofR
2 andR

3 including the algebra of vectors, the standard coordinate
systems and the description of curves and surfaces.

Chapter 2 studies vector valued functions of one variable with emphasis on the properties of curves.
Chapter 3 discusses partial derivatives of functions of several variables and applications using tangent

planes and directional derivatives.

ix



x INTRODUCTION

Chapter 4 shows howMaplecan automate the solution of max-min problems with several variables with-
out or with constraints. The discussion is not restricted to just two variables.

Chapter 5 explains the commands for computing multiple integrals in rectangular, polar, cylindrical,
spherical and general curvilinear coordinates. Applications include mass, center of mass and moment of
inertia.

Chapter 6 studies how to compute line integrals and surface integrals using parametric curves and sur-
faces. Applications include mass, center of mass, moment of inertia, work, circulation, flux and expansion.

Chapter 7 discusses the commands for computing the gradient, divergence, curl, Laplacian and Hessian
and how to find scalar and vector potentials.

Chapter 8 studies the major theorems of vector analysis: the Fundamental Theorem of Calculus for
Curves, Green’s Theorem, Stokes’ Theorem and Gauss’ Theorem. Applications include path and surface
independence, work, circulation, flux, expansion and the computation of area and volume.

Chapter 9 is a collection of labs which might be used for one lab period in the computer lab. Typically
the students would work in pairs and have one week to complete the lab assignment. A short lab report is
expected.

Chapter 10 is a collection of longer lab projects which require significant work. Typically the students
would work in groups of four and have two to four weeks to complete the project. An extensive project report
is expected.

Appendix A contains instructions for obtaining, installing and using thevec calc package.
Appendix B contains three tables which summarize the applications of integration which are computed

throughout the book.



Chapter 1

The Geometry ofRn

1.1 Vector Algebra

Each time you start Maple and before you begin each section of this book, be sure you restart the
vec calc package as explained in Appendix A. For example, in Windows, you would enter:
> libname := libname, "C:\\Program Files\\Maple V Release
5\\local\\vec_calc":
> with(vec_calc): vc_aliases:
Some or all of these commands may be automated as explained in Appendix A.

When you load thevec calc package, it automatically loads thestudent , linalg and plots
packages. So you do not need to do that separately.

1.1.1 Scalars Are Numbers; Points and Vectors Are Lists
1In this book, a scalar is entered intoMapleas a number, while a point or a vector is entered as an ordered list
using square brackets. For example, the scalara = 5, the pointP = (1, 3, 2) and the vector~v = 〈3,−4〉 =
3ı̂ − 4̂ are entered as:
> 5; [1,3,2]; [3,-4];

5

[1, 3, 2]

[3, −4]
NOTE: Notice there are multipleMaplecommands on a single line, each ending with a semi-colon (; ).
If you want, you can give names:
> a:=5; P:=[1,3,2]; v:=[3,-4];

a := 5

P := [1, 3, 2]

1Stewart Ch. 13. Footnotes to Stewart refer to the bookCalculus, Fourth Edition.

1



2 CHAPTER 1. THE GEOMETRY OFRn

v := [3, −4]
The symbol:= is called an assignment. The quantity on the right is “assigned” to a memory location whose
name is given on the left. For example, the assignmentP:=[1,3,2]; stores the point[1, 3, 2] in the
memory location namedP. To display (or use) the vector~v, type its name.
> v;

[3, −4]
To display (or use) a component of~v, type its name followed by the component number in square brackets:
> v[2];

−4
Maple is not restricted to 2 or 3 dimensional vectors. (We will letR

2 denote a 2-dimensional plane and
let R

3 denote 3-dimensional space.)Maplecan handle vectors with any number of components. (We will let
R

n denote n-dimensional space.) Further, the components do not need to be numbers. They can be undefined
symbols, previously defined symbols or any expression using these:
> two_D:=[1, -6]; three_D:=[7, 0, -4]; four_D:=[p, q, r, s];
> [6, a, a*xˆ2-18, -8, 45, w];

two D := [1, −6]

three D := [7, 0, −4]

four D := [p, q, r, s]

[6, 5, 5 x2 − 18, −8, 45, w]
This last vector is an unnamed 6 dimensional vector. It contains the undefined variablesx andwand a simple
polynomial expression inx . Further, the previously defined variablea has been given its value of 5. If you
don’t wanta to have its previous value, then you must first unassign it by typing
> a:=’a’;

a := a

Then we have
> [6, a, a*xˆ2-18, -8, 45, w];

[6, a, a x2 − 18, −8, 45, w]
wherea is undefined.

To compute the length of a vector2, use thevec calc commandlen :
> v; length_of_v:=len(v);

[3, −4]

length of v := 5
(If you did not get this result, it is probably because you did not load thevec calc package. Load it now,
as explained in Appendix A.)

2Stewart§13.2.



1.1. VECTOR ALGEBRA 3

This was easy and could have been done in your head, but consider:
> w:=[37/6, -41/28]; length_of_w:=len(w);

w := [
37
6

,
−41
28

]

length of w :=
1
84

√
283453

1.1.2 Addition, Scalar Multiplication and Simplification
3You can add and subtract vectors and also multiply and divide a vector by a scalar by simply using the
standard+, −, ∗ and/ signs:
> u:=[1,-3,3]; v:=[3,-4,12];

u := [1, −3, 3]

v := [3, −4, 12]

> u+v; v-u; sqrt(2)*u; v/2;

[4, −7, 15]

[2, −1, 9]

√
2 [1, −3, 3]

[
3
2
, −2, 6]

Notice that in three of these computationsMaple performed the operation. However, whenMaple fails to
perform an operation on vectors, you can forceMaple to evaluate the quantity by using thevec calc
commandevall which stands for evaluate list:
> evall(sqrt(2)*u);

[
√

2, −3
√

2, 3
√

2]

Here we have evaluated
√

2~u in a single command. However, it is better to do this type of computation in
two steps, as follows:
> sqrt(2)*u; evall(%);

√
2 [1, −3, 3]

[
√

2, −3
√

2, 3
√

2]

Here the percent sign (%) is Maple’s way of referring to the result of the immediately preceding computation.
The benefit is that you can see the quantity to be computed before doing the operations. This prevents many
mistakes due to typographical errors. There will be many more examples of this preventative measure later.

3Stewart§13.2.



4 CHAPTER 1. THE GEOMETRY OFRn

EXAMPLE 1.1. Find the distance between the pointsP = (3,−2, 1) andQ = (5,−3, 3).
SOLUTION: The vector fromP to Q is the difference between the final point and the initial point:

−→
PQ =

Q − P . In Maplewe compute
> P:=[3,-2,1]; Q:=[5,-3,3]; PQ:=Q-P;

P := [3, −2, 1]

Q := [5, −3, 3]

PQ := [2, −1, 2]
The distance fromP to Q is then the length of this vector:
> distance_P_Q:=len(PQ);

distance P Q := 3

The vector̂v =
~v

|~v| is called the unit vector in the direction of~v or simply the direction of~v. Throughout

this book, a caret ()̂ over a vector indicates that it is a unit vector.

EXAMPLE 1.2. Find the unit vector in the direction of the vector~w =
〈

37
6

,−41
28

〉
. Give the exact answer

and a decimal approximation.

SOLUTION: We define the vector~w and compute the vector̂w =
~w

|~w| :
> w:=[37/6,-41/28]; w/len(w); w_hat:=evall(%); evalf(%);

w := [
37
6

,
−41
28

]

84
283453

[
37
6

,
−41
28

]
√

283453

w hat := [
518

283453

√
283453, − 123

283453

√
283453]

[.9729471067, −.2310279809]

NOTE: The command evalf(%) forcesMapleto evaluate the previous quantity as a decimal.

1.1.3 The Dot Product
4Recall that in any dimension the dot product of two vectors~u and~v is the sum of the products of correspond-
ing components. For example, inR3 the dot product of~u and~v is:

~u · ~v = u1v1 + u2v2 + u3v3 .

In Maple we can use thevec calc commanddot . For example:
> u:=[2,5,-1]; v:=[p,q,r];

u := [2, 5, −1]

4Stewart§13.3.



1.1. VECTOR ALGEBRA 5

v := [p, q, r]
> dot(u,v);

2 p + 5 q − r

Alternatively, you can use thevec calc operator&. :
> u &. v;

2 p + 5 q − r

Further, in any dimension if you know the angleθ between two vectors~u and~v, then their dot product may
also be computed from:

~u · ~v = |~u| |~v| cos(θ) .

This formula may be solved forcos(θ), and used for computing the angle between two vectors:

cos(θ) =
~u · ~v
|~u| |~v| .

Recall that thevec calc commandlen will compute the length of a vector.

EXAMPLE 1.3. Space, the Final Frontier: As our navigator through the solar system, you notice that the
Earth, Moon and Sun currently form a triangle with a 74.1◦ angle at the Earth. Find the angleθ (to the nearest
hundredth of a degree) of the vertex at the Sun given that the distance from the Earth to the Sun is 390 times
the distance from the Earth to the Moon. (The angles are in degrees for the primitive Earthlings.)

SOLUTION: Let a be the distance from the earth to the moon. Pick the coordinate system so that the earth
is at the origin,E = (0, 0), the sun is atS = (390a, 0) and the moon is atM = (a cos(θ), a sin(θ)) where
θ = 74.1◦. SinceMaplecomputes all trig functions using radian measure, we first convert 74.1◦ into radians
by using thevec calc commanddeg2rad (or its aliasd2r ):
> theta:=d2r(74.1);

θ := 1.293288976
Next we enter the pointsS, E andM :
> S:=[390*a, 0]: E:=[0, 0]: M:=[a*cos(theta), a*sin(theta)];

M := [.2739592184 a, .9617413096 a]
NOTE: To save space in this book, we will sometimes omit the output ofMaple commands when it is
identical to the input, as forS andE above. This is done by using a colon (: ) instead of a semi-colon (; )
at the end of the statement. As a student, you should print out everything by using semi-colons to be sure the
command is correct.
We then compute the vectors fromS to E and fromS to M and the length of these vectors:
> SE:=E-S; SM:=M-S;

SE := [−390 a, 0]

SM := [−389.7260408 a, .9617413096 a]
> len_SE:=len(SE); len_SM:=len(SM);

len SE := 390 a
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len SM := 389.7272274 a

Next we computecos(θ):
> cos_theta:=dot(SE,SM) / (len_SE*len_SM); #DON’T FORGET THE
PARENTHESES

cos theta := .9999969553
NOTE: On aMaple input line, anything following a # is a comment whichMaple ignores.
Finally, we take thearccos to getθ:
> theta:=arccos(cos_theta);

θ := .002467671593
The linalg package also contains a commandangle which computes this angle directly:
> angle(SE,SM); theta:=evalf(%);

arccos(.002564094757
√

152100)

θ := .002467712117
NOTE: The linalg package is automatically loaded when you load thevec calc package.
SinceMaplecomputes all inverse trig functions using radian measure, this value for theta is in radians. To
convert it to degrees you can use thevec calc commandrad2deg (or its aliasr2d ):
> r2d(theta);

.1413894893
Thus, to the nearest hundredth of a degree, the angle isθ = 0.14 degrees.

Another application of the dot product is to compute the scalar and vector projections of a vector~u along
a vector~v and the orthogonal projection of~u perpendicular to~v. These are shown in Fig. 1.1.

orth_v u

comp_v u

v 

u 

proj_v u

Figure 1.1: Projection Operators

The scalar projection or component of~u along~v is computed from the formula:

comp~v ~u =
~u · ~v
|~v| = ~u · v̂,
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wherev̂ =
~v

|~v| . The vector projection of~u along~v is computed from the formula:

proj~v ~u =
~u · ~v
|~v|2 ~v = (~u · v̂)v̂

The projection of~u orthogonal to~v is computed from the formula:

proj⊥~v ~u = ~u − proj~v ~u = ~u − ~u · ~v
|~v|2 ~v = ~u − (~u · v̂)v̂

EXAMPLE 1.4. For the vectors~a = −ı̂−2̂+2k̂ and~b = 3ı̂+3̂+4k̂, find the scalar and vector projections
of~b along~a and the projection of~b orthogonal to~a .

SOLUTION: Define the vectors:
> a:=[-1, -2, 2]: b:=[3, 3, 4]:
Compute the scalar projection:
> scal_proj:=dot(b,a)/len(a);

scal proj :=
−1
3

Compute the vector projection:
> vect_proj:=dot(b,a)/len(a)ˆ2 * a;

vect proj := [
1
9
,

2
9
,
−2
9

]

Compute the orthogonal projection:
> orthog_proj:=b - vect_proj;

orthog proj := [
26
9

,
25
9

,
38
9

]

EXAMPLE 1.5. Compute the work done on a box by a horizontal force of 35 lbs which moves the box 9 ft
up a ramp which is inclined at an angle of 15 degrees.

SOLUTION: We input the force and distance and convert the 15◦ angle into radian measure by using the
vec calc commandd2r :
> F:=35: d:=9: theta:=d2r(15);

θ :=
1
12

π

The work done is the dot product of the force vector and the displacement vector. Since we know the magni-
tude of these vectors and the angle between them, we use the angle formula for the dot product:
> work:=F*d*cos(theta); evalf(%);

work :=
315
4

√
6 (1 +

1
3

√
3)

304.2666353

So the work done is 304.3 ft-lbs. (Telling the boss the work done is
315
4

√
6

(
1 +

1
3

√
3
)

ft-lb is a good way

to get fired.)
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1.1.4 The Cross Product
5The cross product can only be defined in 3 dimensions. Given two vectors~u = (u1, u2, u3) and
~v = (v1, v2, v3), their cross product is defined to be the vector

~u × ~v =

∣∣∣∣∣∣
ı̂ ̂ k̂

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ = (u2v3 − u3v2)̂ı + (u3v1 − u1v3)̂ + (u1v2 − u2v1)k̂

= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

In Mapleyou can compute the cross product by using thevec calc commandcross :
> u:=[2,5,-1]: v:=[p,q,r]: cross(u,v);

[5 r + q, −p − 2 r, 2 q − 5 p]
Alternatively, you can use thevec calc operator&x:
> u &x v;

[5 r + q, −p − 2 r, 2 q − 5 p]

EXAMPLE 1.6. If ~a = (−2, 3, 4) and~b = (3, 0, 1), compute~a ×~b.
SOLUTION: Enter the vectors and compute the cross product.

> a:=[-2, 3, 4]: b:=[3, 0, 1]: axb:=cross(a,b);

axb := [3, 14, −9]

As applications of the cross product, we have:

1. The area of a parallelogram with edges~u and~v is the length of their cross product:

Apara = |~u × ~v|

2. The area of a triangle with edges~u and~v is half of the length of their cross product:

Atri =
1
2
|~u × ~v|

3. The volume of a parallelepiped with edges~u, ~v and ~w is the absolute value of their triple product:

Vpara = |(~u × ~v) · ~w|

EXAMPLE 1.7. Find the area of the triangle with verticesP = (3, 2,−5), Q = (0,−2, 3) and
R = (−5,−1, 2).

SOLUTION: Enter the points and compute two edge vectors:
> P:=[3,2,-5]: Q:=[0,-2,3]: R:=[-5,-1,2]:
> PQ:=Q-P; PR:=R-P;

PQ := [−3, −4, 8]

5Stewart§13.4.
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PR := [−8, −3, 7]
Now compute the area as half of the length of the cross product.
> cp:=cross(PQ,PR); area:=len(cp)/2;

cp := [−4, −43, −23]

area :=
3
2

√
266

EXAMPLE 1.8. Find the volume of the parallelepiped with edges~a = (0, 0, 1), ~b = (0, 2, 2) and~c =
(3, 3, 3).

SOLUTION: Enter the edge vectors, compute the triple product and its absolute value:
> a:=[0,0,1]: b:=[0,2,2]: c:=[3,3,3]:
> (a &x b) &. c; V:=abs(%);

−6

V := 6

1.2 Coordinates

Remember to restart thevec calc package.

1.2.1 Polar Coordinates inR
2

6In R
2, there are two standard coordinate systems: a pointP has rectangular coordinates(x, y) and polar

coordinates(r, θ). These coordinates are shown in Fig. 1.2.

θ

 y

 x 

r 

P 

Figure 1.2: Rectangular and Polar Coordinates inR
2

6Stewart§11.4.
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Thevec calc commandpolar2rect (or p2r ) converts from polar to rectangular coordinates. The
vec calc commandrect2polar (or r2p ) converts from rectangular to polar coordinates. Bothp2r and
r2p expect a single argument which is a list of two coordinates. If the argument ofp2r or r2p contains
any floating point decimal numbers, thenp2r andr2p return decimal answers. Otherwise, they return exact
numbers or symbolic expressions.

Here are some examples:
> p2r([r,theta]), p2r([2,Pi/6]), p2r([2.,Pi/6]);

[r cos(θ), r sin(θ)], [
√

3, 1], [1.000000000
√

3, 1.000000000]
> r2p([x,y]), r2p([-2,0]), r2p([-2,-2]);

[
√

x2 + y2, arctan(y, x)], [2, π], [2
√

2, −3
4

π]

> r2p([3,-4]), r2p([3.,-4]);

[5, −arctan(
4
3
)], [5.000000000, −.9272952180]

NOTE: TheMaple commandarctan(y,x) with 2 arguments is precisely designed to produce exactly
what is needed forθ:
> arctan(1,1), arctan(1,-1), arctan(-1,-1), arctan(-1,1);

1
4

π,
3
4

π, −3
4

π, −1
4

π

1.2.2 Cylindrical and Spherical Coordinates inR
3

7In R
3, there are three standard coordinate systems: a pointP has rectangular coordinates(x, y, z), cylindri-

cal coordinates(r, θ, z) and spherical coordinates(ρ, θ, φ). These coordinates are shown in Fig. 1.3.

x
rθ

y

φ ρ

P

z

Figure 1.3: Rectangular, Cylindrical and Spherical Coordinates inR
3

7Stewart§§13.1, 13.7.
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There are 6vec calc commands which convert between rectangular, cylindrical and spherical coordi-
nates:

• cyl2rect (or c2r ) converts from cylindrical to rectangular coordinates.

• rect2cyl (or r2c ) converts from rectangular to cylindrical coordinates.

• sph2rect (or s2r ) converts from spherical to rectangular coordinates.

• rect2sph (or r2s ) converts from rectangular to spherical coordinates.

• sph2cyl (or s2c ) converts from spherical to cylindrical coordinates.

• cyl2sph (or c2s ) converts from cylindrical to spherical coordinates.

Each of these commands expect a single argument which is a list of three coordinates. If the argument
contains any floating point decimal numbers, then these commands return decimal answers. Otherwise, they
return exact numbers or symbolic expressions.

Here are some examples:

> c2r([r,theta,z]), r2c([x,y,z]);

[r cos(θ), r sin(θ), z], [
√

x2 + y2, arctan(y, x), z]

> s2r([rho,theta,phi]); r2s([x,y,z]);

[ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)]

[
√

x2 + y2 + z2, arctan(y, x), arctan(
√

x2 + y2, z)]

> s2c([rho,theta,phi]), c2s([r,theta,z]);

[ρ sin(φ), θ, ρ cos(φ)], [
√

r2 + z2, θ, arctan(r, z)]

> c2r([2, -Pi/3,4]), r2c([3,4,12]);

[1, −
√

3, 4], [5, arctan(
4
3
), 12]

> s2r([1,Pi/4,Pi/4]), r2s([.5,.5,1/sqrt(2)]);

[
1
2
,

1
2
,

1
2

√
2], [1.000000000, .7853981634, .7853981635]

> s2c([1,Pi/4,Pi/4]), c2s([5,theta,12]);

[
1
2

√
2,

1
4

π,
1
2

√
2], [13, θ, arctan(

5
12

)]
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1.3 Curves and Surfaces

1.3.1 Lines and Planes

Parametric Lines 8To specify a line one can give either (i) two pointsP andQ on the line or (ii) one point
P and a direction given by a vector~v tangent to the line. Given two points on the line, the direction for the
line can be taken as the vector between the two points~v = −→

PQ = Q − P . We want to find an equation for
the general pointX on the line.

Notice that the vector fromP to X is a multiple of the vector~v. See Fig. 1.4. Lettingt denote the
proportionality constant, we have

−−→
PX = t~v or X − P = t~v or X = P + t~v

These are parametric equations for a line andt (called the parameter) says where you are on the line. The
vector~v is called a direction vector or a tangent vector for the line.

v = PQ

PX = t v

P 

X 

Q 

Figure 1.4: Parametric Line

EXAMPLE 1.9. Find parametric equations for the line through the pointsP = (2,−1, 3) andQ = (5, 2, 4).
SOLUTION: We define the points and the direction vector:

> P:=[2,-1,3]: Q:=[5,2,4]: v:=Q-P;

v := [3, 3, 1]
We defineX = (x, y, z) as the generic point and construct the equation of the line:
> X:=[x,y,z]: line1:=X=evall(P+t*v);

line1 := [x, y, z] = [2 + 3 t, −1 + 3 t, 3 + t]
To write this as separate equations, we use theequate command from thestudent package:
> line2:=equate(X,P+t*v);

line2 := {z = 3 + t, y = −1 + 3 t, x = 2 + 3 t}
NOTE: The student package is automatically loaded when you load thevec calc package.

8Stewart§13.5.
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Parametric Planes 9Similarly, to specify a plane one can give either (i) three pointsP , Q andR on the
plane or (ii) one pointP and two vectors~u and~v tangent to the plane or (iii) one pointP and one vector
~N (called the normal vector) perpendicular to the plane. Given three points, the two vectors can be taken as
~u = −→

PQ = Q − P and~v = −→
PR = R − P . (See Fig. 1.5 below.) Given the two vectors, the normal vector

can be taken as~N = ~u× ~v. (See Fig. 1.6 below.) We want to find an equation for the general pointX on the
plane.

Given a point and two tangent vectors, notice that the vector fromP to X can be written as a multiple of
the vector~u plus a multiple of the vector~v. See Fig. 1.5. Lettings andt be the multiples, we have

−−→
PX = s~u + t~v or X − P = s~u + t~v or X = P + s~u + t~v

These are parametric equations for a plane ands andt (called the parameters) determine where you are on
the plane.

 Q u = PQ X 
P 

PX = s u + t v Rv = PR 

Figure 1.5: Parametric Plane

EXAMPLE 1.10. Find parametric equations for the plane through the pointsP = (2,−1, 3), Q = (5, 2, 4)
andR = (−4, 2, 2).

SOLUTION: We define the points and the two vectors between them:
> P:=[2,-1,3]: Q:=[5,2,4]: R:=[-4,2,2]:
> u:=Q-P; v:=R-P;

u := [3, 3, 1]

v := [−6, 3, −1]
We defineX = (x, y, z) as the generic point and construct the equation of the plane:
> X:=[x,y,z]: plane1:=X=evall(P+s*u+t*v);

plane1 := [x, y, z] = [2 + 3 s − 6 t, −1 + 3 s + 3 t, 3 + s − t]
To write this as separate equations, we useequate :
> plane2:=equate(X,P+s*u+t*v);

plane2 := {x = 2 + 3 s − 6 t, y = −1 + 3 s + 3 t, z = 3 + s − t}

9Stewart§17.6.
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Non-Parametric Planes 10Alternatively, given a point and a normal vector, notice that the vector fromP
to X is perpenducular to~N . See Fig. 1.6. Thus:

~N · −−→PX = 0 or ~N · (X − P ) = 0 or ~N · X = ~N · P

This is a (non-parametric) equation for the plane.

 u  X
P 

 v

N = u x v

Figure 1.6: Non-Parametric Plane

EXAMPLE 1.11. Find the non-parametric equation for the plane through the pointsP = (2,−1, 3), Q =
(5, 2, 4) andR = (−4, 2, 2).

SOLUTION: We define the points and two vectors as above and then construct the normal vector:
> N:=cross(u,v);

N := [−6, −3, 27]
We enter the generic point,X = (x, y, z), and find the equation of the plane:
> X:=[x,y,z]: plane3:=dot(N,X) = dot(N,P);

plane3 := −6 x − 3 y + 27 z = 72
Finally, notice that this is equivalent to the equation which is obtained by eliminating the parameters in

the parametric equations:
> solve( {plane2[1],plane2[2] }, {s,t });

{t = −1
9

x +
1
3

+
1
9

y, s =
2
9

y +
1
9

x}
> subs(%,plane2[3]); 27*%;

z =
8
3

+
1
9

y +
2
9

x

27 z = 72 + 3 y + 6 x

10Stewart§13.5.
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Non-Parametric Lines So far we have discussed parametric lines and planes and non-parametric planes.
It remains to discuss non-parametric lines. The situation is different inR

2 andR
3.

In R
2, the non-parametric equations for the line through a pointP with normal vector~n is given by: (See

Fig. 1.7.)

~n · −−→PX = 0 or ~n · (X − P ) = 0 or ~n · X = ~n · P
If a direction vector for the line is~v = (v1, v2), the normal vector may be taken as~n = (v2,−v1), since then
~n · ~v = 0.

X 

 v

P 

n 

Figure 1.7: Non-Parametric Line in 2D

EXAMPLE 1.12. Find the non-parametric equations for the line through the pointsA = (4, 7) andB =
(−2, 3).

SOLUTION: We enter the points and find the direction vector:
> A:=[4,7]: B:=[-2,3]: v:=B-A;

v := [−6, −4]
So the normal vector is
> n:=[v[2], -v[1]];

n := [−4, 6]
Then we enter the generic point,X = (x, y), and find the equation of the line:
> X:=[x,y]: line:=dot(n,X) = dot(n,A);

line := −4 x + 6 y = 26

In R
3, the non-parametric or symmetric equations11 for the line through the pointP = (p, q, r) with

direction vector~v = (a, b, c) are:

x − p

a
=

y − q

b
=

z − r

c
.

11Stewart§13.5.
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EXAMPLE 1.13. Find the symmetric equations for the line through the pointsP = (2,−1, 3) andQ =
(5, 2, 4).

SOLUTION: We enter the points and find the direction vector:
> P:=[2,-1,3]: Q:=[5,2,4]: v:=Q-P;

v := [3, 3, 1]
Reading off coefficients, we construct the two equations for the line:
> line3:= {(x-P[1])/v[1] = (y-P[2])/v[2], (y-P[2])/v[2] =
(z-P[3])/v[3] };

line3 := {1
3

y +
1
3

= z − 3,
1
3

x − 2
3

=
1
3

y +
1
3
}

These are the equations of two planes whose intersection is the line.

1.3.2 Quadric Curves and Quadric Surfaces

Quadric Curves 12A quadric curve is the graph of a quadratic equation inR
2. The general quadratic

equation with no cross terms isAx2 + By2 + Cx + Dy + E = 0. By completing the squares onx andy
(when possible), it may be brought to one of the following standard forms:

(x − p)2 + (y − q)2 = r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . circle
(x − p)2

a2
+

(y − q)2

b2
= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ellipse

(x − p)2

a2
− (y − q)2

b2
= ±1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hyperbola

(x − p)2

a2
− (y − q)2

b2
= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cross

y − q = ±a(x − p)2 or x − p = ±a(y − q)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . parabola

EXAMPLE 1.14. Classify and plot the following quadric curves:

a) 4x2 + 9y2 − 16x + 18y = 11

b) 4x2 − 9y2 − 16x − 18y = 29

• For a circle, give the center and radius.
• For an ellipse, give the center and semi-radii.
• For a hyperbola, give the center, direction and asymptotes and add the asymptotes to the plot.
• For a cross, give the intersection point and the two lines.
• For a parabola, give the vertex and the direction.

SOLUTION: For each equation, we enter the equation as an expression, complete the squares using
completesquare from thestudent package and manipulate the equation into a standard form. Then
we classify the curve and plot the equation using theimplicitplot command from theplots package.
NOTE: The student andplots packages are automatically loaded by thevec calc package.

a) We enter the equation and complete the squares:
> eq1:=4*xˆ2 + 9*yˆ2- 16*x + 18*y = 11;

eq1 := 4 x2 + 9 y2 − 16 x + 18 y = 11
12Stewart Appendix C.
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> eq2:=completesquare(eq1, {x,y });

eq2 := 9 (y + 1)2 − 25 + 4 (x − 2)2 = 11
Mapleknows how to add two equations and how to multiply or divide an equation by a number:
> eq3:=eq2 + (25=25);

eq3 := 9 (y + 1)2 + 4 (x − 2)2 = 36
> eq4:=eq3/36;

eq4 :=
1
4

(y + 1)2 +
1
9

(x − 2)2 = 1

This is the standard equation for an ellipse with center at(2,−1) and radii3 in thex-direction and2 in the
y-direction. Its graph is:
> implicitplot(eq4, x=-5..5, y=-5..5, scaling=constrained);

–3

–2

–1

0

1

y

x

b) We enter the equation, complete the squares and manipulate it into a standard form:
> eq1:=4*xˆ2 - 9*yˆ2 - 16*x - 18*y = 29;

eq1 := 4 x2 − 9 y2 − 16 x − 18 y = 29
> eq2:=completesquare(eq1, {x,y });

eq2 := −9 (y + 1)2 − 7 + 4 (x − 2)2 = 29
> eq3:=eq2 + (7=7);

eq3 := −9 (y + 1)2 + 4 (x − 2)2 = 36
> eq4:=eq3/36;

eq4 := −1
4

(y + 1)2 +
1
9

(x − 2)2 = 1

This is the standard equation for a hyperbola with center at(2,−1) which opens along the positive and
negativex-axis. Its asymptotes are the cross obtained by replacing the1 on the right hand side by a0:
NOTE: The commandslhs and rhs read off the left and right hand sides of an equation.
> asymptotes:=lhs(eq4)=0;

asymptotes := −1
4

(y + 1)2 +
1
9

(x − 2)2 = 0
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> solve(asymptotes,y);

−2
3

x +
1
3
,

2
3

x − 7
3

So the asymptotes arey = 1
3 − 2

3x andy = − 7
3 + 2

3x.
Finally, we plot the hyperbola and its asymptotes:

> implicitplot( {eq4,asymptotes }, x=-5..9, y=-6..4, scaling=constrained,
grid=[49,49]);

–4

–2

0

2

y

x

NOTE: The grid option specifies the number of points to use in each direction.

Quadric Surfaces 13A quadric surface is the graph of a quadratic equation inR
3. The general quadratic

equation with no cross terms isAx2 +By2 +Cz2 +Dx+Ey +Fz +G = 0. By completing the squares on
x, y andz (when possible), it may be brought to one of the following standard forms (up to the rearrangement
of x, y andz):

(x − p)2 + (y − q)2 + (z − r)2 = R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sphere
(x − p)2

a2
+

(y − q)2

b2
+

(z − r)2

c2
= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ellipsoid

(x − p)2

a2
+

(y − q)2

b2
− (z − r)2

c2
= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hyperboloid of 1 sheet

− (x − p)2

a2
− (y − q)2

b2
+

(z − r)2

c2
= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hyperboloid of 2 sheets

(x − p)2

a2
+

(y − q)2

b2
− (z − r)2

c2
= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cone

z − r =
(x − p)2

a2
+

(y − q)2

b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . elliptic paraboloid

z − r =
(x − p)2

a2
− (y − q)2

b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hyperbolic paraboloid

A quadratic equation in two coordinates . . . . . . . . . . . . . cylinder whose cross section is the quadric curve

13Stewart§13.6.
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EXAMPLE 1.15. Classify and plot the following quadric surfaces:

a) 4x2 − y2 − 9z2 − 16x − 2y + 18z = 30

b) 4x2 − 9z2 − 16x + 2y − 18z = −1

• For a sphere, give the center and radius.

• For an ellipsoid, give the center and semi-radii.

• For a hyperboloid, say whether it has 1 or 2 sheets, give the center, axis and asymptotic cone and plot
the asymptotic cone.

• For a cone, give the vertex and direction.

• For a paraboloid, say whether it is elliptic or hyperbolic and give the vertex and the direction(s).

• For a cylinder, give its axis and its cross section.

SOLUTION: For each equation, we enter the equation as an expression, complete the squares using
completesquare from thestudent package and manipulate the equation into a standard form. Then
we classify the curve and plot the equation using theimplicitplot3d command from theplots pack-
age.

a) We enter the equation, complete the squares and manipulate it into a standard form:

> eq1:=4*xˆ2 - yˆ2 - 9*zˆ2- 16*x - 2*y + 18*z = 30;

eq1 := 4 x2 − y2 − 9 z2 − 16 x − 2 y + 18 z = 30

> eq2:=completesquare(eq1, {x,y,z });

eq2 := −9 (z − 1)2 − 6 − (y + 1)2 + 4 (x − 2)2 = 30

> eq3:=eq2 + (6=6);

eq3 := −9 (z − 1)2 − (y + 1)2 + 4 (x − 2)2 = 36

> eq4:=eq3/36;

eq4 := −1
4

(z − 1)2 − 1
36

(y + 1)2 +
1
9

(x − 2)2 = 1

This is the standard equation for a hyperboloid of 2 sheets with center at(2,−1, 1) and axis which is parallel
to thex-axis. Its asymptotic cone is obtained by replacing the1 on the right hand side by a0:

> asymptote:=lhs(eq4)=0;

asymptote := −1
4

(z − 1)2 − 1
36

(y + 1)2 +
1
9

(x − 2)2 = 0
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Finally, we plot the hyerboloid and the asymptotic cone.
> implicitplot3d(eq4, x=-6..10, y=-18..16, z=-6..8, grid=[15,15,15],
axes=normal, scaling=constrained, orientation=[85,85]);
> implicitplot3d(asymptote, x=-6..10, y=-18..16, z=-6..8,
grid=[15,15,15], axes=normal, scaling=constrained, orientation=[85,85]);
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10

y

–6–4246810
x

b) Since the equation is linear iny, we enter the equation, solve fory and then complete the squares:
> eq1:=4*xˆ2 - 9*zˆ2 - 16*x + 2*y - 18*z = -1;

eq1 := 4 x2 − 9 z2 − 16 x + 2 y − 18 z = −1
> eq2:=y=solve(eq1, y);

eq2 := y = −2 x2 +
9
2

z2 + 8 x + 9 z − 1
2

> eq3:=completesquare(eq2, {x,z });

eq3 := y =
9
2

(z + 1)2 + 3 − 2 (x − 2)2

This is the standard equation for a hyperbolic paraboloid with vertex at(2, 3,−1) which opens upward in the
zy-plane and downward in thexy-plane. Finally, we plot the hyperbolic paraboloid:
> implicitplot3d(eq3, x=-3..7, y=-3..8, z=-6..4, grid=[15,15,15],
scaling=constrained, orientation=[35,65]);
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1.3.3 Parametric Curves and Parametric Surfaces

Parametric Curves 14We have just seen that a line may be parametrized by giving the position(x, y, z)
on the line as a function of a parametert and moreover these functions are linear. More generally, we can
parametrize any curve by giving the position(x, y, z) as a function oft not necessarily linear:

(x, y, z) = ~r(t) =
(
x(t), y(t), z(t)

)
.

You can think oft as the time and then
(
x(t), y(t), z(t)

)
is the position of a particle at timet.

Of course, in 2 dimensions, there is noz-component.

EXAMPLE 1.16. In R
2, plot the curve parametrized by~r(t) =

(
t2, t3

)
to see it has a “cusp” att = 0. (A

cusp is a sharp corner.)

SOLUTION: The curve~r(t) may be plotted using theplot command with a parametric argument:

> plot([tˆ2,tˆ3, t=-2..2]);

–8

–6

–4

–2

2

4

6

8

1 2 3 4

Notice the cusp at the origin.

14Stewart§11.1, 14.1.
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EXAMPLE 1.17. In R
3, plot the helix~r(θ) =

(
6 cos(θ), 6 sin(θ), θ

)
.

SOLUTION: The helix may be plotted using thespacecurve command from theplots package:
> spacecurve([6*cos(theta), 6*sin(theta), theta], theta=0..6*Pi,
scaling=constrained, axes=normal, numpoints=73);

2
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6
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14
16
18
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–2
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Parametric curves are studied in detail in sections 2.2 and 6.1.

Parametric Surfaces 15We have also seen that a plane may be parametrized by giving the position(x, y, z)
as a linear function of two parameters andt. We generalize this to a parametrization of any surface by giving
the position(x, y, z) as a function of two parameterss andt not necessarily linear:

(x, y, z) = ~R(s, t) =
(
x(s, t), y(s, t), z(s, t)

)
.

EXAMPLE 1.18. Plot the parametric surface

~R(λ, θ) =
(
cosh(λ) cos(θ), cosh(λ) sin(θ), sinh(λ)

)
.

Then show it is the hyperboloidx2 + y2 − z2 = 1.
SOLUTION: We first enter the parametrization intoMapleas a list of expressions:

> R:=[cosh(lambda)*cos(theta), cosh(lambda)*sin(theta), sinh(lambda)];

R := [cosh(λ) cos(θ), cosh(λ) sin(θ), sinh(λ)]
Then we plot a piece of the surface using theplot3d command:
> plot3d(R, lambda=-3..2, theta=0..2*Pi);

15Stewart§17.6.
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To show it is the hyperboloid, we convert the parametrization into three equations usingequate :
> eqs:=equate([x,y,z], R);

eqs := {y = cosh(λ) sin(θ), z = sinh(λ), x = cosh(λ) cos(θ)}
and substitute into the equationx2 + y2 − z2 = 1 for the hyperboloid:
> subs(eqs,xˆ2 + yˆ2 - zˆ2 = 1); simplify(%);

cosh(λ)2 cos(θ)2 + cosh(λ)2 sin(θ)2 − sinh(λ)2 = 1

1 = 1
So the equation is satisfied.

Parametric surfaces are studied in detail in Section 6.2.
NOTE: The plot command plotscurves in R

2 either as the graph of a function or in parametric form,
while the implicitplot command plotscurves in R

2 in the form of an equation.
Similarly, theplot3d command plotssurfacesin R

3 either as the graph of a function or in paramet-
ric form, while the implicitplot3d command plotssurfaces in R

3 in the form of an equation and
spacecurve plotscurves in R

3 in parametric form.

1.4 Exercises

• Do Labs: 9.1, 9.2 and 9.3.

• Do Project: 10.1.

1. Consider the vectors

~a = (2, 3) ~b = (−1, 2) ~c = (4,−3)
~u = (0,

√
3, 1) ~v = (2,−4,

√
3) ~w = (

√
3, 1,−2)

Compute each of the following quantities:

a) |~c| i) the unit vector in the direction of~c
b) |~u| j) the angle between~a and~b
c) |~v| k) the angle between~u and~v

d) 2~a − 3~b l) the projection of~u along~v

e)
√

3~u + 2~v m) the projection of~u orthogonal to~v
f) ~a ·~b n) the area of the triangle with edges~u and~v
g) ~u · ~v o) the area of the parallelogram with edges~u and~v
h) ~u × ~v p) the volume of the parallelepiped with edges~u, ~v and~w

2. Repeat problem #1 for the vectors

~a = (1.7,−2.1) ~b = (−1.4, 3.7) ~c = (4.2,−1.3)
~u = (4.1, 5.2, 3.6) ~v = (−1.9, 2.3, 7.2) ~w = (4.6,−8.3,−6.2)

3. In the Earth, Moon and Sun triangle discussed in example 1.3, find the angle at the Moon when the
angle at the Earth is74.1◦. Give the angle in degrees to the nearest hundredth of a degree.
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4. Hyperspace, the Final Final Frontier: As our navigator through 4-dimensional hyperspace, your current
assignment is to find the angleθ (to the nearest tenth of a degree) at the vertexP of the triangle4PQR
with vertices P = (2,−5, 4,−3), Q = (−3, 1, 0,−2) and R = (5, 2,−4, 1). (The angles
are in degrees for the primative Earthlings.)

5. A 5 kg mass slides 10 m down a frictionless plane which is inclined at a30◦ angle from the horizontal.
Find the work done on the mass by the force of gravity~F = −mĝ. Note:g = 9.8 m/sec2.

6. Consider the points P = (3, 4,−2), Q = (0,−3, 1) and R = (−2, 1, 3).
a) Find the parametric equations of the line throughP andQ.
b) Find the symmetric equations of the line throughP andQ.
c) Find the parametric equations of the plane throughP , Q andR.
d) Find the non-parametric equations of the plane throughP , Q andR.

7. Consider the points A = (2, 3) and B = (−4, 5).
a) Find the parametric equations of the line throughA andB.
b) Find the non-parametric equation of the line throughA andB.

8. Find the distance from the pointR = (3, 7) to the line y = 4x − 2.
Hint: Find two pointsP andQ on the line. Then the projection of

−→
PR orthogonal to

−→
PQ is the vector

from R to the line which is perpendicular to the line.

9. Find the distance from the pointR = (2,−5, 6) to the line (x, y, z) = (2 − t, 4 + 3t, 1 − 5t).

10. Find the distance from the pointR = (2,−5, 6) to the plane 2x + 3y − z = 5.
Hint: Find the line perpendicular to the plane which passes throughR. Then find the foot of this
perpendicular.

11. Where does the curve~r(t) = (−3t + 5, t2 − 4
3
, 2t2 − 7

5
) intersect theyz-plane?

12. Where does the line ~r(t) = (−3t + 5, t − 4
3
, 2t − 7

5
) intersect the plane 2x + 3y + 4z = 5?

13. Where does the curve~r(t) = (−3t2 + 5, t− 4
3
, 2t2 − 7

5
) intersect the plane 2x+ 3y + 4z = 5?

14. Plot the parametric curve~r(t) = (cos(5θ), sin(3θ)) for 0 ≤ θ ≤ 2π. Try changing the 5 and
3 to other integers. What happens? From such a plot, how would you determine the integers? These
plots are called Lissajous figures.

15. Plot the parametric curvex = (2 + cos 24θ) cos θ, y = (2 + cos 24θ) sin θ, z = sin 24θ for
0 ≤ θ ≤ 2π. To get a good plot, add the optionnumpoints=500 .

16. Plot the parametric surfacex = (2 + cosφ) cos θ, y = (2 + cosφ) sin θ, z = sin φ for
0 ≤ φ ≤ 2π and 0 ≤ θ ≤ 2π. What shape is the surface?



Chapter 2

Vector Functions of One Variable:
Analysis of Curves

2.1 Vector Functions of One Variable

Remember to restart thevec calc package.

2.1.1 Definition
1A vector-valued function of one variable2 is an ordered list of real valued functions. In particular, inR

3, a
vector valued function has the form

~f(t) =
〈
f1(t), f2(t), f3(t)

〉
.

The independent variable, in this caset, is called the parameter. For example, you can enter the vector valued
function~r(t) =

〈
6 cos(t), 6 sin(t), t

〉
into Mapleby using thevec calc commandmakefunction (or

its aliasMF):
> r:=MF(t,[6*cos(t),6*sin(t),t]);

r := [t → 6 cos(t), t → 6 sin(t), t → t]
Quite often a vector valued function is interpreted as a curve, giving the position as a function of time. For
example, the vector valued function~r(t), defined above, is a helix as was shown in example 1.17

However, a vector valued function can also represent many other physical quantities such as the velocity
~v(t) along a curve as a function of time or the force~F (t) applied to a particle as a function of time. (See Fig.
2.1.)

Further, the parameter need not represent time. For example, the standard parametrization of a circle of
radius 2 is~r(θ) =

〈
2 cos(θ), 2 sin(θ)

〉
where the parameterθ measures the angle counterclockwise from the

positivex-axis. After entering the function,
> r:=MF(theta, [2*cos(theta), 2*sin(theta)]);

1Stewart Ch. 14.
2Stewart§14.1.
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 F
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 r

Figure 2.1: Vector-Valued Functions for a Particle Moving on a Circle

r := [θ → 2 cos(θ), θ → 2 sin(θ)]

we can plot three quarters of a circle:
> plot([op(r(theta)), theta=0..3*Pi/2], scaling=constrained);
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0

1

2

–2 –1 1 2

NOTE: The op command in the parametricplot is needed to strip the square brackets off ofr(t) .
Compare
> r(t);

[2 cos(t), 2 sin(t)]

with
> op(r(t));

2 cos(t), 2 sin(t)
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Further, if you need help on any command, just type a question mark (?) followed by the name of the
command and press enter. In this case, to get more information about theop command, enter:
> ?op

2.1.2 Limits, Derivatives and Integrals and themapCommand
3A limit, derivative or integral of a vector-valued function is computed by applying the operation to each
component of the vector valued function.

For example, the limit ast → 2 of the vector valued functionf(t) =
〈

t2 − 4
t − 2

,
t2 − 5t + 6

t − 2

〉
is

lim
t→2

〈
t2 − 4
t − 2

,
t2 − 5t + 6

t − 2

〉
=

〈
lim
t→2

t2 − 4
t − 2

, lim
t→2

t2 − 5t + 6
t − 2

〉
= 〈4,−1〉

TheMaplecommandmap is specifically designed to apply an operation to each component of a list. The
first argument of themapcommand is the operator and the second is the list to which the operator is applied.
Additional arguments are simply passed to the operator.

For example, to compute the above limit, we enter the vector valued function:
> f := MF(t, [(tˆ2-4)/(t-2), (tˆ2-5*t+6)/(t-2)]);

f := [t → t2 − 4
t − 2

, t → t2 − 5 t + 6
t − 2

]

and thenmap theLimit command onto the function:
> map(Limit, f(t), t=2); value(%);

[lim
t→2

t2 − 4
t − 2

, lim
t→2

t2 − 5 t + 6
t − 2

]

[4, −1]
Similarly, the derivative of the curve~r(t) =

〈
t cos(t), t sin(t), t

〉
is computed bymapping theDiff

command onto the curve:
> r:=MF(t, [t*cos(t), t*sin(t), t]);

r := [t → t cos(t), t → t sin(t), t → t]
> map(Diff, r(t), t); v_expr:=value(%);

[
∂

∂t
t cos(t),

∂

∂t
t sin(t),

∂

∂t
t]

v expr := [cos(t) − t sin(t), sin(t) + t cos(t), 1]
As will be seen in the next section, this vector may be interpreted as the tangent vector to the curve (or its

velocity). Its value att =
π

2
may be obtained usingsubs :

> subs(t=Pi/2,v_expr); simplify(%);

[cos(
1
2

π) − 1
2

π sin(
1
2

π), sin(
1
2

π) +
1
2

π cos(
1
2

π), 1]

3Stewart§14.2.
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[−1
2

π, 1, 1]

Alternatively, you can convert the vector of expressionsv expr into a vector of arrow defined functions
usingMF:
> v:=MF(t,v_expr);

v := [t → cos(t) − t sin(t), t → sin(t) + t cos(t), 1]

and simply evaluate at
π

2
> v(Pi/2);

[−1
2

π, 1, 1]

Turning to integrals, given the vector valued function,
> f:=[t, tˆ2, tˆ3];

f := [t, t2, t3]
its indefinite integral is computed bymapping theInt command onto the function:
> map(Int,f,t); value(%);

[
∫

t dt,

∫
t2 dt,

∫
t3 dt]

[
1
2

t2,
1
3

t3,
1
4

t4]

and its definite integral fromt = 2 to t = 3 is computed similarly:
> map(Int,f,t=2..3); value(%);

[
∫ 3

2

t dt,

∫ 3

2

t2 dt,

∫ 3

2

t3 dt]

[
5
2
,

19
3

,
65
4

]

Notice that the commandsLimit , Diff andInt act on an expression. So they must be mapped onto a
vector of expressions.

However, when doing derivatives, we often useDto differentiate an arrow defined function. Conveniently,
theDcommand is automatically mapped. So to differentiate the curve
> r:=MF(t,[t*cos(t),t*sin(t),t]);

r := [t → t cos(t), t → t sin(t), t → t]
we simply execute
> v:=D(r);

v := [t → cos(t) − t sin(t), t → sin(t) + t cos(t), 1]

Then the value att =
π

2
is

> v(Pi/2);

[−1
2

π, 1, 1]
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and the expression form of this derivative is
> v(t);

[cos(t) − t sin(t), sin(t) + t cos(t), 1]
In many ways, this is simpler than usingDiff .

2.2 Frenet Analysis of Curves
4Thevec calc package has many commands which simplify the computations in the analysis of a curve.
In discussing these quantities, we first cover the details of the computation and then give thevec calc
shortcut. You should never use these shortcuts until you fully understand how the quantities are computed.
Rather, you should work out the computations and then check with thevec calc command.

In studying the properties of a curve, we will repeatedly refer to two examples, one inR
2 and one inR3.

• In R
2 we will consider the ellipse

x2

16
+

y2

9
= 1 which may be parametrized by

x = 4 cos(φ) y = 3 sin(φ) .

It should be noted that the parameterφ does not measure angles like the angular coordinateθ of polar
coordinates. Nevertheless it does start at zero on the positivex-axis, it does increase as you move

counterclockwise around the ellipse and it does increase by
π

2
as you pass through each quadrant.

• In R
3 we will consider the helix parametrized by

x = 6 cos(t) y = 6 sin(t) z = t .

Notice thatx andy are expressed in terms of polar coordinates on a circle of radius 6 traversed coun-
terclockwise in time andz increases with time.

Curves can also be constructed in higher dimensions, but they are harder to visualize. Further some of the
quantities computed below are only defined inR

3 (those which depend on the cross product).

2.2.1 Position and Plot
5To input a curve intoMaple, we use thevec calc commandmakefunction (or its aliasMF) which
makes a list of arrow defined functions. To plot a two dimensional curve, we use theplot command with a
parametric argument. To plot a three dimensional curve, we use thespacecurve command.

EXAMPLE 2.1. Plot the ellipse~r(φ) = (4 cos(φ), 3 sin(φ)).
SOLUTION: For the ellipse, we enter the parametrization

> r:=MF(phi, [4*cos(phi), 3*sin(phi)]);

r := [φ → 4 cos(φ), φ → 3 sin(φ)]

4Stewart§14.1 – 14.4.
5Stewart§14.1.
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The point

> r(phi);

[4 cos(φ), 3 sin(φ)]

is called the position vector on the ellipse. To plot the ellipse, we use theplot command:

NOTE: Again, theop command is needed to strip the square brackets off ofr(phi) .

> plot([op(r(phi)), phi=0..2*Pi], scaling=constrained);

–3

–2

–1

0

1

2

3

–4 –2 2 4

EXAMPLE 2.2. Plot the helix~R(t) = (6 cos(t), 6 sin(t), t).
SOLUTION: For the helix, we enter the curve:

> R:=MF(t, [6*cos(t), 6*sin(t), t]);

R := [t → 6 cos(t), t → 6 sin(t), t → t]

Its position vector is

> R(t);

[6 cos(t), 6 sin(t), t]

and we plot the helix by using thespacecurve command:

NOTE: The spacecurve command does not need theop command, in fact it is prohibited.

> spacecurve(R(t), t=0..6*Pi, scaling=constrained, axes=normal,
numpoints=73);



2.2. FRENET ANALYSIS OF CURVES 31

2
4
6
8
10
12
14
16
18

–6
–4

–2

2
4

6

–6
–4

–2

2
4

6

2.2.2 Velocity, Acceleration and Jerk
6When the parameter along a curve is interpreted as the time, the derivative of the position is the velocity, the
derivative of the velocity is the acceleration and the derivative of the acceleration is the jerk. Even when the
parameter is not the time, the words velocity, acceleration and jerk may still be used for the first, second and
third derivatives of the position.

If the position vector has been defined using theMFcommand, then the derivatives may be computed
usingD. The vec calc package also has the commandscurve velocity , curve acceleration
andcurve jerk to compute these directly from the position without needing to compute them in order.
The aliases areCv, Ca andCj .

EXAMPLE 2.3. Find the velocity, acceleration and jerk of the ellipse of example 2.1.
SOLUTION: The position was entered in example 2.1. So the velocity, acceleration and jerk are:

> v:=D(r); a:=D(v); j:=D(a);

v := [φ → −4 sin(φ), φ → 3 cos(φ)]

a := [φ → −4 cos(φ), φ → −3 sin(φ)]

j := [φ → 4 sin(φ), φ → −3 cos(φ)]
These may be checked usingCv, Ca andCj :
> v:=Cv(r); a:=Ca(r); j:=Cj(r);

v := [φ → −4 sin(φ), φ → 3 cos(φ)]

a := [φ → −4 cos(φ), φ → −3 sin(φ)]

j := [φ → 4 sin(φ), φ → −3 cos(φ)]

6Stewart§14.2, 14.4.
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EXAMPLE 2.4. Find the velocity, acceleration and jerk of the helix of example 2.2.
SOLUTION: The position was entered in example 2.2. So the velocity, acceleration and jerk are

> V:=D(R); A:=D(V); J:=D(A);

V := [t → −6 sin(t), t → 6 cos(t), 1]

A := [t → −6 cos(t), t → −6 sin(t), 0]

J := [t → 6 sin(t), t → −6 cos(t), 0]
(Notice that we are using the capital lettersR, V, A andJ for the helix, solely to distinguish these quantities
from the corresponding quantities for the ellipser .)

2.2.3 Speed, Arc Length and Arc Length Parameter
7The length of the velocity is called the speed and may be computed using thelen command . The definite
integral of the speed is the arc length and the arc length with a variable final point defines the arc length
parameters at the final point. Sometimes the arc length parameter is used to reparametrize the curve.

The vec calc package has a commandcurve length (or CL) which will compute the arc length
integral for the curve as a function of the two endpoints. You can then plug in the endpoints and compute the
value .

EXAMPLE 2.5. For the helix of example 2.2, find the speed and arc length around one cycle. Then find the
arc length parameter and reparametrize the helix in terms of the arc length parameter, if possible.

SOLUTION: Using the velocity computed in the previous example, the speed is
> len(V(t)); SPEED:=simplify(%);√

1 + 36 sin(t)2 + 36 cos(t)2

SPEED :=
√

37
and the arc length around one cycle is
> Int(SPEED, t=0..2*Pi); value(%); ∫ 2 π

0

√
37 dt

2
√

37π

The arc length parameters is
> Int(SPEED, t=0..T); arcparam:= value(%);

∫ T

0

√
37 dt

arcparam :=
√

37T

7Stewart§14.3.
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whereT is the time at the final point. We can reparametrize the curve in terms of an arc length parameters
by solving the equations = arcparam for T and plugging into the curve~R(t):
> solve(s = arcparam,T); R(%);

1
37

s
√

37

[6 cos(
1
37

s
√

37), 6 sin(
1
37

s
√

37),
1
37

s
√

37]

We can check some of these results usingCL:
> L:=CL(R); L(0,2*Pi); value(%);

L := (a, b) →
∫ b

a

√
37 dt∫ 2 π

0

√
37 dt

2
√

37π
> L(0,T); value(%); ∫ T

0

√
37 dt

√
37T

EXAMPLE 2.6. For the ellipse of example 2.1, find the speed and arc length once around. Then find the arc
length parameter and reparametrize the ellipse in terms of the arc length parameter, if possible.

SOLUTION: Using the velocity computed in a previous example, we compute the speed and the arc length
once around:
> len(v(phi)); speed:=simplify(%); √

16 sin(φ)2 + 9 cos(φ)2

speed :=
√
−7 cos(φ)2 + 16

> Int(speed, phi=0..2*Pi); value(%);∫ 2 π

0

√
−7 cos(φ)2 + 16 dφ

16 EllipticE(
1
4

√
7)

Notice that thevalue command gave the answer in terms of the ellipticE function. This is not very
informative. So we use theevalf command to get a numerical approximation:
> evalf(%);

22.10349216
Using thevec calc commandCL, we check:
> L:=CL(r); L(0,2*Pi);

L := (a, b) →
∫ b

a

√
−7 cos(φ)2 + 16 dφ
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∫ 2 π

0

√
−7 cos(φ)2 + 16 dφ

To find the arc length parameter, we need to compute the integral
> L(0,T); s = value(%); ∫ T

0

√
−7 cos(φ)2 + 16 dφ

s = −4

√
sin(T )2 EllipticE(cos(T ),

1
4
√

7) − EllipticE(
1
4
√

7) sin(T )

sin(T )
Notice that for the ellipse, the arc length parameters is an extremely complicated function ofT . So it may not
be useful to reparametrize the curve explicitly. However, if necessary, we can always work with it implicitly
or numerically.

2.2.4 Unit Tangent, Unit Principal Normal, Unit Binormal
8The unit tangent vector̂T along a curve~r(t) is the unit vector in the direction of the velocity~v:

T̂ = v̂ =
~v

|~v| .

Thevec calc command iscurve tangent (or CT).
The unit (principal) normal vector̂N along a curve~r(t) is the unit vector perpendicular to the velocity~v

in the plane of the velocity and the acceleration~a on the same side of the velocity as the acceleration. You
compute it by finding the projection of~a perpendicular to~v and then dividing by its length:

proj⊥~v ~a = ~a − proj~v ~a = ~a − (~a · T̂ )T̂

N̂ =
proj⊥~v ~a

|proj⊥~v ~a| .

Thevec calc command iscurve normal (or CN).
In R

3, you can also compute the unit binormal vectorB̂ which is a unit vector perpendicular tôT andN̂
and given byB̂ = T̂ × N̂ . Equivalently,B̂ is the unit vector perpendicular to~v and~a and given by

B̂ =
~v × ~a

|~v × ~a| .

This latter formula is the easiest way to computeB̂ because you don’t need to first computeN̂ . Further,N̂
can then be computed inR3 from the formula

N̂ = B̂ × T̂

which is obtained from̂B = T̂ ×N̂ by cyclically permuting the three unit vectors. Thevec calc command
is curve binormal (or CB).

8Stewart§14.3.



2.2. FRENET ANALYSIS OF CURVES 35

EXAMPLE 2.7. Find the unit tangent and unit normal vectors of the ellipse of example 2.1.
NOTE: Since the ellipse is2-dimensional, there is no binormal.

SOLUTION: Using the velocity and acceleration computed in previous examples, we have
> t_hat:=evall(v(phi)/speed);

t hat := [−4
sin(φ)√−7 cos(φ)2 + 16

, 3
cos(φ)√−7 cos(φ)2 + 16

]

> perp_proj:=evall( a(phi)-dot(a(phi),t_hat)*t_hat ): simplify(%);

[36
cos(φ)

7 cos(φ)2 − 16
, 48

sin(φ)
7 cos(φ)2 − 16

]

> evall( perp_proj/len(perp_proj) ): n_hat:=simplify(%);

n hat :=


3

cos(φ)√
− 1

%1
%1

, 4
sin(φ)√
− 1

%1
%1




%1 := 7 cos(φ)2 − 16
and we check with thevec calc commands:
> CT(r); CN(r);

[φ → −4
sin(φ)√−7 cos(φ)2 + 16

, φ → 3
cos(φ)√−7 cos(φ)2 + 16

]


φ → 3

cos(φ)√
− 1

7 cos(φ)2 − 16
(7 cos(φ)2 − 16)

, φ → 4
sin(φ)√

− 1
7 cos(φ)2 − 16

(7 cos(φ)2 − 16)




EXAMPLE 2.8. Find the unit tangent, unit normal and unit binormal vectors of the helix of example 2.2.
SOLUTION: Using the velocity and acceleration computed in previous examples, we have

> V(t)/len(V(t)): T:=evall(simplify(%));

T := [− 6
37

√
37 sin(t),

6
37

√
37 cos(t),

1
37

√
37]

> VxA:=simplify(cross(V(t),A(t)));

VxA := [6 sin(t), −6 cos(t), 36]
> VxA/len(VxA): B:=evall(simplify(%));

B := [
1
37

√
37 sin(t), − 1

37

√
37 cos(t),

6
37

√
37]

> N:=cross(B,T);

N := [−cos(t), −sin(t), 0]
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and we check with thevec calc commands:
> CT(R); CN(R); CB(R);

[t → − 6
37

√
37 sin(t), t → 6

37

√
37 cos(t), t → 1

37

√
37]

[t → −cos(t), t → −sin(t), 0]

[t → 1
37

√
37 sin(t), t → − 1

37

√
37 cos(t), t → 6

37

√
37]

In R
4 and higher dimensions, there are generalizations ofT̂ , N̂ andB̂ but they cannot be computed using

the cross product. Rather they are computed from the velocity and successively higher derivatives of the
curve by applying the Gramm-Schmidt procedure. But that is a topic for a course in linear algebra.

2.2.5 Curvature and Torsion
9The curvatureκ along a curve~r(t) measures the rate at which the direction of the curve is changing and may
be computed from any of the formulas:

κ =

∣∣∣∣∣dT̂

ds

∣∣∣∣∣ =
1
|~v|

∣∣∣∣∣dT̂

dt

∣∣∣∣∣ =
~a · N̂
|~v|2 =

|~v × ~a|
|~v|3 .

Since the last formula involves a cross product, it can only be used inR
3. Thevec calc command is

curve curvature (or Ck).
10The torsionτ along a curve~r(t) measures the rate at which the plane of the curve is changing and may

be computed from either of the formulas:

τ = −dB̂

ds
· N̂ =

(~v × ~a) ·~j
|~v × ~a|2 .

Since the definition involveŝB, the torsion is only defined inR3. Thevec calc command is
curve torsion (or Ct ).

EXAMPLE 2.9. Find the curvature of the ellipse of example 2.1.
NOTE: Since the ellipse is2-dimensional, there is no torsion.

SOLUTION: Using the acceleration and unit normal from previous examples, we compute
> kappa:=dot(a(phi),n_hat)/speedˆ2;

κ := −12
1√

− 1
7 cos(φ)2 − 16

(7 cos(φ)2 − 16) (−7 cos(φ)2 + 16)

9Stewart§14.3.
10Stewart§14.3 Exercises.
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EXAMPLE 2.10. Find the curvature and torsion of the helix of example 2.2.
SOLUTION: Using quantities from previous examples, we compute

> Kappa:=simplify(len(VxA)/SPEEDˆ3);

K :=
6
37

> Tau:=simplify(dot(VxA,J(t))/len(VxA)ˆ2);

T :=
1
37

and we check with thevec calc commands:
> Ck(R); Ct(R);

6
37
1
37

2.2.6 Tangential and Normal Components of Acceleration
11Since the acceleration~a lies in the plane of the vectorŝT andN̂ , we can write it as

~a = aT T̂ + aN N̂ .

SinceT̂ andN̂ are perpendicular unit vectors, we can identify the coefficients,aT andaN , as the components
of ~a alongT̂ andN̂ . These are also called the tangential and normal accelerations. They may be computed
from the formulas

aT = ~a · T̂ =
d |~v|
dt

and aN = ~a · N̂ = κ |~v|2

Thevec calc commands arecurve tangential acceleration (or CaT) and
curve normal acceleration (or CaN).

EXAMPLE 2.11. Find the tangential and normal accelerations for the ellipse of example 2.1.
SOLUTION: Using the speed and curvature of the ellipse found in previous examples, we compute

> a_T:=diff(speed,phi);

a T := 7
cos(φ) sin(φ)√−7 cos(φ)2 + 16

> a_N:=kappa*speedˆ2;

a N := −12
1√

− 1
7 cos(φ)2 − 16

(7 cos(φ)2 − 16)

11Stewart§14.4.
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and we check with thevec calc command:
> CaT(r); CaN(r);

φ → 7
cos(φ) sin(φ)√−7 cos(φ)2 + 16

φ → −12
1√

− 1
7 cos(φ)2 − 16

(7 cos(φ)2 − 16)

EXAMPLE 2.12. Find the tangential and normal accelerations for the helix of example 2.2.
SOLUTION: Using the acceleration, unit tangent and unit normal vectors of the helix found in previous

examples, we compute (using a different method)
> A_T:=dot(A(t),T);

A T := 0
> A_N:=dot(A(t),N);

A N := 6

2.3 Exercises

• Do Labs: 9.4 and 9.5.

• Do Project: 10.2.

NOTE: You should only use thevec calc curve commands (Cv, Ca, Cj , CT, CB, CN, Ck, Ct , CaT,
CaNandCL) to check your work. Be sure tosimplify your answers.

1. Consider the 3-dimensional parametrized curve~r(t) =
(
t cos(t), t sin(t),

t3

6
)
:

(a) Enter the curve intoMapleusingMF.

(b) Plot the curve for 0 ≤ t ≤ 2π.

(c) For general times, compute the velocity, acceleration, jerk, speed, unit tanget vector, unit binormal
vector, unit normal vector, curvature, torsion, tangential acceleration and normal acceleration.

(d) Compute the length of the curve for0 ≤ t ≤ 2π.

(e) Find the time when the curvature is a maximum.

2. Spiral Curve: Consider the 2-dimensional parametrized curve~r(t) =
(
t cos(t), t sin(t)

)
:

(a) Enter the curve intoMapleusingMF.

(b) Plot the curve for 0 ≤ t ≤ 6π to see that it is a spiral. Then plot it for−3π

2
≤

t ≤ 3π

2
with the options filled=true, axes=none, color=red to make a

Valentine’s card.
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(c) For general times, compute the velocity, acceleration, jerk, speed, unit tanget vector, unit normal
vector, curvature, tangential acceleration and normal acceleration.

(d) Compute the length of the spiral for0 ≤ t ≤ 2π and for 2π ≤ t ≤ 4π.

(e) Find the time when the curvature is a maximum.

(f) Find the time when the normal acceleration is a minimum.

3. The Astroid: Consider the 2-dimensional parametrized curve~r(t) =
(
cos3(t), sin3(t)

)
:

(a) Enter the curve intoMapleusingMF.

(b) Plot the curve for 0 ≤ t ≤ 2π to see that it is star shaped. This is why it is called an astroid.

(c) For general times, compute the velocity, acceleration, jerk, speed, unit tanget vector, unit normal
vector, curvature, tangential acceleration and normal acceleration.

(d) Compute the length of the astroid for0 ≤ t ≤ 2π.

4. Find parametric equations for the line tangent to the curve~r(t) = (2t, cos (3t), sin(−5t)) at the
point (π, 0,−1).

5. Find the tangent line to the curve~r(t) = (cos(−6t), 4t, sin(2t)) at the point (0, π, 1).

6. Find the tangent line to the curve~r(t) = (sin(−3t), cos(4t), 4t) at the point (−1, 1,−2π).

7. The electric force on a point chargeq due to a point chargeQ is ~F = −kqQ

r3
~r where~r is the

vector fromq to Q and r = |~r|. A small piece of a wire of length ~ds = |~v|dt and linear
charge densityρc may be approximated as a point chargedQ = ρc

~ds. Calculate the electric
force on a point charge ofq coulombs located at the origin due to a charge distribution along the helix
~r(t) =

(
cos(t), sin(t), t

)
for 0 ≤ t ≤ π with a linear charge density of ρc(x, y, z) = z

coulombs/cm.
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Partial Derivatives

3.1 Scalar Functions of Several Variables

3.1.1 Definition
1A scalar-valued function of several variables2 is a real valued function ofn variables. Typical examples
might be the temperature on a metal plate or the density of a solid. For example, the temperature of the air
near a candle might be given by the scalar function of 3 variables,T (x, y, z) = 300e−x2−y2−z2

. You may
enter this function intoMapleeither as an expression
> T:=300*exp(-xˆ2-yˆ2-zˆ2);

T := 300 e(−x2−y2−z2)

or as an arrow-defined function either explicitly by typing:
> T:=(x,y,z) -> 300*exp(-xˆ2-yˆ2-zˆ2);

T := (x, y, z) → 300 e(−x2−y2−z2)

or by using thevec calc commandmakefunction or its aliasMF:
> T:=MF([x,y,z], 300*exp(-xˆ2-yˆ2-zˆ2));

T := (x, y, z) → 300 e(−x2−y2−z2)

What is the difference between these two arrow definitions? None as defined above. However, suppose you
have already defined an expressionr which gives the distance from the origin:
> r:=sqrt(xˆ2+yˆ2+zˆ2);

r :=
√

x2 + y2 + z2

and you want to defineT in terms ofr. If you use the explicit arrow definition,
> T:=(x,y,z) -> 300*exp(-rˆ2);

T := (x, y, z) → 300 e(−r2)

1Stewart Ch. 15.
2Stewart§15.1.
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thenMapledoes not evaluater . Worse still,Maplemay give thewrong answerif you evaluateT:

> T(x,y,z), T(1,2,3);

300 e(−x2−y2−z2), 300 e(−x2−y2−z2)

However if you useMF, thenMapleevaluatesr immediately:

> T:=MF([x,y,z], 300*exp(-rˆ2));

T := (x, y, z) → 300 e(−x2−y2−z2)

and evaluates correctly:

> T(x,y,z), T(1,2,3);

300 e(−x2−y2−z2), 300 e(−14)

3.1.2 Plots

To visualize a function of 2 variables, you can plot its graph using theplot3d command. Alternatively, you
can look at its level curves using either of two commands,contourplot or contourplot3d , from the
plots package (which is autoloaded byvec calc ): .

The commandcontourplot3d is faster thancontourplot since it uses the machine’s floating point
processing. It is entirely equivalent to theplot3d command with the optionstyle=contour in that it
produces the 3 dimensional graph of the function but draws the contour lines on the surface. To see the plot
from directly above, you should add the optionorientation=[-90,0] which gives the location of your
eye using the spherical coordinates(θ, φ). Thus[−90, 0] means that you are looking down on the plot from
the positivez-axis with thex- andy-axes in their usual positions.

The problem withcontourplot3d is that you cannot superimpose an ordinary 2 dimensional plot onto
the contour plot. On the other handcontourplot is slower but it produces a true 2 dimensional plot of the
contour lines. You can then use thedisplay command from theplots package to superimpose the graph
of a function produced usingplot or a parametric curve produced usingplot or the graph of an equation
produced usingimplicitplot .

EXAMPLE 3.1. Plot the graphs and contour plots of the functions

f(x, y) =
√

(x − 2)2 + y2 +
√

(x + 2)2 + y2

and

g(x, y) =
√

(x − 2)2 + y2 −
√

(x + 2)2 + y2

Then discuss the shape of the contours and the local maxima and minima of the functions. Notice thatf is
the sum of the distances from(x, y) to the points(2, 0) and(−2, 0), while g is the difference.



42 CHAPTER 3. PARTIAL DERIVATIVES

SOLUTION: We enter the functionf and draw its graph and its contour plot:
> f:=MF([x,y], sqrt( (x-2)ˆ2 + yˆ2 ) + sqrt( (x+2)ˆ2 + yˆ2 ) );

f := (x, y) →
√

x2 − 4 x + 4 + y2 +
√

x2 + 4 x + 4 + y2

> plot3d( f(x,y), x=-4..4, y = -3..3, axes=framed,
orientation=[60,75]);

–4–2024 x

–3
–2

–1
0

1
2

3
y

4

5

6

7

8

9

10

> contourplot3d( f(x,y), x=-4..4, y = -3..3, axes=framed,
scaling=constrained, orientation=[-90,0]);

x

–3

–2

–1

0

1

2

3

y

Notice that the line segment between the points(−2, 0) and(2, 0) is the level set off with value 4 and the
other level sets are ellipses with foci at(−2, 0) and(2, 0). (This is the definition of an ellipse.) Thus the
minimum occurs along the line segment between(−2, 0) and(2, 0).
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Next we enter the functiong and draw its graph and its contour plot:
> g:=MF([x,y], sqrt( (x-2)ˆ2 + yˆ2 ) - sqrt( (x+2)ˆ2 + yˆ2 ) );

g := (x, y) →
√

x2 − 4 x + 4 + y2 −
√

x2 + 4 x + 4 + y2

> plot3d( g(x,y), x=-5..5, y = -5..5, axes=boxed, orientation=[60,75]);

–4–2024 x

–4
–2

0
2

4
y

–4

–2

0

2

4

> contourplot3d( g(x,y), x=-5..5, y = -5..5, axes=boxed,
orientation=[-90,0]);

x

–4

–2

0

2

4

y

This time they-axis is the level set ofg with value 0, the part of thex-axis withx > 2 is the level set with
value−4 and the part of thex-axis withx < −2 is the level set with value 4. The remaining level sets are
half-hyperbolas with foci at(2, 0) and(−2, 0). (This is the definition of a hyperbola.) Thus the minimum
occurs along the part of thex-axis withx > 2 and the maximum occurs along the part of thex-axis with
x < −2.
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3.1.3 Partial Derivatives
3Given a function of several variables, defined as an expression, its partial derivatives may be computed using

diff . For example, iff is a function of(x, y, t), then
∂f

∂y
would be computed usingdiff(f,y) . Higher

derivatives may also be computed usingdiff but with additional arguments. For example,
∂3f

∂y2∂t
would be

computed usingdiff(f,y,y,t) . The results from these commands are expressions.
Given a function of several variables, defined in arrow notation, its partial derivatives may be computed

usingDwith an index which is the number of the variable. For example, iff is a function of(x, y, t), then
∂f

∂y
would be computed usingD[2](f) . Higher derivatives may also be computed usingD but with additional

indices. For example,
∂3f

∂y2∂t
would be computed usingD[2,2,3](f) . The results from these commands

are arrow-defined functions.

EXAMPLE 3.2. Enter the function

f(x, y, θ, φ) = x sin(φ) cos(θ) − y sin(φ) sin(θ) + xy cos(φ)

as an expression, compute the derivatives
∂f

∂θ
and

∂4f

∂y∂2θ∂φ
and evaluate them at a point(a, b, t, p).

SOLUTION: We enter the function as an expression and usediff to compute the derivatives:
> f := x*sin(phi)*cos(theta) - y*sin(phi)*sin(theta) + x*y*cos(phi);

f := x sin(φ) cos(θ) − y sin(φ) sin(θ) + x y cos(φ)

> f_theta := diff(f,theta);

f theta := −x sin(φ) sin(θ) − y sin(φ) cos(θ)

> f_yphiphitheta := diff(f, y, phi, phi, theta);

f yphiphitheta := sin(φ) cos(θ)
Finally, we evaluate at(a, b, t, p).
> subs( {x=a, y=b, theta=t, phi=p }, f);

a sin(p) cos(t) − b sin(p) sin(t) + a b cos(p)

> subs( {x=a, y=b, theta=t, phi=p }, f_theta);

−a sin(p) sin(t) − b sin(p) cos(t)

> subs( {x=a, y=b, theta=t, phi=p }, f_yphiphitheta);

sin(p) cos(t)
Notice, the definition and derivatives of expressions were easy, but the evaluations at(a, b, t, p) were tedious.

3Stewart§15.3.
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EXAMPLE 3.3. Use arrow notation to enter the functions

f(x, y) =
√

(x − 2)2 + y2 +
√

(x + 2)2 + y2

and

g(x, y) =
√

(x − 2)2 + y2 −
√

(x + 2)2 + y2

Then compute the quantitiesC =
∂g

∂x
− ∂f

∂y
andL =

∂2g

∂x2
+

∂2g

∂y2
evaluated at a point(a, b).

SOLUTION: The functions may be entered either by explicitly typing the arrow or by using thevec calc
commandmakefunction :
> f:= (x,y) -> sqrt( (x-2)ˆ2 + yˆ2 ) + sqrt( (x+2)ˆ2 + yˆ2 );

f := (x, y) →
√

(x − 2)2 + y2 +
√

(x + 2)2 + y2

> g:=MF([x,y], sqrt( (x-2)ˆ2 + yˆ2 ) - sqrt( (x+2)ˆ2 + yˆ2 ) );

g := (x, y) →
√

x2 − 4 x + 4 + y2 −
√

x2 + 4 x + 4 + y2

We then compute the required quantities and evaluate at(a, b):
> C:= D[1](g) - D[2](f); C(a,b);

C := ((x, y) → 1
2

2 x − 4√
x2 − 4 x + 4 + y2

− 1
2

2 x + 4√
x2 + 4 x + 4 + y2

)

− ((x, y) → y√
(x − 2)2 + y2

+
y√

(x + 2)2 + y2
)

1
2

2 a − 4√
a2 − 4 a + 4 + b2

− 1
2

2 a + 4√
a2 + 4 a + 4 + b2

− b√
a2 − 4 a + 4 + b2

− b√
a2 + 4 a + 4 + b2

> L:= D[1,1](g) + D[2,2](g); L(a,b);

L := ((x, y) → −1
4

(2 x − 4)2

(x2 − 4 x + 4 + y2)(3/2)
+

1√
x2 − 4 x + 4 + y2

+
1
4

(2 x + 4)2

(x2 + 4 x + 4 + y2)(3/2)

− 1√
x2 + 4 x + 4 + y2

) + ((x, y) → − y2

(x2 − 4 x + 4 + y2)(3/2)
+

1√
x2 − 4 x + 4 + y2

+
y2

(x2 + 4 x + 4 + y2)(3/2)
− 1√

x2 + 4 x + 4 + y2
)

−1
4

(2 a − 4)2

(a2 − 4 a + 4 + b2)(3/2)
+ 2

1√
a2 − 4 a + 4 + b2

+
1
4

(2 a + 4)2

(a2 + 4 a + 4 + b2)(3/2)

− 2
1√

a2 + 4 a + 4 + b2
− b2

(a2 − 4 a + 4 + b2)(3/2)
+

b2

(a2 + 4 a + 4 + b2)(3/2)

Notice, the arrow definition was slightly more complicated than the expression definition, but the derivatives
were no more complicated and the evaluations at(a, b, t, p) were much easier.
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3.1.4 Gradient and Hessian
4The vector of first partial derivatives of a functionf is called the gradient off . The matrix of second partial
derivatives off is called its Hessian.

If f is defined as an expression, then the commandsgrad andhessian from the linalg package
(autoloaded byvec calc ) will compute the gradient and hessian off . For these commands you must
specify the variables and the result is a vector or matrix.

If f is defined in arrow notation, then the commandsGRADandHESSfrom thevec calc package will
compute the gradient and hessian off . For these commands the result is a list or a list of lists. To convert the
list of lists into a matrix, you may use thematrix command from thelinalg package.

EXAMPLE 3.4. Enter the functionf(x, y, z) = x3y4z5 as an expression and compute the gradient and
hessian.

SOLUTION: We enter the function and compute the gradient and hessian:
> f := xˆ3 * yˆ4 * zˆ5;

f := x3 y4 z5

> delf := grad(f, [x,y,z]);

delf := [3 x2 y4 z5, 4 x3 y3 z5, 5 x3 y4 z4]

> Hf := hessian(f, [x,y,z]);

Hf :=




6 x y4 z5 12 x2 y3 z5 15 x2 y4 z4

12 x2 y3 z5 12 x3 y2 z5 20 x3 y3 z4

15 x2 y4 z4 20 x3 y3 z4 20 x3 y4 z3




EXAMPLE 3.5. Enter the functionf(x, y, z) = x3y4z5 in arrow notation and compute the gradient and
hessian.

SOLUTION: We enter the function and compute the gradient and hessian:
> f := MF([x,y,z], xˆ3 * yˆ4 * zˆ5);

f := (x, y, z) → x3 y4 z5

> delf := GRAD(f);

delf := [(x, y, z) → 3 x2 y4 z5, (x, y, z) → 4 x3 y3 z5, (x, y, z) → 5 x3 y4 z4]

> Hf := HESS(f);

Hf := [[(x, y, z) → 6 x y4 z5, (x, y, z) → 12 x2 y3 z5, (x, y, z) → 15 x2 y4 z4],
[(x, y, z) → 12 x2 y3 z5, (x, y, z) → 12 x3 y2 z5, (x, y, z) → 20 x3 y3 z4],
[(x, y, z) → 15 x2 y4 z4, (x, y, z) → 20 x3 y3 z4, (x, y, z) → 20 x3 y4 z3]]

4Stewart§15.3, 15.6, 15.7.
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To display the Hessian as a matrix, we need to use thematrix command. But thematrix command
cannot take arrow-defined functions as arguments; i.e. the commandmatrix(Hf) produces an error mes-
sage. So we need to first evaluate the Hessian at a point:
> matrix(Hf(a,b,c)); 


6 a b4 c5 12 a2 b3 c5 15 a2 b4 c4

12 a2 b3 c5 12 a3 b2 c5 20 a3 b3 c4

15 a2 b4 c4 20 a3 b3 c4 20 a3 b4 c3




NOTE: In this book we enter a matrix as a list of lists. For example, the matrixM =
(

2 4 6
1 3 5

)
is entered

as
> M:=[[2,4,6],[1,3,5]];

M := [[2, 4, 6], [1, 3, 5]]
Notice that each inner list is a row of the matrix. However, also notice thatMapledoes not display this list of
lists as an array. To get a nicer display, you can use either of the commands:
> convert(M,matrix), matrix(M); 

 2 4 6

1 3 5


 ,


 2 4 6

1 3 5




The reason for theconvert command is thatMaple has two internal forms for vectors and matrices. In
one form the types are calledlist and listlist . In the other form they arevector and matrix .
The latter have nicer displays, but in this book we will use lists and lists of lists because they are easier
to type. To convert between the types one usesconvert( . . . , vector) or vector( . . . ) and
convert( . . . , matrix) or matrix( . . . ) in one direction andconvert( . . . , list) and
convert( . . . , listlist) in the other direction.

3.2 Applications

3.2.1 Tangent Plane to a Graph
5Given a functionf(x, y), the equation of the plane tangent to the graphz = f(x, y) at the point where
(x, y) = (a, b) is:

z = ftan(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

EXAMPLE 3.6. Find the equation of the plane tangent to the ellipsoidz =

√
4 − x2

8
− y2

9
at the point

(4, 3). Then plot the upper half of the ellipsoid and the tangent plane.
SOLUTION: Enter the function and compute the partial derivatives:

> f:=MF([x,y], sqrt(4 - xˆ2/8 - yˆ2/9) );

f := (x, y) → 1
12

√
576 − 18 x2 − 16 y2

5Stewart§15.4.
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> fx:=D[1](f);

fx := (x, y) → −3
2

x√
576 − 18 x2 − 16 y2

> fy:=D[2](f);

fy := (x, y) → −4
3

y√
576 − 18 x2 − 16 y2

Define the function for the tangent plane:
> ftan:=MF([x,y], f(4,3) + fx(4,3) * (x-4) + fy(4,3) * (y-3) );

ftan := (x, y) → 1
12

√
144 − 1

24

√
144 (x − 4) − 1

36

√
144 (y − 3)

So the tangent plane is:
> z = simplify(ftan(x,y));

z = 4 − 1
2

x − 1
3

y

Finally, plot the ellipsoid and the tangent plane:
> plot3d( {f(x,y), ftan(x,y) }, x=-sqrt(32)..sqrt(32), y=-6..6,
axes=normal, orientation=[-45,85]);

2

4

6

8

–6 –4 –2
6

y
2 4

x

3.2.2 Differentials and the Linear Approximation
6For points near the point of tangency, the tangent plane is close to the graph of a function. Hence, the function
ftan(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) which defines the tangent plane asz = ftan(x, y)
is called the linear approximation to the functionf at (a, b) and may be used to approximate the function
z = f(x, y) near the point of tangency(a, b).

6Stewart§15.4.
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If the point moves from(a, b) to (x, y) = (a + ∆x, b + ∆y), then the differentials of the independent
coordinates,x andy, are simply the changes in the coordinates:

dx = ∆x and dy = ∆y.

For the dependent coordinate,z, the change is:

∆z = f(x, y) − f(a, b) = f(a + ∆x, b + ∆y) − f(a, b),

while the differential is the change in the linear approximation:

dz = ftan(x, y) − ftan(a, b) = ftan(a + ∆x, b + ∆y) − f(a, b)
= fx(a, b)∆x + fy(a, b)∆y = fx(a, b) dx + fy(a, b) dy

The linear approximation says that for points near(a, b), the tangent functionftan(x, y) is close to the
functionf(x, y), and also that the differentialdz is close to the change∆z.

EXAMPLE 3.7. A cylindrical can has radiusr = 4 cm, heighth = 10 cm and is made from aluminum
which is .02 cm thick. Use differentials to estimate the volume of aluminum need to make the can. Include
the sides, top and bottom.

SOLUTION: The volume of a cylinder is
> V:=(r,h) -> Pi*rˆ2*h;

V := (r, h) → π r2 h

To find the volume of the aluminum, we compare the volume inside the can to the volume including the metal.
By the linear approximation, the change in the volume is approximately the differential of the volume. Thus,

∆V ≈ dV =
∂V

∂r
(4, 10)dr +

∂V

∂h
(4, 10)dh

The partial derivatives are
> Vr:= D[1](V);

Vr := (r, h) → 2 π r h

> Vh:= D[2](V);

Vh := (r, h) → π r2

The change in the radius is the thickness of the aluminum:
> dr:= .02:

The change in the height is twice the thickness of the aluminum since there is a top and a bottom:
> dh:= .04:

Thus the volume of aluminum is approximately the differential of the volume:
> dV:= Vr(4,10) * dr + Vh(4,10) * dh;

dV := 2.24 π
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EXAMPLE 3.8. Consider the surface inR3 given by the equation

F (x, y, z) = z10 + x2y2z8 + x4z6 + y4z4 + x2y2z2 + x2 + 2y2 = 8

(a) Verify that the point(1, 1, 1) is on the surface.
Notice that this equation implicitly definesz as a function ofx andy in the neighborhood of the point(1, 1, 1).
So we can writez = f(x, y) wheref(1, 1) = 1.

(b) Use implicit differentiation to compute
∂f

∂x
(1, 1) and

∂f

∂y
(1, 1).

(c) Find the equation of the plane tangent the graphz = f(x, y) at (1, 1).
(d) Use the linear approximation tof(x, y) at (x, y) = (1, 1) to estimatef(1.03, .98).
(e) Useimplicitplot3d to plot the surfaceF (x, y, z) = 8. Useplot3d to plot the tangent plane at

(1, 1, 1). Then usedisplay to put the two plots together.
SOLUTION: (a) We define the functionF :

> F := MF([x,y,z], zˆ10 + xˆ2*yˆ2*zˆ8 + xˆ4*zˆ6 + yˆ4*zˆ4 + xˆ2*yˆ2*zˆ2
+ xˆ2 + 2*yˆ2);

F := (x, y, z) → z10 + x2 y2 z8 + x4 z6 + y4 z4 + x2 y2 z2 + x2 + 2 y2

and evaluate at(1, 1, 1) to check thatF (1, 1, 1) = 8:
> F(1,1,1);

8
(b) We substitutez = f(x, y) into F to obtain the equation which implicitly definesf :

> eq:= F(x,y,f(x,y)) = 8;

eq := f(x, y)10 + x2 y2 f(x, y)8 + x4 f(x, y)6 + y4 f(x, y)4 + x2 y2 f(x, y)2 + x2 + 2 y2 = 8

Then we differentiate with respect tox, solve for
∂f

∂x
and substitute(x, y, z) = (1, 1, 1).

> diff(eq,x);

10 f(x, y)9 (
∂

∂x
f(x, y)) + 2 x y2 f(x, y)8 + 8 x2 y2 f(x, y)7 (

∂

∂x
f(x, y)) + 4 x3 f(x, y)6

+ 6 x4 f(x, y)5 (
∂

∂x
f(x, y)) + 4 y4 f(x, y)3 (

∂

∂x
f(x, y)) + 2 x y2 f(x, y)2

+ 2 x2 y2 f(x, y) (
∂

∂x
f(x, y)) + 2 x = 0

> fxsol:= solve(%, diff(f(x,y),x));

fxsol := − x (y2 f(x, y)8 + 2 x2 f(x, y)6 + y2 f(x, y)2 + 1)
f(x, y) (5 f(x, y)8 + 4 x2 y2 f(x, y)6 + 3 x4 f(x, y)4 + 2 y4 f(x, y)2 + x2 y2)

> fx:= MF([x,y,z], subs(f(x,y)=z, fxsol ) );

fx := (x, y, z) → − x (y2 z8 + 2 x2 z6 + y2 z2 + 1)
z (5 z8 + 4 x2 y2 z6 + 3 x4 z4 + 2 y4 z2 + x2 y2)

> fx0:= fx(1,1,1);

fx0 :=
−1
3
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Likewise fory:
> diff(eq,y);

10 f(x, y)9 (
∂

∂y
f(x, y)) + 2 x2 y f(x, y)8 + 8 x2 y2 f(x, y)7 (

∂

∂y
f(x, y)) + 6 x4 f(x, y)5 (

∂

∂y
f(x, y))

+ 4 y3 f(x, y)4 + 4 y4 f(x, y)3 (
∂

∂y
f(x, y)) + 2 x2 y f(x, y)2 + 2 x2 y2 f(x, y) (

∂

∂y
f(x, y))

+ 4 y = 0
> fysol:= solve(%, diff(f(x,y),y));

fysol := − y (x2 f(x, y)8 + 2 y2 f(x, y)4 + x2 f(x, y)2 + 2)
f(x, y) (5 f(x, y)8 + 4 x2 y2 f(x, y)6 + 3 x4 f(x, y)4 + 2 y4 f(x, y)2 + x2 y2)

> fy:= MF([x,y,z], subs(f(x,y)=z, fysol ) );

fy := (x, y, z) → − y (x2 z8 + 2 y2 z4 + x2 z2 + 2)
z (5 z8 + 4 x2 y2 z6 + 3 x4 z4 + 2 y4 z2 + x2 y2)

> fy0:= fy(1,1,1);

fy0 :=
−2
5

(c) We define the tangent function using the fact thatf(1, 1) = 1:
> ftan:= MF([x,y], 1 + fx0 * (x-1) + fy0 * (y-1) );

ftan := (x, y) → 26
15

− 1
3

x − 2
5

y

Then the tangent plane is:
> z = ftan(x,y);

z =
26
15

− 1
3

x − 2
5

y

(d) The linear approximation tof is just the tangent function. So we evaluate it at(1.03, .98):
> ftan(1.03,.98);

.9980000000
If you are curious, you can compare this result from the linear approximation with the result from thefsolve
command:
> fsolve(F(1.03,.98,z)=8,z);

−.9977857069, .9977857069
Pretty close.

(e) We plot of the equationF (x, y, z) = 8 and save it as plotF:
> plotF:= implicitplot3d( F(x,y,z)=8, x=0..2, y=0..2, z=0..2):

Then we plot the tangent planez = ftan(x, y) and save it as plotFtan:
> plotFtan:= plot3d( ftan(x,y), x=0..2, y=0..2, color=gray):

Finally, we display the two plots together:
> display( {plotF, plotFtan }, orientation=[30,105], scaling=constrained,
axes=normal);
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3.2.3 Taylor Polynomial Approximations

For a function of one variable,f(x), the linear approximation may be improved by using the quadratic approx-
imation or a higher order Taylor polynomial approximation. In general, thenth order Taylor approximation
to f(x) atx = a is

fn(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n

A Taylor polynomial may be computed using theMaple’s taylor and convert( . . . , polynom)
commands. For example, the 5th order Taylor polynomial forln(x) atx = 2 is
> t5:=taylor(ln(x),x=2,6);

t5 := ln(2) +
1
2

(x − 2) − 1
8

(x − 2)2 +
1
24

(x − 2)3 − 1
64

(x − 2)4 +
1

160
(x − 2)5 + O((x − 2)6)

> convert(t5,polynom);

ln(2) +
1
2

x − 1 − 1
8

(x − 2)2 +
1
24

(x − 2)3 − 1
64

(x − 2)4 +
1

160
(x − 2)5

NOTE: The last parameter totaylor is the integer one greater than the order of the Taylor polynomial. In
fact, this parameter is the order of the error term, shown asO(x6). The convert command strips off the
order term.

Similarly, for a function of several variables,f(x1, x2, . . . , xk), the linear approximation may be im-
proved by using the quadratic approximation or a higher order Taylor polynomial approximation. In general,
thenth order Taylor approximation tof(x1, x2, . . . , xk) at (x1, x2, . . . , xk) = (a1, a2, . . . , ak) is

fn(~x) = f(~a) +
k∑

i=1

∂f

∂xi
(~a)(xi − ai) +

1
2

k∑
i=1

k∑
j=1

∂2f

∂xi∂xj
(~a)(xi − ai)(xj − aj)

+ · · · + 1
n!

k∑
i1=1

· · ·
k∑

in=1

∂nf

∂xi1 · · · ∂xin

(~a)(xi1 − ai1) · · · (xin − ain)
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UsingMaple, a multi-variable Taylor polynomial may be computed using themtaylor command.

NOTE: Normally, themtaylor command must be loaded using thereadlib command. However, the
mtaylor command is automatically loaded by thevec calc package.

For example, the 3rd order Taylor polynomial for
√

x2 + y2 at (x, y) = (4, 3) is

> t3:=mtaylor(sqrt(xˆ2 +yˆ2), [x=4,y=3], 2);

t3 :=
4
5

x +
3
5

y +
9

250
(x − 4)2 − 12

125
(x − 4) (y − 3) +

8
125

(y − 3)2 − 18
3125

(x − 4)3

+
69

6250
(y − 3) (x − 4)2 +

4
3125

(y − 3)2 (x − 4) − 24
3125

(y − 3)3

NOTE: The mtaylor command does not produce an order term. So you do not need theconvert
command.

CAUTION: According to the help page, the last parameter tomtaylor should be one greater than the order
of the polynomial. However, in practice,Maple is inconsistent and you need to use trial and error. For this
function, the last parameter needs to be one less than the order of the polynomial as shown here. However, for
the function in the next example, the last parameter needs to be one more than the order of the polynomial.

EXAMPLE 3.9. Find the Taylor polynomials forf(x, y) = sin(x) cos(y) about(x, y) = (0, 0) of orders 3,
11 and 19. Then display the ordinary plots and contour plots for the original function and each of the Taylor
polynomials.

SOLUTION: Enter the function:

> f:=sin(x)*cos(y);

f := sin(x) cos(y)

Then compute the Taylor polynomials: (The output is so long that we will only display the first polynomial.)

> f3:=mtaylor(f,[x=0,y=0],4);

f3 := x − 1
2

y2 x − 1
6

x3

> f11:=mtaylor(f,[x=0,y=0],12):

> f19:=mtaylor(f,[x=0,y=0],20):

The commandnops will count the number of terms in a sum. In particular,

> nops(f3), nops(f11), nops(f19);

3, 21, 55

Sof3 has 3 terms,f11 has 21 terms andf19 has 55 terms.
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Next, compute the ordinary plots of the function and of the Taylor polynomials:

> plot3d(f, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[15,30],
view=-2..2);

> plot3d(f3, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[15,30],
view=-2..2);

> plot3d(f11, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[15,30],
view=-2..2);

> plot3d(f19, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[15,30],
view=-2..2);

Finally, compute the contour plots of the function and of the Taylor polynomials:

> contourplot3d(f, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);
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> contourplot3d(f3, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);

> contourplot3d(f11, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);

> contourplot3d(f19, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);

Notice that the Taylor polynomials become better approximations to the function as the number of terms
increases.

3.2.4 Chain rule
7Supposez is a function ofx andy, i.e. z = z(x, y), while x andy are functions oft, i.e. x = x(t) and
y = y(t). Thenz may also be regarded as a function oft through the compositionz = z(x(t), y(t)) and its
derivative may be compute by using the chain rule:

dz

dt
=

∂z

∂x
(x(t), y(t))

dx

dt
+

∂z

∂y
(x(t), y(t))

dy

dt

7Stewart§15.5.
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Similarly, if z is a function ofx andy, whilex andy are functions ofs andt then the chain rule formulas are:

∂z

∂s
=

∂z

∂x
(x(s, t), y(s, t))

∂x

∂s
+

∂z

∂y
(x(s, t), y(s, t))

∂y

∂s

and ∂z

∂t
=

∂z

∂x
(x(s, t), y(s, t))

∂x

∂t
+

∂z

∂y
(x(s, t), y(s, t))

∂y

∂t

These formulas may be generalized to larger numbers of variables.

EXAMPLE 3.10. A starship is travelling through a high temperature plasma field. Its shields are capable of
withstanding very high temperatures but can only adjust to these temperatures at a rate no greater than25◦C
per second. Assume that the temperature distribution in the plasma is the Gaussian distribution

T = 12500◦C e−(x2+y2+z2)/10000

and the starship is travelling along the parabolic curvey = x2 − 100, z = 0 as a function of time according
to

(x, y, z) = ~r(t) = (
arcsinh(t)

2
,
arcsinh(t)ˆ2

4
− 100, 0)

where all distances are given in light-seconds and time is given in seconds. Plot the absolute value of the
expected rate of change of temperature to ensure that it is never greater than25◦C per second.

SOLUTION: We enter the temperature function and the parametrized curve:
> T:=MF([x,y,z], 12500*exp(-(xˆ2+yˆ2+zˆ2)/10000) );

T := (x, y, z) → 12500 e(−1/10000x2−1/10000 y2−1/10000 z2)

> r:=MF(t,[arcsinh(t)/2,arcsinh(t)ˆ2/4-100,0]);

r := [t → 1
2

arcsinh(t), t → 1
4

arcsinh(t)2 − 100, 0]

We will find the derivative in three ways.

Method 1 We form the compositionT (~r(t)):
> Tr:=MF(t, T(op(r(t))) );

Tr := t → 12500 e(−1/40000arcsinh(t)2−1/10000 (1/4 arcsinh(t)2−100)2)

NOTE: The op command is needed to strip the square brackets off ofr(t) .
Then we take the derivative:
> DTr:=D(Tr);

DTr := t → 12500


− 1

20000
arcsinh(t)√

1 + t2
− 1

10000

(
1
4

arcsinh(t)2 − 100) arcsinh(t)
√

1 + t2




e(−1/40000 arcsinh(t)2−1/10000 (1/4 arcsinh(t)2−100)2)
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Method 2 The chain rule says

dT

dt
=

∂T

∂x
(~r(t))

dx

dt
+

∂T

∂y
(~r(t))

dy

dt
+

∂T

∂z
(~r(t))

dz

dt

So we compute the partial derivatives ofT and thet derivatives ofx, y andz and plug into the chain rule:
> Tx:=D[1](T); Ty:=D[2](T); Tz:=D[3](T);

Tx := (x, y, z) → −5
2

x e(−1/10000 x2−1/10000 y2−1/10000 z2)

Ty := (x, y, z) → −5
2

y e(−1/10000 x2−1/10000 y2−1/10000 z2)

Tz := (x, y, z) → −5
2

z e(−1/10000 x2−1/10000 y2−1/10000 z2)

> Dx:=D(r[1]); Dy:=D(r[2]); Dz:=D(r[3]);

Dx := t → 1
2

1√
1 + t2

Dy := t → 1
2

arcsinh(t)√
1 + t2

Dz := 0
> DTr:=MF(t, Tx(op(r(t)))*Dx(t) + Ty(op(r(t)))*Dy(t) +
Tz(op(r(t)))*Dz(t) );

DTr := t → −5
8

arcsinh(t) e(−1/40000 arcsinh(t)2−1/10000 (1/4 arcsinh(t)2−100)2)

√
1 + t2

− 5
4

(
1
4

arcsinh(t)2 − 100) e(−1/40000 arcsinh(t)2−1/10000 (1/4 arcsinh(t)2−100)2) arcsinh(t)
√

1 + t2

Method 3 Notice that the chain rule formula may written as the dot product

dT

dt
= ~∇T (~r(t)) · ~v(t)

of the gradient~∇T of the temperatureT evaluated on the curve~r(t) and the velocity~v(t) of the curve~r(t).
So we compute the gradient ofT and the velocity of~r and take the dot product:
> delT:=GRAD(T);

delT := [(x, y, z) → −5
2

x e(−1/10000 x2−1/10000 y2−1/10000 z2),

(x, y, z) → −5
2

y e(−1/10000 x2−1/10000 y2−1/10000 z2),

(x, y, z) → −5
2

z e(−1/10000 x2−1/10000 y2−1/10000 z2)]

> v:=D(r);

v := [t → 1
2

1√
1 + t2

, t → 1
2

arcsinh(t)√
1 + t2

, 0]
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> DTr:=MF(t, dot( delT(op(r(t))), v(t) ) );

DTr := t → − 5
16

arcsinh(t) e( 199
40000 arcsinh(t)2−1/160000 arcsinh(t)4−1) (−398 + arcsinh(t)2)√

1 + t2

Now that we have computed the rate of change of the temperature, we can plot the absolute value of
this rate and the horizontal line at 25, to be sure that the temperature is never changing faster than25◦C per
second.
> plot ( {abs(DTr(t)),25 }, t=-10..10);

0
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So our recommendation to the starship captain is“Change course or put on the breaks!”
The first method was the fastest, but it can only be used if you have explicit formulas for the outer

function, hereT (x, y, z), and the inner functions, here~r(t) = (x(t), y(t), z(t)). This will not be the case in
the next example. The second and third methods are essentially the same computation but the third method
is independent of the dimension of space and so is faster when there are more intermediate variables. The
third method will be generalized to the derivative along a curve and the directional derivative in the next
subsection.

EXAMPLE 3.11. In example 3.8, we saw that the surface given by the equation

F (x, y, z) = z10 + x2y2z8 + x4z6 + y4z4 + x2y2z2 + x2 + 2y2 = 8

definesz as a function ofx and y in the neighborhood of the point(1, 1, 1). So we were able to write

z = f(x, y) wheref(1, 1) = 1. Then we computed
∂f

∂x
(1, 1) and

∂f

∂y
(1, 1).

We now transform to polar (or cylindrical) coordinates using the equations

x = r cos(θ) y = r sin(θ).

Then the point(x, y) = (1, 1) has polar coordinates(r, θ) = (
√

2,
π

4
) and the same surfaceF (x, y, z) = 8

definesz as a function ofr andθ in the neighborhood of the point(r, θ, z) = (
√

2,
π

4
, 1). So we can also

write z = g(r, θ) whereg(
√

2,
π

4
)˜ = 1.
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Use the chain rule to compute
∂g

∂r
(
√

2,
π

4
) and

∂g

∂θ
(
√

2,
π

4
).

SOLUTION: In example 3.8, we entered the functionF , used implicit differentiation to compute
∂f

∂x
and

∂f

∂y
and evaluated them at(x, y) = (1, 1). The results were

> fx0, fy0;

−1
3

,
−2
5

We now enter the polar coordinate formulas,
> x0:=MF([r,theta], r*cos(theta)); y0:=MF([r,theta], r*sin(theta));

x0 := (r, θ) → r cos(θ)

y0 := (r, θ) → r sin(θ)

compute their partial derivatives and evaluate them at(x, y) = (1, 1) which corresponds to(r, θ) = (
√

2,
π

4
):

> xr:=D[1](x0); xr0:=xr(sqrt(2),Pi/4);

xr := (r, θ) → cos(θ)

xr0 :=
1
2

√
2

> xtheta:=D[2](x0); xtheta0:=xtheta(sqrt(2),Pi/4);

xtheta := (r, θ) → −r sin(θ)

xtheta0 := −1
> yr:=D[1](y0); yr0:=yr(sqrt(2),Pi/4);

yr := (r, θ) → sin(θ)

yr0 :=
1
2

√
2

> ytheta:=D[2](y0); ytheta0:=ytheta(sqrt(2),Pi/4);

ytheta := (r, θ) → r cos(θ)

ytheta0 := 1
Then the chain rule says

∂g

∂r
(
√

2,
π

4
) =

∂f

∂x
(1, 1)

∂x

∂r
(
√

2,
π

4
) +

∂f

∂y
(1, 1)

∂y

∂r
(
√

2,
π

4
)

and

∂g

∂θ
(
√

2,
π

4
) =

∂f

∂x
(1, 1)

∂x

∂θ
(
√

2,
π

4
) +

∂f

∂y
(1, 1)

∂y

∂θ
(
√

2,
π

4
)
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NOTE: The partial derivatives ofg, x andy are evaluated at(
√

2,
π

4
) sinceg, x andy are functions ofr and

θ while the partial derivatives off are evaluated at(1, 1) sincef is a function ofx andy.

So we compute: The partial derivative
∂g

∂r
(
√

2,
π

4
) is:

> gr0 := fx0 * xr0 + fy0 * yr0;

gr0 := −11
30

√
2

and the partial derivative
∂g

∂θ
(
√

2,
π

4
) is:

> gtheta0 := fx0 * xtheta0 + fy0 * ytheta0;

gtheta0 :=
−1
15

3.2.5 Derivatives along a Curve and Directional Derivatives
8In example 3.10, we computed the time derivative of the temperature as felt by a starship as it moved through
a plasma field along a specified curve.

In general, if a point moves through space along a specified curve~r(t) =
(
x(t), y(t), z(t)

)
and a function

f(x, y, z) is defined throughout space, then the compositionf
(
~r(t)

)
= f

(
x(t), y(t), z(t)

)
is called the

restriction of the functionf to the curve~r(t) or the value of the functionf along the curve~r(t). Then the
derivative of the composition

df

dt
=

df
(
~r(t)

)
dt

=
df

(
x(t), y(t), z(t)

)
dt

is called the derivative off along the curve~r(t). By the chain rule, this may be written as

df

dt
=

∂f

∂x
(~r(t))

dx

dt
+

∂f

∂y
(~r(t))

dy

dt
+

∂f

∂z
(~r(t))

dz

dt
= ~∇f(~r(t)) · ~v(t)

In the last step, the derivative off along the curve~r(t) has been written as the dot product of the gradient~∇f
evaluated on the curve~r(t) and the velocity~v(t) of the curve. It is important to remember that the derivative
along a curve can be computed either by using the chain rule or by using its definition as the derivative of the
composition.

More generally, iff is a function defined throughout space and~v is a vector located at a point~x, then the
derivative off along the vector~v at the point~x is defined to be

~∇~vf = ~v · ~∇f(~x).

So, the derivative off along a curve~r(t) is the same as the derivative off along its velocity vector~v(t):

df

dt
= ~v(t) · ~∇f(~r(t)) = ~∇~vf

8Stewart§15.6.
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And conversely, the derivative off along the vector~v at the point~x is the same as the derivative off along
any curve~r(t) which passes through~x and has velocity~v there.

Further, as a special case, ifû is a unit vector, then the derivative off along the vector̂u, namely~∇ûf , is
also called the directional derivative off in the direction̂u. In particular, if~v is any vector, then the directional

derivative off in the direction ofthe vector~v is ~∇v̂f wherev̂ =
~v

|~v| is the unit vector in the direction of~v.

EXAMPLE 3.12. Consider the functionf = x2y3z4. Compute each of the following:
(a) The gradient off at a general point and at the point~P = (2, 4, 8).
(b) The derivative off along the vector~v = (1, 4, 12) at the point~P = (2, 4, 8). (Notice that you do not

need to know anything about a curve to compute this derivative.)
(c) The directional derivative off in the direction of the vector~v = (1, 4, 12) at the point~P = (2, 4, 8).
(d) The derivative off along the curve~r = (t, t2, t3) at timet = 2. Compute this in two ways.
(e) The derivative off along the curve~R = (2T, 4T 2, 8T 3) at timeT = 1. Comparing the curves~r and

~R, what can you say about their paths, their speeds and their velocities and the derivatives off along the two
curves?

(f) The derivative off along the line~X = (2 + u, 4 + 4u, 8 + 12u) at timeu = 0. Comparing the curves
~r and ~X, what can you say about their paths, their speeds and their velocities at the point~P = (2, 4, 8) and
the derivatives off along the two curves at the point~P = (2, 4, 8)?

SOLUTION: We first enter the function:
> f:=MF([x,y,z], xˆ2*yˆ3*zˆ4);

f := (x, y, z) → x2 y3 z4

(a) We compute the gradient and evaluate it at~P = (2, 4, 8):
> delf:=GRAD(f);

delf := [(x, y, z) → 2 x y3 z4, (x, y, z) → 3 x2 y2 z4, (x, y, z) → 4 x2 y3 z3]

> delfP:=delf(2,4,8);

delfP := [1048576, 786432, 524288]

(b) The derivative off along the vector~v = (1, 4, 12) at ~P = (2, 4, 8) is ~∇~vf = ~v · ~∇f(~P ):
> v:=[1,4,12]: vdelfP:=v &. delfP;

vdelfP := 10485760

(c) The unit vector in the direction of~v is
> vhat:=evall( v/len(v) );

vhat := [
1

161

√
161,

4
161

√
161,

12
161

√
161]

So the directional derivative off in the direction of the vector~v at the point~P = (2, 4, 8) is:
> fvhat:= vhat &. delfP;

fvhat :=
10485760

161

√
161
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(d) We enter the curve~r(t), differentiate the compositionf
(
~r(t)

)
and evaluate att = 2:

> r:= MF(t, [t, tˆ2, tˆ3]);

r := [t → t, t → t2, t → t3]
> Dfr:= diff( f( op(r(t)) ), t);

Dfr := 20 t19

> subs(t=2, Dfr);

10485760
Alternatively, we compute the velocity~v(t) and the dot product~v(t) · ~∇f(~r(t)) and evaluate att = 2:
> v:=D(r);

v := [1, t → 2 t, t → 3 t2]
> vdelfr:= v(t) &. delf( op(r(t)) );

vdelfr := 20 t19

> subs(t=2, vdelfr);

10485760
NOTE: This is the same answer as in (b) since~v(2) = (1, 4, 12) and~r(2) = (2, 4, 8).

(e) We enter the curve~R(T ) and compute the velocity:
> R:= MF(T, [2*T, 4*Tˆ2, 8*Tˆ3]);

R := [T → 2 T, T → 4 T 2, T → 8 T 3]
> V:=D(R);

V := [2, T → 8 T, T → 24 T 2]
Then we compute the dot product~V (T ) · ~∇f(~R(T )) and evaluate atT = 1:
> VdelfR:= V(T) &. delf( op(R(T)) );

VdelfR := 20971520 T 19

> subs(T=1, VdelfR);

20971520
The curves~r(t) and ~R(T ) follow the same path but they are parametrized differently. The parameters are
related byt = 2T since~R(T ) = ~r(2T ). Hence the velocities are related by

~V (T ) =
d~R(T )

dT
=

d~r(2T )
dT

= 2
d~r

dt
= 2~v(2T ).

Hence the speed for~R(T ) is twice the speed for~r(t) and the derivative off along~R(T ) is twice the derivative
along~r(t).

(f) This time we enter the curve~X(u) and compute the position and velocity at timeu = 0:
> X:= MF(u, [2 + u, 4 + 4*u, 8 + 12*u]);

X := [u → 2 + u, u → 4 + 4 u, u → 8 + 12 u]
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> X(0);

[2, 4, 8]
> v:=D(X);

v := [1, 4, 12]
> v(0);

[1, 4, 12]
So the derivative along the curve is:
> vdelfX:= v(0) &. delf( op(X(0)) );

vdelfX := 10485760
The two curves~r(t) and ~X(u) are not the same but they both pass through the point(2, 4, 8) and have velocity
(1, 4, 12) there. In other words, the two curves are tangent at this point and have the same speed there. Hence,
the derivative along the curve must be the same.

3.2.6 Interpretation of the Gradient
9The gradient of a functionf satisfies 4 properties:

1. ~∇f points in the direction of maximum increase of the functionf .

2.
∣∣∣~∇f

∣∣∣ is the rate of increase off (or slope off ) in the direction of maximum increase.

3. ~∇f is perpendicular to each level set of the functionf .

4. Qualitatively,
∣∣∣~∇f

∣∣∣ is inversely proportional to the spacing between the level sets.

We can useMapleto graphically illustrate these properties. The level sets of a function of 2 variables may
be plotted by using thecontourplot command in theplots package. A 2-dimensional vector field such
as the gradient of a function may be plotted by using thefieldplot command in theplots package. A
3-dimensional vector field may be plotted by using thefieldplot3d command in theplots package.

EXAMPLE 3.13. Consider the function

f(x, y) =

(
(x − 2)2 + (y − 4)2 − 16

)2 − 24x − 32y + 20
100

Draw the contour plot off usingcontourplot . Label the contours by (i) clicking in the plot on each
contour to find thex andy coordinates, (ii) evaluatingf at the point and (iii) usingtextplot to plot the
contour values. Compute the gradient off and plot it usingfieldplot . Then display them all in the same
plot usingdisplay . Finally discuss the four properties of the gradient in the context of this plot.

SOLUTION: We enter the function:
> f:=MF([x,y], (( (x-2)ˆ2 + (y-4)ˆ2 -16 )ˆ2 - 24*x - 32*y + 20)/100);

f := (x, y) → 1
100

((x − 2)2 + (y − 4)2 − 16)2 − 6
25

x − 8
25

y +
1
5

9Stewart§15.6.
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We draw the contour plot and save the plot for future use:
> cp:=contourplot(f(x,y), x=-4..8, y=-2..10, scaling=constrained,
contours=[-3,-2,-1,0,1,2,3,4,5]): cp;

–2

0

2

4

6

8

10

y

–4 –2 2 4 6 8x

Unfortunately,Mapledoes not label the contours with the function values. So we must do it by hand. We
click in the plot on each of the 10 contours, read off the coordinates and evaluate the function at that point:
> f(2.6,8), f(2.6,6.8), f(2.6,6), f(2.3,5.21), f(2,3.8);
> f(-1.7,2), f(-2.6,2), f(-3.4,3), f(-3.83,4), f(-3.83,6);

−2.982704000, −1.991600000, −.9891040000, .0676402680, 1.051216000

−.0034390000, 1.023056000, 2.061056000, 3.075205232, 4.034317232
Then we usetextplot to label each contour anddisplay the text with the plot:
> tp:=textplot( {[2.6,8,‘-3‘], [2.6,6.8,‘-2‘], [2.6,6,‘-1‘],
[2.3,5.21,‘0‘], [2,3.8,‘1‘], [-1.7,2,‘0‘], [-2.6,2,‘1‘], [-3.4,3,‘2‘],
[-3.83,4,‘3‘], [-3.83,6,‘4‘] }, font=[TIMES,BOLD,14]):
> display( {cp,tp }, scaling=constrained);
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Now we compute the gradient:
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> delf:=GRAD(f);

delf := [(x, y) → 1
25

x3 − 6
25

x2 +
12
25

x − 14
25

+
1
25

y2 x − 2
25

y2 − 8
25

x y +
16
25

y,

(x, y) → 1
25

x2 y − 4
25

x2 − 4
25

x y +
16
25

x +
36
25

y − 24
25

+
1
25

y3 − 12
25

y2]

and plot it, again saving the plot:
> fp:=fieldplot(delf(x,y), x=-3..7, y=-1..9, scaling=constrained,
grid=[10,10], arrows=thick): fp;

0

2

4

6

8

y

–2 2 4 6x

Finally, we display the level sets and the gradient field in the same plot:
> display( {cp,tp,fp }, scaling=constrained);
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Observe the gradient vectors are perpendicular to the level curves and point toward increasing values of the
function, as required by properties 1 and 3. And the gradient vectors are longer where the contours are closer
together, as predicted by properties 2 and 4. Recall,Maple rescales the vectors so they will fit into the plot
but maintains their relative sizes. So it is not possible to observe the actual lengths of the gradient vectors.
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NOTE: You may also plot the gradient of a function directly by using thegradplot or gradplot3d
commands from theplots package.

3.2.7 Tangent Plane to a Level Surface
10Recall that the plane through a point~P with normal vector~N is given by the equation~N · ~X = ~N · ~P . To
find the equation of the plane tangent to a level surfaceF (x, y, z) = C of a functionF at a point~P = (a, b, c)
we simply take the normal vector to be the gradient ofF atP ; i.e. ~N = ~∇F (a, b, c).

EXAMPLE 3.14. In example 3.8, we found the tangent plane to the surface

F (x, y, z) = z10 + x2y2z8 + x4z6 + y4z4 + x2y2z2 + x2 + 2y2 = 8

at the point(1, 1, 1) by using implicit differentiation. We now rederive it using the gradient.
SOLUTION: We define the functionF , the pointP = (1, 1, 1) and the generic pointX = (x, y, z):

> F := MF([x,y,z], zˆ10 + xˆ2 * yˆ2 * zˆ8 + xˆ4 * zˆ6 + yˆ4 * zˆ4 + xˆ2
* yˆ2 * zˆ2 + xˆ2 + 2*yˆ2);

F := (x, y, z) → z10 + x2 y2 z8 + x4 z6 + y4 z4 + x2 y2 z2 + x2 + 2 y2

> P:=[1,1,1]: X:=[x,y,z]:
Then we compute the gradient and evaluate atP :
> delF:=GRAD(F);

delF := [(x, y, z) → 2 x y2 z8 + 4 x3 z6 + 2 x y2 z2 + 2 x,

(x, y, z) → 2 x2 y z8 + 4 y3 z4 + 2 x2 y z2 + 4 y,

(x, y, z) → 10 z9 + 8 x2 y2 z7 + 6 x4 z5 + 4 y4 z3 + 2 x2 y2 z]
> N:=delF(op(P));

N := [10, 12, 30]
Finally we construct the equation of the tangent plane:
> N &. X = N &. P;

10 x + 12 y + 30 z = 52
Notice how much easier this was than the computation in example 3.8.

CAUTION: At the beginning and end of this chapter11, we discussed the tangent plane to a surface in two
different contexts. Students often confuse these two situations.

In subsection 3.2.1, we discussed the tangent plane to the graphz = f(x, y) of a function of2 variables.
In that case the tangent plane at

(
a, b, f(a, b)

)
is the linear approximation:

z = ftan(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

In subsection 3.2.7, we discussed the tangent plane to the level surfaceF (x, y, z) = C of a function of3
variables. In that case the tangent plane at~P = (a, b, c) is

~N · ~X = ~N · ~P
10Stewart§§13.5, 15.6.
11Stewart§§15.4, 15.6.
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where the normal vector is the gradient atP :

~N = ~∇F (a, b, c).

If you are given a surface as a graphz = f(x, y) , then you can also treat it as the level surface
F (x, y, z) = z − f(x, y) = 0. The reverse is not always possible. In the exercises, you will be asked
to find the tangent plane to several graphs by both methods.

3.3 Exercises

• Do Lab: 9.6.

• Do Projects: 10.4 and 10.3.

1. Plot the graph and the contour plot of the functionf(x, y) = y +
√

x2 + (y − 2)2. Discuss the
shape of the contours and any local maxima and minima of the function. Notice thatf is the sum of
the distances from(x, y) to the point(0, 2) and the liney = 0.

2. Check that the function y = 4(x−ct)2−(x−ct)3 satisfies the wave equation
∂2y

∂x2
− 1

c2

∂2y

∂t2
= 0.

Make a movie of the wave (forc = 2) by using the command
> animate(4*(x-2*t)ˆ2 - (x-2*t)ˆ3, x=-10..10, t=-5..5, view=-5..15,
frames=50);

Then click in the plot and click on thePLAY ARROW on the button bar. Repeat for the functions:
y = cos(x + ct), y = exp(x − ct), and y = e−(x−ct)2 + e−(x+ct)2 .

3. Compute the gradient of f(x, y) = −x4 +4xy− 2y2 +1 at a general point and at(x, y) = (2, 3).

4. Compute the Hessian off(x, y) = −x4 + 4xy− 2y2 + 1 at a general point and at(x, y) = (2, 3).

5. Find an equation of the tangent plane to the graphz = x2 + 2y2 at the point(x, y, z) = (1, 1, 3).
Plot the function and its tangent plane.

6. Find an equation of the tangent plane to the graphz = f(x, y) = xy at the point(x, y) = (2, 3).
Plot the function and its tangent plane.

7. Compute the total differentialdw for the function w = x2y3 whenx = 3, y = 2, dx = .04, and
dy = .2.

8. The length, width and height of a box are measured to beL = 2± .03 cm, W = 3± .02 cm and
H = 4 ± .01 cm. Then the volume of the box is V = 24 ± ∆V . Use differentials to estimate
the error∆V in the computation of the volume.

9. If u = x4y + y2z3, where x = rset, y = rs2e−t, and z = r2s sin t, find the value

of
∂u

∂s
whenr = 2, s = 1 andt =

π

2
. Find the derivative both by forming the composition of the

functions and by using the chain rule.
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10. Compute the derivative of the temperature functionT (x, y, z) = z + x2 + y4 along the helix~r(t) =
(cos(t), sin(t), t) at t =

π

4
. Find the answer in two ways: (a) by forming the composition, and (b) by

finding the derivative along the velocity.

11. Compute the directional derivative ofw = x2y3 at (x, y) = (4,−1) in the direction of theunit
vectorv̂ which points in the same direction as the vector~v = (4, 3).

12. Find the equation of the tangent plane to the surfacex4y3z+xz5−yz4 = 1 at the point(x, y, z) =
(1, 1, 1) by regarding it as the level set of a function.

13. Find the equation of the tangent plane to the ellipsoid
x2

32
+

y2

36
+

z2

4
= 1 at the point(x, y, z) =

(4, 3, 1) by regarding it as the level set of a function. Compare your results to example 3.6.

14. Find the equation of the tangent plane to the level surfaceF (x, y, z) = z − x2 − 2y2 = 0 at the
point(x, y, z) = (1, 1, 3). The answer should be the same as for exercise 5.

15. Find the equation of the tangent plane to the level surfaceF (x, y, z) = z − xy = 0 at the point
(x, y, z) = (2, 3, 6). The answer should be the same as for exercise 6.

16. Find the equation of the tangent plane to the level surfaceF (x, y, z) = z − f(x, y) = 0 at the
point (x, y, z) =

(
a, b, f(a, b)

)
. Compare the result to the equation of the tangent plane to the

graph z = f(x, y) at the point (x, y) = (a, b).



Chapter 4

Max-Min Problems

1There are two types of max-min problems that we will discuss:

1. Unconstrained Max-Min Problems2 Here you want to find all the critical points~x of a functionf(~x)
and classify each as a local maximum, a local minimum or a saddle point. The critical points are the
points~x where the gradient is zero,~∇f(~x) = ~0. They are classified by applying the Second Derivative
Test.

2. Constrained Max-Min Problems3 Here you want to find the location~x and valuef(~x) of the absolute
maximum or absolute minimum of a functionf where the points are constrained to lie on a level set of
a functiong. There are three methods of solving a constrained max-min problem:

(a) Eliminating a Variable 4 You can solve the constraintg(~x) = C for one variable, substitute into
the functionf and reduce the problem to an unconstrained problem with one less variable.

(b) Parametrizing the Constraint You can parametrize the constraintg(~x) = C, substitute into the
functionf and reduce the problem to an unconstrained problem with one less variable.

(c) Lagrange Multipliers 5 You can solve the equation~∇f = λ~∇g along with the constraintg(~x) =
C, for the critical points~x and the Lagrange multiplierλ.

We will also consider an example with two constraints. The discussion in this chapter is alln-dimensional,
although the examples are primarily 2- and 3-dimensional.

1Stewart Ch. 15.
2Stewart§15.7.
3Stewart§§15.7, 15.8.
4Stewart§15.7.
5Stewart§15.8.
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4.1 Unconstrained Max-Min Problems

4.1.1 Finding Critical Points

6To find the critical points of a functionf(~x), you need to solve the equation~∇f = ~0, where~∇f is the
gradient off .

To compute the gradient, you can use theGRADcommand from thevec calc package. This assumes
that f is arrow-defined as produced by theMFcommand. To set the gradient equal to zero, you can use
the equate command from thestudent package (autoloaded by thevec calc package). To solve
the equations, you can try usingsolve to get exact solutions, orfsolve to get decimal approximations.
If Maple returns answers involving one or moreRootOf ’s, you can obtain all of the roots by using the
allvalues command probably with theindependent option. Be sure to check that the values returned
are really solutions sinceallvalues/independent is likely to produce extraneous roots. This is done
by evaluating~∇f at each answer. It may also be useful to look at a graph or a contour plot off(~x) to
determine the variable ranges for thefsolve command and to verify that you have all the solutions.

EXAMPLE 4.1. Find the location and value of all critical points of the function
f(x, y) = 3x2y + y3 − 3x2 − 3y2 + 2.

SOLUTION: We first input the function and draw an ordinary plot and a contour plot:

> f:=MF([x,y], 3*xˆ2*y + yˆ3 - 3*xˆ2 - 3*yˆ2 + 2);

f := (x, y) → 3 x2 y + y3 − 3 x2 − 3 y2 + 2

> plot3d(f(x,y), x=-3..3, y=-2..4, view=-10..10, axes=normal,
orientation=[-15,75]);
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–2 –1 1 2 3 4
y
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2

x

> contourplot3d(f(x,y), x=-3..3, y=-2..4, axes=normal, contours=[-6,
-4, -2, -3/2, -1, -1/2, 0, 1/2, 1, 3/2, 2, 4, 6], grid=[49,49],
orientation=[-90,0]);

6Stewart§15.7.
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x

The first plot shows there are probably one local maximum and one local minimum. The second plot locates
the local maximum near(0, 0) and the local minimum near(0, 2). It also shows there are probably two saddle
points near(1, 1) and(−1, 1).

To verify our predictions, we take the gradient off and equate it to zero:
> delf:=GRAD(f);

delf := [(x, y) → 6 x y − 6 x, (x, y) → 3 x2 + 3 y2 − 6 y]
> eqs:= equate(delf(x,y), [0,0]);

eqs := {6 x y − 6 x = 0, 3 x2 + 3 y2 − 6 y = 0}
We now solve the equations for the critical points:
> sol:=solve(eqs, {x,y });

sol := {x = 0, y = 0}, {x = 0, y = 2}, {x = 1, y = 1}, {x = −1, y = 1}
There are four solutions, as we expected. The function values are:
> f1:=subs(sol[1], f(x,y)); f2:=subs(sol[2], f(x,y));
> f3:=subs(sol[3], f(x,y)); f4:=subs(sol[4], f(x,y));

f1 := 2

f2 := −2

f3 := 0

f4 := 0
We suspect the local maximum is2 at (0, 0), the local minimum is−2 at (0, 2) and there are two saddle
points, but that will be demonstrated in example 4.4.
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We next have a three dimensional example where the solutions are given in terms of theRootOf function.

EXAMPLE 4.2. Find the location and value of all critical points of the function

F (x, y, z) = (x + y + z)e

(
−x2

2 − y2

8 − z2

18

)
.

SOLUTION: We first input the function. Since we cannot plot a function of 3 variables, we immediately
take the gradient and display each component:
> F:=MF([x,y,z], (x+y+z)*exp(-xˆ2/2-yˆ2/8-zˆ2/18));

F := (x, y, z) → (x + y + z) e(−1/2 x2−1/8 y2−1/18 z2)

> delF:=GRAD(F): delF[1]; delF[2]; delF[3];

(x, y, z) → e(−1/2 x2−1/8 y2−1/18 z2) − x2 e(−1/2 x2−1/8 y2−1/18 z2) − x e(−1/2 x2−1/8 y2−1/18 z2) y

− x e(−1/2 x2−1/8 y2−1/18 z2) z

(x, y, z) → e(−1/2 x2−1/8 y2−1/18 z2) − 1
4

x e(−1/2 x2−1/8 y2−1/18 z2) y

− 1
4

y2 e(−1/2 x2−1/8 y2−1/18 z2) − 1
4

y e(−1/2 x2−1/8 y2−1/18 z2) z

(x, y, z) → e(−1/2 x2−1/8 y2−1/18 z2) − 1
9

x e(−1/2 x2−1/8 y2−1/18 z2) z

− 1
9

y e(−1/2 x2−1/8 y2−1/18 z2) z − 1
9

z2 e(−1/2 x2−1/8 y2−1/18 z2)

Before equating the gradient to zero, we first simplify it a little bit. First notice that the exponential factor
> ex:=exp(-xˆ2/2-yˆ2/8-zˆ2/18);

ex := e(−1/2 x2−1/8 y2−1/18 z2)

can be factored out of each term of the gradient. Since this quantity is always positive, we can divide each
equation by this factor and not affect the validity of the equation. The resulting equations are:
> eqa:= simplify( equate( delF(x,y,z)/ex, [0,0,0] ) );

eqa := {1 − x2 − x y − x z = 0, 1 − 1
4

x y − 1
4

y2 − 1
4

y z = 0, 1 − 1
9

x z − 1
9

y z − 1
9

z2 = 0}
We now solve the equations for the critical points:
> sols:=solve(eqa, {x,y,z });

sols := {y = 2 RootOf(7 Z 2 − 2), z =
9
2

RootOf(7 Z 2 − 2), x =
1
2

RootOf(7 Z 2 − 2)}
There is only one solution, but it involves 3RootOf ’s with the same argument,7 Z2 − 2. This means that

eachRootOf is to be replaced by either

√
2
7

or−
√

2
7

. Unfortunately, at this point, there is no way to know

whether theRootOf ’s are “dependent” or “independent.” If they are dependent, then all of theRootOf ’s
are to be replaced together once by the positive root and once by the negative root producing 2 solutions.
(These may be found usingallvalues(sols, dependent .) If they are independent, then each of the
RootOf ’s is to be replaced separately once by the positive root and once by the negative root producing
8 solutions. (These may be found usingallvalues(sols, independent .) At this time there is no
way to know which is the case. So to be safe, we need to assume they are independent and check whether
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each “potential solutions” is really a solution by substituting it into the gradient. This is time consuming. So
instead, we will re-solve the equations but one at a time.

We first solve the first equation forz and substitute into the second and third equations:
> z0:=solve(eqa[1],z); eqb:=simplify( subs(z=z0, {eqa[2],eqa[3] }) );

z0 := −−1 + x2 + x y

x

eqb := {y − 4 x

y
= 0,

1
9

13 y2 + 4 x y − 16
y2

= 0}
Then we solve the first of these fory and substitute into the second which we then solve forx:
> y0:=solve(eqb[1],y); eqc:=subs(y=y0,eqb[2]);

y0 := 4 x

eqc :=
1

144
224 x2 − 16

x2
= 0

> x0:=solve(eqc,x);

x0 :=
1
14

√
14, − 1

14

√
14

So there are two solutions, which we obtain by substituting back:
> P1:=subs(z=z0,y=y0,x=x0[1],[x,y,z]);
P2:=subs(z=z0,y=y0,x=x0[2],[x,y,z]);

P1 := [
1
14

√
14,

2
7

√
14,

9
14

√
14]

P2 := [− 1
14

√
14, −2

7

√
14, − 9

14

√
14]

NOTE: The subs commands work because the substitutions are made in the order they are listed.
Finally the function values are:

> F1:=F(op(P1)); F2:=F(op(P2));

F1 :=
√

14 e(−1/2)

F2 := −
√

14 e(−1/2)

NOTE: Again we useop to strip off square brackets.
So we expect thatP1 is a local maximum andP2 is a local minimum. We will check this in example 4.5.

In the previous two examples, we found the exact values of the critical points using thesolve command.
In the next example, the critical points cannot be found exactly. So we will use thecontourplot and
fsolve commands to find decimal approximations to the critical points.

EXAMPLE 4.3. Find the location and value of all critical points of the function
g(x, y) =

(
(x − 1)2 + (y − 2)2 − 4

)2
+ 3x − 4y.

SOLUTION: We first input the function:
> g:=MF([x,y], ((x-1)ˆ2+(y-2)ˆ2-4)ˆ2 + 3*x - 4*y );

g := (x, y) → ((x − 1)2 + (y − 2)2 − 4)2 + 3 x − 4 y
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Next we want to plot the function. Notice that for largex andy, the function behaves qualitatively like(
(x − 1)2 + (y − 2)2

)2
. So the level curves behave qualitatively like circles centered at(1, 2). So we need

a region centered at(1, 2). Some experimentation shows that good ranges forx, y andz are−2 ≤ x ≤ 4,
−1 ≤ y ≤ 5 and−15 ≤ z ≤ 20. Using these ranges, we draw an ordinary plot and a contour plot:
> plot3d(g(x,y), x=-2..4, y=-1..5, view=-15..20, style=wireframe,
axes=boxed, orientation=[-120,75]);
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> contourplot3d(g(x,y), x=-2..4, y=-1..5, view=-15..20, axes=normal,
orientation=[-90,0], grid=[49,49]);
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From these plots, we expect that there is a local minimum near(−.5, 3.5), a local maximum near(1, 2) and
a saddle near(2, .5).

To get better approximations for these critical points, we compute the gradient and equate it to zero:
> delg:=GRAD(g);
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delg := [(x, y) → 4 x3 − 12 x2 + 12 x − 1 + 4 y2 x − 4 y2 − 16 x y + 16 y,

(x, y) → 4 x2 y − 8 x2 − 8 x y + 16 x + 36 y − 12 + 4 y3 − 24 y2]
> eqs:=equate( delg(x,y), [0,0]);

eqs := {4 x3 − 12 x2 + 12 x − 1 + 4 y2 x − 4 y2 − 16 x y + 16 y = 0,

4 x2 y − 8 x2 − 8 x y + 16 x + 36 y − 12 + 4 y3 − 24 y2 = 0}
If we solve these just usingfsolve :
> sol1:=fsolve(eqs, {x,y });

sol1 := {y = .5438070899, x = 2.092144683}
we only get one solution. So we usefsolve with ranges to find the other two:
> sol2:=fsolve(eqs, {x,y }, {x=0..2,y=1..3 });

sol2 := {x = 1.192449828, y = 1.743400230}
> sol3:=fsolve(eqs, {x,y }, {x=-1..0,y=3..5 });

sol3 := {x = −.2845945104, y = 3.712792680}
The function values are:

> g1:=subs(sol1, g(x,y)); g2:=subs(sol2, g(x,y)); g3:=subs(sol3,
g(x,y));

g1 := 4.572793069

g2 := 11.79128991

g3 := −15.36408298
We suspect the local minimum is−15.36 at (−.28, 3.71), the local maximum is11.79 at (1.19, 1.74) and
there is a saddle at(2.09, .54) but that will be demonstrated in exercise 2.

4.1.2 Classifying Critical Points by the Second Derivative Test
7To classify a critical point of a functionf , you need to apply the Second Derivative Test. InR

2 we have:

The Second Derivative Test inR2. If (x, y) is a critical point of a functionf in R
2, then

1. (x, y) is a local minimum iffxx(x, y)fyy(x, y) − fxy(x, y)2 > 0 andfxx(x, y) > 0.

2. (x, y) is a local maximum iffxx(x, y)fyy(x, y) − fxy(x, y)2 > 0 andfxx(x, y) < 0.

3. (x, y) is a saddle point iffxx(x, y)fyy(x, y) − fxy(x, y)2 < 0.

4. In all other cases, the Second Derivative Test FAILS; i.e. the test cannot determine whether the critical
point is a local minimum, a local maximum or a saddle point.

7Stewart§15.7.
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This may be generalized toRn. To do this, you first compute the Hessian matrix which is the matrix of
second partial derivatives off :

Hess(f) =
(
fxixj

)
=




fx1x1 fx1x2 . . . fx1xn

fx2x1 fx2x2 . . . fx2xn

...
...

...
...

fxnx1 fxnx2 . . . fxnxn




Next you compute the leading principal minor determinants of the Hessian matrix. These are the determinants
of the submatrices in the top left corner of sizes1 × 1, 2 × 2, 3 × 3, etc:

Dk = det




fx1x1 . . . fx1xk

...
...

...
fxkx1 . . . fxkxk


 for k = 1, . . . , n .

In particular,

D1 = fxx , D2 = fxxfyy − f2
xy and

D3 = fxxfyyfzz + fxyfyzfzx + fxzfyxfzy − fxxfyzfzy − fxzfyyfzx − fxyfyxfzz

Finally, you evaluate the leading principal minor determinants at each critical point,~x, and classify the point
as follows:

The Second Derivative Test inRn. If ~x is a critical point of a functionf in R
n, then

1. ~x is a local minimum if the determinantsDk(~x) are all positive.

2. ~x is a local maximum if the determinantsDk(~x) alternate signs starting with negative;
i.e. (−1)kDk(~x) > 0 for k = 1, . . . , n.

3. ~x is a saddle point ifDn(~x) 6= 0 and #1 and #2 above fail.

4. In all other cases, the Second Derivative Test FAILS; i.e. the test cannot determine whether the critical
point is a local minimum or a local maximum.

To compute the Hessian, you can use theHESScommand from thevec calc package. This assumes
thatf is arrow-defined as produced by theMFcommand. TheHESScommand produces a matrix of arrow-
defined functions. To display this matrix as an array of expressions, you should evaluate the Hessian at a
general point and apply thematrix command. To compute the leading principal minor determinants, you
can use the commandleading principal minor determinants from thevec calc package
or its aliasLPMD. This command expects its argument to be a matrix of expressions. So you must first
evaluate the Hessian at a general point or at a critical point.

EXAMPLE 4.4. Classify the critical points of the functionf(x, y) = 3x2y + y3 − 3x2 − 3y2 + 2.
SOLUTION: In example 4.1, we entered the function intoMaple, found four critical points and found the

function values. To classify them, we first compute and display the Hessian:
> Hf:=HESS(f); matrix(Hf(x,y));

Hf := [[(x, y) → 6 y − 6, (x, y) → 6 x], [(x, y) → 6 x, (x, y) → 6 y − 6]]
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 6 y − 6 6 x

6 x 6 y − 6




Then we compute the leading principal minor determinants. For a general point we have:

> LPMD(Hf(x,y)):

Leading Principal Minor Determinants:

D1 = 6 y − 6

D2 = 36 y2 − 72 y + 36 − 36 x2

For the first critical point(0, 0), we have

> LPMD(Hf(0,0)):

Leading Principal Minor Determinants:

D1 = −6

D2 = 36

SinceD2 is positive andD1 is negative,(0, 0) is a local maximum.
For the second critical point(0, 2), we have

> LPMD(Hf(0,2)):

Leading Principal Minor Determinants:

D1 = 6

D2 = 36

SinceD2 andD1 are both positive,(0, 2) is a local minimum.
For the third and fourth critical points(1, 1) and(−1, 1), we have

> LPMD(Hf(1,1)):

Leading Principal Minor Determinants:

D1 = 0

D2 = −36

> LPMD(Hf(-1,1)):

Leading Principal Minor Determinants:

D1 = 0

D2 = −36
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At both critical points,D2 is negative. So both(1, 1) and(−1, 1) are saddle points.
These results agree with our expectations from the plots in example 4.1. In particular, notice the shape of

the contours near the saddle points(1, 1) and(−1, 1) so that you will recognize them next time.

EXAMPLE 4.5. Classify the critical points of the functionF (x, y, z) = (x + y + z)e

(
−x2

2 − y2

8 − z2

18

)
.

SOLUTION: In example 4.2, we entered the function intoMaple, found two critical points and found the
function values. To classify them, we first compute the Hessian:
> HF:=HESS(F):
Then we compute the leading principal minor determinants at each critical point.

For the first critical point,P1 = (
1√
14

,
4√
14

,
9√
14

), we have

> LPMD(HF(op(P1))):

Leading Principal Minor Determinants:

D1 = −15
14

√
14 e(−1/2)

D2 =
19
4

(e(−1/2))2

D3 = −7
9

√
14 (e(−1/2))3

SinceD1 is negative,D2 is positive andD3 is negative,P1 = (
1√
14

,
4√
14

,
9√
14

) is a local maximum.

For the second critical pointP2 = (− 1√
14

,− 4√
14

,− 9√
14

), we have

> LPMD(HF(op(P2))):

Leading Principal Minor Determinants:

D1 =
15
14

√
14 e(−1/2)

D2 =
19
4

(e(−1/2))2

D3 =
7
9

√
14 (e(−1/2))3

SinceD1, D2 andD3 are all positive,P2 = (− 1√
14

,− 4√
14

,− 9√
14

) is a local minimum.

4.2 Constrained Max-Min Problems
8Most word problems are constrained max-min problems. The formost thing to remember when usingMaple
to solve a word problem is thatMaplewill not solve the whole problem on its own. It takes a human being
to read the problem and turn the words into equations. You must identify the function to optimize and any

8Stewart§§15.7, 15.8.
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constraint equations. Then you must choose the method of solution. Basically you should decide how you
would solve the problem by hand and do the same steps usingMaple.

One further rule of operation: If you plan to usex , y , z or t as variables in an equation, never assign a
value to these variables.

4.2.1 Eliminating a Variable
9One method of solving a constrained max-min problem is the “Eliminate a Variable” method. To use this
method, you solve the constraint for one of the variables and substitute for that variable in the function you
are extremizing. In this way, you reduce the number of variables by one. Finally, you solve the reduced
unconstrained problem for the remaining variables and plug back into the constraint to find the eliminated
variable.

EXAMPLE 4.6. You wish to construct an aquarium to hold 18,000 in3 of water, with a marble base, a glass
front, an aluminum back and aluminum left and right sides. There is no top. The marble costs $.15 per in2;
the glass costs $.10 per in2; and the aluminum costs $.05 per in2. What are the dimensions which minimize
the cost? (Letx be the length of the tank from left to right,y be the width from front to back, andz be the
height from top to bottom.)

SOLUTION: The volume isV = xyz, which we enter as
> V:=(x,y,z) -> x*y*z;

V := (x, y, z) → x y z

Then the constraint equation is
> constr:=V(x,y,z) = 18000;

constr := x y z = 18000
To find the cost, we make a table of each surface, the area of the surface and the cost per unit area:

Surface: bottom front back left right
Area: x y x z x z y z y z
Cost: .15 .10 .05 .05 .05

We then multiply the cost per unit area by the area and add them up. So the total cost is
> C:=(x,y,z) -> .15*x*y + .10*x*z + .05*(x*z + 2*y*z);

C := (x, y, z) → .15 x y + .15 x z + .10 y z

We now get to the first method of minimizing the cost: We solve the constraint for one variable and
substitute into the cost.
> z0:=solve(constr,z);

z0 := 18000
1

x y
> C2:=MF([x,y], C(x,y,z0));

C2 := (x, y) → .15 x y + 2700.00
1
y

+ 1800.00
1
x

9Stewart§15.7.
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NOTE: When we solve forz , we save the result inz0 not z so thatz can still be used in other equations.
We can now minimizeC2:

> delC:=GRAD(C2);

delC := [(x, y) → .1500000000
y x2 − 12000.

x2
, (x, y) → .1500000000

x y2 − 18000.

y2
]

> eqs:=equate(delC(x,y),[0,0]);

eqs := {.1500000000
y x2 − 12000.

x2
= 0, .1500000000

x y2 − 18000.

y2
= 0}

> sol:=solve(eqs, {x,y });

sol := {y = 30., x = 20.},
{y = −15.00000000− 25.98076211 I, x = −10.00000000− 17.32050808 I},
{x = −10.00000000+ 17.32050808 I, y = −15.00000000+ 25.98076211 I}

Only the first solution is real. So we substitute it back into the constraint solved forz:
> subs(sol[1],z0);

30.00000001
So the dimensions arex = 20, y = 30 andz = 30.

If you do not want to have decimals in your answer, then you should enter your cost function as:
> C:=(x,y,z)-> 15/100*x*y + 10/100*x*z + 5/100*(x*z + 2*y*z):

4.2.2 Parametrizing the Constraint

Another method of solving a constrained max-min problem is the “Parametrize the Constraint” method. To
use this method, you parametrize the constraint set and substitute into the function to be extremized. In this
way, you reduce the number of variables by one. Finally, you solve the reduced unconstrained problem for
the parameters and plug back into the parametrization of the constraint to get the point.
NOTE: You should only use this method if it is easy to parametrize the constraint.

EXAMPLE 4.7. Find the point(x, y) on the ellipse
x2

16
+

y2

9
= 1 which is closest to the point(4, 3).

SOLUTION: In this problem the quantity you need to minimize is the distance from the point(4, 3) to
the general point(x, y) on the ellipse. This distance isd =

√
(x − 4)2 + (y − 3)2 . If the distance is a

minimum, then the square of the distance is also a minimum, and vice versa. So the function we will actually
minimize is
> f:=(x,y) -> (x-4)ˆ2 + (y-3)ˆ2;

f := (x, y) → (x − 4)2 + (y − 3)2

The point(x, y) is constrained to lie on the ellipse. So the constraint function is
> g:=(x,y)->xˆ2/16 + yˆ2/9;

g := (x, y) → 1
16

x2 +
1
9

y2



4.2. CONSTRAINED MAX-MIN PROBLEMS 81

and the constraint equation is
> constr:=g(x,y)=1;

constr :=
1
16

x2 +
1
9

y2 = 1

To solve this by the method of Eliminating a Variable, you would solve the constraint for one variable, sayy:

y = ±3

√
1 − x2

16

and substitute into the distance squared function:

f+ = (x − 4)2 + (3

√
1 − x2

16
− 3)2 and f− = (x − 4)2 + (−3

√
1 − x2

16
− 3)2.

You would then find the minima of these two functions ofx. Since these are ugly functions, you would
probably not choose to solve the problem by this method, (althoughMaple could handle it.) Further, for
some constraints, it is not possible to solve for one variable. So you must use another method. So we turn to
the method of Parametrizing the Constraint.

The ellipse may be parametrized asx = 4 cos(φ) andy = 3 sin(φ) for 0 ≤ φ ≤ 2π.
NOTE: As pointed out in example 2.1, the parameterφ does not measure angle like the polar coordinateθ.
This parametrization may be entered intoMapleas
> x0:= 4*cos(phi): y0:= 3*sin(phi):
NOTE: We store these asx0 andy0 , rather than asx andy , so thatx andy can still be used in equations.

We then restrict the functionf to the ellipse as a function of the parameterφ:
> f0:=MF( phi, f(x0,y0) );

f0 := φ → (4 cos(φ) − 4)2 + (3 sin(φ) − 3)2

We plot the function to find the number of minima and where they are.
> plot(f0(phi), phi=0..2*Pi);

10

20

30

40

50

60

70

0 1 2 3 4 5 6
phi

So there is one minimum nearφ = .7 . To improve the value, we first compute the derivative:
> Df:=D(f0);

Df := φ → −8 (4 cos(φ) − 4) sin(φ) + 6 (3 sin(φ) − 3) cos(φ)
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Then we set the derivative equal to zero andsolve :
> phisol:=solve(Df(phi)=0, phi);

phisol := arctan(%1,
23
16

%1 +
49
144

%13 +
7
16

%12 − 7
16

)

%1 := RootOf(49 Z 4 + 126 Z 3 + 288 Z 2 − 126 Z − 81)
Notice that the exact solution is rather complicated. So we tryfsolve :
> phisol:=fsolve(Df(phi)=0, phi=0..2);

phisol := .7014935109
which is the minimum in the plot. Finally thex andy coordinates at the minimum are:
> xsol:=evalf(subs(phi=phisol,x0));

xsol := 3.055516754
> ysol:=evalf(subs(phi=phisol,y0));

ysol := 1.936077806

4.2.3 Lagrange Multipliers
10The final method of solving a constrained max-min problem is the method of Lagrange Multipliers. This
method is based on the fact that the extremum of a functionf(~x) along a constraintg(~x) = C will occur at a
point~x where a level set off is tangent to the constraint set which is itself a level set ofg. Since their level
sets are tangent, their normals (i.e. their gradients) are proportional,~∇f = λ~∇g. So to use this method, you
solve the equations~∇f = λ~∇g along with the constraintg = C for the original variables~x and the Lagrange
multiplier λ. Thus the number of variables is increased by one.

EXAMPLE 4.8. Re-solve the problem of minimizing the distance from a point to an ellipse in example 4.7
using the method of Lagrange Multipliers. Also simultaneously plot: (i) the contour plot of the distance
squared function, (ii) the parametric plot of the constraint ellipse and (iii) the implicit plot of the level set of
the distance squared function which passes through the minimizing point. Discuss the relationship between
these three pieces of the plot.

SOLUTION: Once again the square of the distance is
> f:=(x,y) -> (x-4)ˆ2 + (y-3)ˆ2:
the constraint function is
> g:=(x,y)->xˆ2/16 + yˆ2/9:
and the constraint equation is
> constr:=g(x,y)=1:
We compute the gradient off andg and construct the 2 equations~∇f = λ~∇g:
> delf:=GRAD(f); delg:=GRAD(g);

delf := [(x, y) → 2 x − 8, (x, y) → 2 y − 6]

delg := [(x, y) → 1
8

x, (x, y) → 2
9

y]

10Stewart§15.8.
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> eqs:=op( equate(delf(x,y), lambda * delg(x,y)) );

eqs := 2 x − 8 =
1
8

λx, 2 y − 6 =
2
9

λ y

Then we solve these equations and the constraint forx, y andλ:
> sol:=fsolve( {eqs,constr }, {x,y,lambda }, {x=0..4, y=0..3 });

sol := {λ = −4.945720530, x = 3.055516754, y = 1.936077806}
as found in example 4.7. So the value off at the minimum is
> fsol:=subs(sol,f(x,y));

fsol := 2.023979037

We now turn to the plots. Recall that the parametrization of the ellipse is
> x0:= 4*cos(phi): y0:= 3*sin(phi):

So the plot of the ellipse is
> ellipse:=plot([x0,y0, phi=0..2*Pi]):

The contour plot off and the level curve off with valuefsol = 2.024 are
> fplot:=contourplot(f, -6.2..8.2, -4..6, color=black):

> fsolplot:=implicitplot(f(x,y)=fsol, x=0..6, y=0..6, thickness=2,
color=gray):

Now we display them together:
> display( {ellipse,fplot,fsolplot }, view=[-6.2..8.2,-4..6],
scaling=constrained);

–4

–2

2

4

6

y

–6 –4 –2 2 4 6 8x

Notice that the level curves off are concentric circles centered at(4, 3). Further, the level curve off through
the minimum point,(3.056, 1.936), is that contour off which is tangent to the constraint curve (i.e. the
ellipse) at the minimum point. You can also identify the maximum point as the other point of tangency
between the ellipse and a level curve.
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4.2.4 Two or More Constraints
11In the previous examples there was one constraint relating the variables. In the following example there are
two constraints. We will solve it by using Lagrange multipliers but either of the other two methods would
also work.

In general, given a functionf(~x) of n variables~x, suppose you want to find the location~x and valuef(~x)
of the absolute maximum or absolute minimum of a functionf where the points~x are required to satisfy a
set ofk constraint equationsgi(~x) = Ci for i = 1 . . . k. Once again, there are three methods of solving the
problem:

Eliminating k Variables If you can solve thek constraintsgi(~x) = Ci for k variables, you can substitute
them into the functionf and reduce the problem to an unconstrained problem inn − k variables. Once you
solve the reduced problem, you can plug back into the constraints to find the remainingk variables.

Parametrizing the Intersection of the Constraints If you can parametrize the intersection of thek con-
straintsgi(~x) = Ci (usingn − k parameters), you can substitute into the functionf and reduce the problem
to an unconstrained problem in then − k parameters. Once you solve the reduced problem, you can plug
back into the parametrization to find then original variables.
NOTE: This method may be the most difficult because you will need to parametrize the intersection of thek
constraints in then dimensional space.

Lagrange Multipliers To use this method, you solve then equations~∇f =
k∑

i=1

λi
~∇gi along with thek

constraintsgi(~x) = Ci, for then components of the critical points~x and thek Lagrange multipliersλi. Thus
there aren + k equations inn + k variables.

EXAMPLE 4.9. Find a point

~p1 = (x1, y1, z1) on the sphere (x − 7)2 + (y − 14)2 + (z − 21)2 = 270

and a point

~p2 = (x2, y2, z2) on the sphere (x − 21)2 + (y − 28)2 + (z − 28)2 = 449

such that the dot product~p1 · ~p2 is a minimum. Also find the points~p1 and~p2 such that the dot product~p1 · ~p2

is a maximum.
SOLUTION: We first enter the two points and define an abbreviation for the list of all 6 variables:

> p1:=[x1,y1,z1]: p2:=[x2,y2,z2]: ps:=op(p1),op(p2);

ps := x1 , y1 , z1 , x2 , y2 , z2
NOTE: The op command strips off the brackets.

We then define the constraint functions and constraint equations:
> g1:=MF([ps], (x1-7)ˆ2 + (y1-14)ˆ2 + (z1-21)ˆ2);

g1 := (x1 , y1 , z1 , x2 , y2 , z2 ) → (x1 − 7)2 + (y1 − 14)2 + (z1 − 21)2

11Stewart§15.8.
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> constr1:=g1(ps)=270;

constr1 := (x1 − 7)2 + (y1 − 14)2 + (z1 − 21)2 = 270

> g2:=MF([ps], (x2-21)ˆ2 + (y2-28)ˆ2 + (z2-28)ˆ2);

g2 := (x1 , y1 , z1 , x2 , y2 , z2 ) → (x2 − 21)2 + (y2 − 28)2 + (z2 − 28)2

> constr2:=g2(ps)=449;

constr2 := (x2 − 21)2 + (y2 − 28)2 + (z2 − 28)2 = 449

Notice that even though each constraint only depends on 3 coordinates, we still define it as a function of all
six variables to facilitate the later computation of the gradients.

The function to extremize is:

> f:=MF([ps],dot(p1,p2));

f := (x1 , y1 , z1 , x2 , y2 , z2 ) → x1 x2 + y1 y2 + z1 z2

We now compute the 3 gradients and construct the 6 equations~∇f = λ~∇g1 + µ~∇g2:

> delf:=GRAD(f)(ps); delg1:=GRAD(g1)(ps); delg2:=GRAD(g2)(ps);

delf := [x2 , y2 , z2 , x1 , y1 , z1 ]

delg1 := [2 x1 − 14, 2 y1 − 28, 2 z1 − 42, 0, 0, 0]

delg2 := [0, 0, 0, 2 x2 − 42, 2 y2 − 56, 2 z2 − 56]

> eqs:=op(equate(delf,lambda*delg1+mu*delg2));

eqs := y2 = λ (2 y1 − 28), z2 = λ (2 z1 − 42), x2 = λ (2 x1 − 14), z1 = µ (2 z2 − 56),
y1 = µ (2 y2 − 56), x1 = µ (2 x2 − 42)

We now solve the 6 equations,eqs , together with the 2 constraint equations,constr1 andconstr2 ,
for the 8 variables,x1, y1, z1, x2, y2, z2, λ, µ:

> sol:=solve( {eqs, constr1, constr2 }, {ps, lambda, mu }):

The two solutions are not shown because the second is very long. The first is

> s1:=sol[1];

s1 := {z1 = 32, z2 = 44, y2 = 40, µ = 1, y1 = 24, λ = 2, x2 = 28, x1 = 14}
The second solution involves aRootOf . So we separate them by using theallvalues command:

> sol2:=allvalues(sol[2]);
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sol2 := {x1 = 1.06279579, x2 = 23.2272158, z2 = 46.8902969, z1 = 9.01417861,

y2 = 37.33789149, y1 = 4.45590823, µ = .238592835, λ = −1.956073542}, {
x1 = −4.82250223, x2 = 26.5485453, z2 = 7.8713490, z1 = 17.49475933,

y2 = 24.38737583, y1 = 3.13990196, µ = −.4345735669, λ = −1.122797222}, {
µ = −.1890686530− .09493321464 I, λ = −.6467101426− .2419106886 I,

x1 = 4.91306767 + 5.131113132 I, x2 = 5.18182285− 5.62698333 I,

z2 = 19.11617428+ 10.54012400 I, z1 = 5.36052164− 2.298873825 I,

y2 = 11.79192798− .285537069 I, y1 = 6.07466279 + 3.185340986 I}, {
x1 = 4.91306767− 5.131113132 I, x2 = 5.18182285 + 5.62698333 I,

z2 = 19.11617428− 10.54012400 I, z1 = 5.36052164 + 2.298873825 I,

y2 = 11.79192798+ .285537069 I, y1 = 6.07466279− 3.185340986 I,

µ = −.1890686530+ .09493321464 I, λ = −.6467101426+ .2419106886 I}, {
x1 = 15.87975234, x2 = 12.95438492, z2 = 12.88519289, z1 = 29.83232378,

y2 = 15.51758507, y1 = 24.63673139, µ = −.9868575722, λ = .7294339061}
Inspecting these, we see the 3rd and 4th of these solutions involve imaginary numbers. So the remaining
critical points are:
> s2:=sol2[1];

s2 := {x1 = 1.06279579, x2 = 23.2272158, z2 = 46.8902969, z1 = 9.01417861,

y2 = 37.33789149, y1 = 4.45590823, µ = .238592835, λ = −1.956073542}
> s3:=sol2[2];

s3 := {x1 = −4.82250223, x2 = 26.5485453, z2 = 7.8713490, z1 = 17.49475933,

y2 = 24.38737583, y1 = 3.13990196, µ = −.4345735669, λ = −1.122797222}
> s4:=sol2[5];

s4 := {x1 = 15.87975234, x2 = 12.95438492, z2 = 12.88519289, z1 = 29.83232378,

y2 = 15.51758507, y1 = 24.63673139, µ = −.9868575722, λ = .7294339061}
You can check that each of these satisfy the Lagrange equations and the constraints by using commands like:
> subs(s1,[eqs,constr1,constr2]);

[40 = 40, 44 = 44, 28 = 28, 32 = 32, 24 = 24, 14 = 14, 270 = 270, 449 = 449]
Finally, we substitute the critical points into the function:

> subs(s1,f(ps));

2760
> subs(s2,f(ps));

613.7375165
> subs(s3,f(ps));

86.25090667
> subs(s4,f(ps));

972.4102457
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We see that the minimum is ats3 where the points are:
> ’p1’ = subs(s3, p1), ’p2’ = subs(s3, p2);

p1 = [−4.82250223, 3.13990196, 17.49475933],
p2 = [26.5485453, 24.38737583, 7.8713490]

and the maximum is ats1 where the points are:
> ’p1’ = subs(s1, p1), ’p2’ = subs(s1, p2);

p1 = [14, 24, 32], p2 = [28, 40, 44]

4.3 Exercises

• Do Lab: 9.7.

• Do Projects: 10.5, 10.4 and 10.6.

1. Find the location and value of each critical point of the function
f(x, y) = 3x2y + y3 − 3x2 − 3y2 + 2. Then classify each critical point as a local maximum, a local
minimum or a saddle point. Verify your conclusions with appropriate plots.

2. The three critical points of the functiong(x, y) = ((x − 1)2 + (y − 2)2 − 4)2 + 3x − 4y were
found in example 4.3. Now classify each critical point as a local maximum, a local minimum or a
saddle point.

3. Find the location and value of each critical point of the functionf(x, y) = −x4 + 4xy − 2y2 + 1.
Then classify each critical point as a local maximum, a local minimum or a saddle point. Verify your
conclusions with appropriate plots. (See exercises 3.3 and 3.4.)

4. Find the location and value of each critical point of the functionf(x, y) = −x4 + 6xy − 2y2 + 1.
Then classify each critical point as a local maximum, a local minimum or a saddle point. Verify your
conclusions with appropriate plots.

5. Find the location and value of each critical point of the function
g(x, y) = (−14 + x2 + y2 − 2x + 6y)e(x+y). Then classify each critical point as a local maximum,
a local minimum or a saddle point. Verify your conclusions with appropriate plots.

6. Find the location and value of each critical point of the function
p(x, y) = ((x− 1)4 +(y− 2)4 − 4)2 +3x− 4y. (Usefsolve .) Use appropriate plots to locate the
ranges for solving. Then classify each critical point as a local maximum, a local minimum or a saddle
point.

7. Find the location and value of each critical point of the function
q(x, y) = ((x − 2)4 + (y − 3)4 − 9)2 + 3x2 − 4y3. (Usesolve andallvalues .) Then classify
each critical point as a local maximum, a local minimum or a saddle point. Verify your conclusions
with appropriate plots.

8. Find the extrema of the functionf(x, y, z) = x + 2z + yz − x2 − y2 − z2.
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9. Re-solve example 4.7 by Eliminating a Variable.

10. Re-solve example 4.6 by Parametrizing the Constraint.

11. Re-solve example 4.6 using Lagrange Multipliers.

12. Find the point(x, y, z) on the ellipsoid
x2

25
+

y2

16
+

z2

9
= 1 which is closest to the point(5, 4, 3).

Use the method of Parametrizing the Constraint. NOTE: The ellipsoid may be parametrized by

x = 5 sin(φ) cos(θ), y = 4 sin(φ) sin(θ), z = 3 cos(φ) .

Parametrized surfaces were introduced in section 1.3 and will be studied in detail in section 6.2.

13. Repeat exercise 12 but use the method of Lagrange multipliers.

14. Re-solve example 4.9 by Eliminating Two Variables.

15. Re-solve example 4.9 by Parametrizing the Two Constraints.

16. Find a point

~p1 = (x1, y1) on the ellipse
(x − 4)2

16
+

(y − 5)2

25
= 1

and a point

~p2 = (x2, y2) on the ellipse
(x + 3)2

9
+

(y + 4)2

16
= 1

such that the distance from~p1 to ~p2 is a minimum. Also find the points~p1 and~p2 such that this distance
is a maximum. Use the method of Lagrange multipliers.

17. Repeat exercise 16 but Parametrize the Two Constraints.

18. Repeat exercise 16 but Eliminate Two Variables. Plot the two ellipses to determine which half of each
ellipse to use when finding the minimum and separately when finding the maximum.

19. Find a point

~p1 = (x1, y1, z1) on the ellipsoid
(x − 4)2

16
+

(y − 5)2

25
+

(z − 6)2

36
= 1

and a point

~p2 = (x2, y2, z2) on the ellipsoid
(x + 3)2

9
+

(y + 4)2

16
+

(z + 5)2

25
= 1

such that the distance from~p1 to ~p2 is a minimum. Also find the points~p1 and~p2 such that this distance
is a maximum. Use whichever method you prefer.

20. Find the maximum and minimum values of the functionf(x, y, z) = yz + xy subject to the
constraints xy = 1 and y2 = 1 − z2.



Chapter 5

Multiple Integrals

5.1 Multiple Integrals in Rectangular Coordinates

5.1.1 Computation

1To display a multiple integral2 such as
∫ 6

5

∫ 4

3

∫ 2

1

x4y3z2 dx dy dz, you can use thevec calc command

Multipleint (or its aliasMuint ):
> Muint(xˆ4*yˆ3*zˆ2, x=1..2, y=3..4, z=5..6);

∫ 6

5

∫ 4

3

∫ 2

1

x4 y3 z2 dx dy dz

Then to compute its value, you usevalue :
> value(%);

98735
12

If you wish to bypass the display, you may use thevec calc commandmultipleint (or its alias
muint ):
> muint(xˆ4*yˆ3*zˆ2, x=1..2, y=3..4, z=5..6);

98735
12

However, we recommend displaying the integral first, because you can check you have properly entered the
integral. The only time you should usemuint is in the middle of a procedure where there is no human to
check the input.

Finally, if you wish to compute an integral and also see the intermediate steps in its computation, then
you should usemuint with the extra parameter “step ”. This is useful for students checking their hand
computations. For example:

1Stewart Ch. 16.
2Stewart§§16.1, 16.2, 16.3.
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> muint(xˆ4*yˆ3*zˆ2, x=1..2, y=3..4, z=5..6, step):∫ 6

5

∫ 4

3

∫ 2

1

x4 y3 z2 dx dy dz

=
∫ 6

5

∫ 4

3

[
1
5

x5 y3 z2

] 


x=2

x=1


 dy dz

=
∫ 6

5

∫ 4

3

31
5

y3 z2 dy dz

=
∫ 6

5

[
31
20

y4 z2

]



y=4

y=3


 dz

=
∫ 6

5

1085
4

z2 dz

=
[
1085
12

z3

]



z=6

z=5




=
98735

12

EXAMPLE 5.1. Use a multiple integral to find the area of the general ellipse
x2

a2
+

y2

b2
= 1.

SOLUTION: Enter the equation intoMapleand solve for y:
> ellipse:= xˆ2/aˆ2 + yˆ2/bˆ2 = 1;

ellipse :=
x2

a2
+

y2

b2
= 1

> ys:=solve(ellipse,y);

ys :=
√−x2 + a2 b

a
, −

√−x2 + a2 b

a
Then display and evaluate the integral:
> assume(a>0); Muint(1, y=ys[2]..ys[1], x=-a..a); value(%);

∫ a

−a

∫ √−x2 + a2 b

a

−

√−x2 + a2 b

a

1 dy dx

b a π
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Without the commandassume(a>0) , Maplewould not know thata is real and positive and so could not
compute the integral. If you see tildes ( ) following thea’s (not shown above), you may turn them off by
clicking on the OPTIONSmenu and setting the ASSUMEDVARIABLES to NO ANNOTATION.

It is also sometimes useful to plot the region of integration. But for that you need to pick specific values
for a andb, saya = 4 andb = 3.

> edges:=subs(a=4,b=3, {ys });

edges := {−3
4

√
−x2 + 16,

3
4

√
−x2 + 16}

> plot(edges, x=-4..4, scaling=constrained);

–3

–2

–1

0

1

2

3

–4 –3 –2 –1 1 2 3 4x

Of course, multiple integrals may be computed in any dimension:

EXAMPLE 5.2. Find the 4-dimensional volume of the 4-dimensional ballx2 + y2 + z2 + w2 = R2.
SOLUTION: Display the integral and find its value:

> assume(R>0, sqrt(Rˆ2-xˆ2)>0, sqrt(Rˆ2-xˆ2-yˆ2)>0);

> Muint(1, w=-sqrt(Rˆ2-xˆ2-yˆ2-zˆ2)..sqrt(Rˆ2-xˆ2-yˆ2-zˆ2),
z=-sqrt(Rˆ2-xˆ2-yˆ2)..sqrt(Rˆ2-xˆ2-yˆ2),
y=-sqrt(Rˆ2-xˆ2)..sqrt(Rˆ2-xˆ2), x=-R..R);

> value(%);

∫ R

−R

∫ √
R2−x2

−√
R2−x2

∫ √
R2−x2−y2

−
√

R2−x2−y2

∫ √
R2−x2−y2−z2

−
√

R2−x2−y2−z2
1 dw dz dy dx

1
2

π2 R4

Once again, without the assumptions,Mapleis unable to do the integrals.
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5.1.2 Applications
3Table B.1 in Appendix B, shows the standard applications of 2- and 3-dimensional integrals. The examples
below demonstrate how to compute some of them. Other examples appear throughout the rest of this chapter
and in the exercises in section 5.4.

EXAMPLE 5.3. Find the area and centroid of the region betweeny = sin(x) andy = cos(x) between
x = 0 andx = π/4.

SOLUTION: The area is
> Muint(1, y=sin(x)..cos(x), x=0..Pi/4); area:=value(%);∫ 1/4 π

0

∫ cos(x)

sin(x)

1 dy dx

area :=
√

2 − 1
The moments about they- andx-axes are
> Muint(x, y=sin(x)..cos(x), x=0..Pi/4); My:=value(%);∫ 1/4 π

0

∫ cos(x)

sin(x)

xdy dx

My :=
1
4

√
2π − 1

> Muint(y, y=sin(x)..cos(x), x=0..Pi/4); Mx:=value(%);∫ 1/4 π

0

∫ cos(x)

sin(x)

y dy dx

Mx :=
1
4

And thex- andy-components of the centroid are
> xbar:=My/area; evalf(%);

xbar :=

1
4
√

2 π − 1
√

2 − 1
.2673035003

> ybar:=Mx/area; evalf(%);

ybar :=
1
4

1√
2 − 1

.6035533913
We can see from a plot that the location of the centroid is reasonable:
> region:=plot( {sin(x),cos(x) }, x=0..Pi/4):
> centroid:=plot([[xbar,ybar]], x=0..Pi/4, style=POINT, symbol=CIRCLE):
> display( {region,centroid }, scaling=constrained);

3Stewart§§16.5, 16.7.
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0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7x

EXAMPLE 5.4. Find the mass and center of mass of the solid region in the first octant between the paraboloid
z = x2 + y2 and the planez = 4 if the density is given byρ = 1 + x + z.

SOLUTION: The mass is
> Muint(1+x+z, z=xˆ2+yˆ2..4, y=0..sqrt(4-xˆ2), x=0..2); mass:=value(%);∫ 2

0

∫ √
4−x2

0

∫ 4

x2+y2
1 + x + z dz dy dx

mass :=
22
3

π +
64
15

To check that we have the correct region of integration, we can plot it:
> plot3d( {xˆ2+yˆ2,4 }, x=0..2, y=0..sqrt(4-xˆ2), axes=normal,
orientation=[30,75]);

1

2

3

4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2y
0.5

1
1.5

2
x

Then the moments about theyz-, xz- andxy-planes are
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> Muint(x*(1+x+z), z=xˆ2+yˆ2..4, y=0..sqrt(4-xˆ2), x=0..2);
Myz:=value(%);

∫ 2

0

∫ √
4−x2

0

∫ 4

x2+y2
x (1 + x + z) dz dy dx

Myz :=
4
3

π +
576
35

> Muint(y*(1+x+z), z=xˆ2+yˆ2..4, y=0..sqrt(4-xˆ2), x=0..2);
Mxz:=value(%);

∫ 2

0

∫ √
4−x2

0

∫ 4

x2+y2
y (1 + x + z) dz dy dx

end of HIDE

Mxz :=
2008
105

> Muint(z*(1+x+z), z=xˆ2+yˆ2..4, y=0..sqrt(4-xˆ2), x=0..2);
Mxy:=value(%);

∫ 2

0

∫ √
4−x2

0

∫ 4

x2+y2
z (1 + x + z) dz dy dx

Mxy :=
64
3

π +
256
21

And thex-, y- andz-components of the center of mass are
> xbar:=Myz/mass; evalf(%);

xbar :=

4
3

π +
576
35

22
3

π +
64
15

.7561224458
> ybar:=Mxz/mass; evalf(%);

ybar :=
2008
105

1
22
3

π +
64
15

.7003772406
> zbar:=Mxy/mass; evalf(%);

zbar :=

64
3

π +
256
21

22
3

π +
64
15

2.900973533
Examine the plot and see that the center of mass is inside the volume.
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EXAMPLE 5.5. Find the mass and radii of gyration of the area between the parabolay = x2 and the line
y = 4 if the density is given byρ = 2 + x + y.

SOLUTION: The mass is
> Muint(2+x+y, y=xˆ2..4, x=-2..2); mass:=value(%);∫ 2

−2

∫ 4

x2
2 + x + y dy dx

mass :=
704
15

The moments of inertia about they- andx-axes are
> Muint(xˆ2*(2+x+y), y=xˆ2..4, x=-2..2); Iy:=value(%);∫ 2

−2

∫ 4

x2
x2 (2 + x + y) dy dx

Iy :=
4352
105

> Muint(yˆ2*(2+x+y), y=xˆ2..4, x=-2..2); Ix:=value(%);∫ 2

−2

∫ 4

x2
y2 (2 + x + y) dy dx

Ix :=
23552

63
And thex- andy-radii of gyration are
> xbarbar:=sqrt(Iy/mass); evalf(%);

xbarbar :=
2
77

√
1309

.9397429876
> ybarbar:=sqrt(Ix/mass); evalf(%);

ybarbar :=
4

231

√
26565

2.822298349

5.2 Multiple Integrals in Standard Curvilinear Coordinates

5.2.1 Polar Coordinates
4The polar coordinate system(ρ, θ) was discussed in section 1.2.1 and shown in figure 1.2. In polar coor-
dinates, the Jacobian isr and the area differential isdA = r dr dθ. So the double integral can be written
as ∫∫

R

f(x, y) dA =
∫∫
R

f(r, θ) r dr dθ .

4Stewart§16.4.
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EXAMPLE 5.6. Plot the cardioidr = 1 − sin(θ) and compute the area.
SOLUTION: We first input the formula for the curve:

> r0:=1 - sin(theta):

Notice that we do not name the curver so that we can still use that name for the variable in equations. Then,
any of the following commands will plot the polar curve. (We only show the output from the first.) The first
is the parametric form of theplot command:
> plot([r0*cos(theta), r0*sin(theta), theta=0..2*Pi] );

–2

–1.8

–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0.2

The second form is a plot command with an option which says that the coordinates are polar:
> plot(r0, theta=0..2*Pi, coords=polar):

And the third form is a specially designed commandpolarplot in theplots package:
> polarplot(r0, theta=0..2*Pi):

The area is

A =
∫∫

1 dA =
∫ 2π

0

∫ 1−sin(θ)

0

1 r dr dθ

and so may be computed from
> Muint(r, r=0..r0, theta=0..2*Pi); value(%);∫ 2 π

0

∫ 1−sin(θ)

0

r dr dθ

3
2

π

NOTE: Don’t forget to include the Jacobianr in the integrand.

5.2.2 Cylindrical Coordinates
5The cylindrical coordinate system(ρ, θ, z) was discussed in section 1.2.2 and shown in figure 1.3. In cylin-
drical coordinates, the Jacobian factor isr and the volume differential isdA = r dr dθ dz. So the triple

5Stewart§16.8.
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integral can be written as ∫∫∫
R

f(x, y, z) dV =
∫∫∫

R

f(r, θ, z) r dr dθ dz .

EXAMPLE 5.7. Plot the region between the paraboloidsz = x2 + y2 andz = 32− x2 + y2 but outside the
cylinderx2 + y2 = 4. Then compute the volume.

SOLUTION: Rewriting the boundaries of the region in cylindrical coordinates, we find that the paraboloids
arez = r2 andz = 32 − r2 while the cylinder isr2 = 4 or r = 2. Before we can plot or integrate over
this region, we must first understand the ranges for the coordinates. Since the paraboloids completely circle
thez-axis, we have0 ≤ θ ≤ 2π. Thez coordinate is limited by the paraboloids. So it remains to find ther
range. This starts atr = 2 and goes to the circle where the paraboloids intersect. Equating the paraboloids,
we haver2 = 32 − r2 or r = 4.

The top and bottom paraboloids may be plotted using either of two commands. (We only show the
output from the first.) The first is aplot3d with a parametric argument and an option specifying cylindrical
coordinates:
> plot3d( {[r, theta, rˆ2], [r, theta, 32-rˆ2] }, r=2..4, theta=0..2*Pi,
coords=cylindrical );

The second is thecylinderplot command from theplots package again with a parametric argument:
> topbot:=cylinderplot( {[r, theta, rˆ2], [r, theta, 32-rˆ2] }, r=2..4,
theta=0..2*Pi ):

The central cylinder may also be plotted in two ways, first as a parametricplot3d in cylindrical coordi-
nates:
> plot3d([2, theta, z], theta=0..2*Pi, z=4..28, coords=cylindrical );
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and second as acylinderplot : (This is not a parametric plot because the default is that the function being
plotted givesr as a function ofθ andz.)
> inside:=cylinderplot(2, theta=0..2*Pi, z=4..28 ):

The top, bottom and inside surfaces may be put together using thedisplay command:
> display( {topbot,inside }, orientation=[45,45] );

The volume is

V =
∫∫∫

1 dV =
∫ 2π

0

∫ 4

2

∫ 32−rˆ2

r2
1 r dz dr dθ

and so may be computed from
> Muint(r, z=rˆ2..32-rˆ2, r=2..4, theta=0..2*Pi); value(%);

∫ 2 π

0

∫ 4

2

∫ 32−r2

r2
r dz dr dθ

144 π

NOTE: You must remember to include the Jacobianr in the integrand.

5.2.3 Spherical Coordinates
6The spherical coordinate system(ρ, θ, φ) was discussed in section 1.2.2 and shown in figure 1.3. In spherical
coordinates, the Jacobian factor isρ2 sin(φ) and the volume differential isdV = ρ2 sin(φ) dρ dθ dφ. So the
triple integral can be written as∫∫∫

R

f(x, y, z) dV =
∫∫∫

R

f(ρ, θ, φ) ρ2 sin(φ) dρ dθ dφ .

EXAMPLE 5.8. One cell of the spherical coordinate system is shown in figure 5.1. The coordinate ranges
areρ1 ≤ ρ ≤ ρ2, θ1 ≤ θ ≤ θ2 andφ1 ≤ φ ≤ φ2.

6Stewart§16.8.
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θ2θ1

ϕ2

ϕ1

ρ1

ρ2

Figure 5.1: A Spherical Coordinate Cell

The “coordinate center” of the cell is at(ρ0, θ0, φ0) =
(

ρ1 + ρ2

2
,
θ1 + θ2

2
,
φ1 + φ2

2

)
and the “coordi-

nate dimensions” of the cell are∆ρ = ρ2 − ρ1, ∆θ = θ2 − θ1 and∆φ = φ2 − φ1. In terms of these, show
that the volume of the spherical cell is

∆V =
[
(ρ0)2 +

(∆ρ)2

12

]
sin(φ0)∆ρ ∆θ 2 sin

(
∆φ

2

)
.

Then compute the limit lim
(∆ρ,∆θ,∆φ)=(0,0,0)

∆V

∆ρ∆θ∆φ
to “derive” the spherical JacobianJ = (ρ0)2 sin(φ0).

SOLUTION: The volume integral is

V =
∫∫∫

1 dV =
∫ φ2

φ1

∫ θ2

θ1

∫ ρ2

ρ1

1 ρ2 sin(φ) dρ dθ dφ

NOTE: Remember to include the Jacobianρ2 sin(φ) in the integrand.
It may be computed from

> Muint( rhoˆ2*sin(phi), rho=rho1..rho2, theta=theta1..theta2,
phi=phi1..phi2 ); Delta_V:=value(%);

∫ φ2

φ1

∫ θ2

θ1

∫ ρ2

ρ1

ρ2 sin(φ) dρ dθ dφ

Delta V := −cos(φ2) (
1
3

ρ23 − 1
3

ρ13) (θ2 − θ1) + cos(φ1) (
1
3

ρ23 − 1
3

ρ13) (θ2 − θ1)

To simplify this we first change variables to the average values and the widths. The equations are

> eqs:=[rho1=rho0-Drho/2, rho2=rho0+Drho/2, theta1=theta0-Dtheta/2,
theta2=theta0+Dtheta/2, phi1=phi0-Dphi/2, phi2=phi0+Dphi/2];
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eqs := [ρ1 = ρ0 − 1
2

Drho, ρ2 = ρ0 +
1
2

Drho, θ1 = θ0 − 1
2

Dtheta, θ2 = θ0 +
1
2

Dtheta,

φ1 = φ0 − 1
2

Dphi , φ2 = φ0 +
1
2

Dphi ]

After some experimentation, it is found that the best simplification is obtained from

> Delta_V2:=factor( expand( subs( eqs, Delta_V )));

Delta V2 :=
1
6

Drho Dtheta sin(φ0) sin(
1
2

Dphi) (12 ρ02 + Drho2)

Finally we compute the limit:

> Limit(Limit(Limit(Delta_V2/(Drho*Dtheta*Dphi), Dphi=0), Dtheta=0),
Drho=0); value(%);

lim
Drho→0

lim
Dtheta→0

lim
Dphi→0

1
6

sin(φ0) sin(
1
2

Dphi) (12 ρ02 + Drho2)

Dphi

sin(φ0) ρ02

which is the spherical Jacobian.
NOTE: This “derivation” is circular since we used the Jacobian in writing the integral. A more rigorous
derivation is given in example 5.16.

5.2.4 Applications

7Table B.1 in Appendix B, shows the standard applications of 2- and 3-dimensional integrals. The examples
in subsection 5.1.2 showed how to compute these quantities in rectangular coordinates. In this section, the
quantities are computed in polar, cylindrical and spherical coordinates. More examples appear in the exercises
in section 5.4.

EXAMPLE 5.9. Find the centroid of the cardioidr = 1 − sin(θ) expressed in polar coordinates.
SOLUTION: We first input the curve and the polar formulas forx andy:

> r0:=1 - sin(theta):

> x0:=r * cos(theta): y0:=r * sin(theta):

The area of the cardioid was found in example 5.6 from the integralA =
∫ 2π

0

∫ 1−sin(θ)

0

r dr dθ to be:

> Muint(r, r=0..r0, theta=0..2*Pi): A:=value(%);

A :=
3
2

π

7Stewart§§16.5, 16.8.
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Then the first moments about they- andx-axes are

My =
∫ 2π

0

∫ 1−sin(θ)

0

x r dr dθ and Mx =
∫ 2π

0

∫ 1−sin(θ)

0

y r dr dθ

except thatx andy must be expressed in polar coordinates. Thus we compute:
> Muint(x0*r, r=0..r0, theta=0..2*Pi); My:=value(%);∫ 2 π

0

∫ 1−sin(θ)

0

r2 cos(θ) dr dθ

My := 0
> Muint(y0*r, r=0..r0, theta=0..2*Pi); Mx:=value(%);∫ 2 π

0

∫ 1−sin(θ)

0

r2 sin(θ) dr dθ

Mx := −5
4

π

Then thex- andy-components of the centroid are
> xbar:=My/A; ybar:=Mx/A;

xbar := 0

ybar :=
−5
6

Finally, we convert to polar coordinates:
> cm:=r2p([xbar,ybar]);

cm := [
5
6
, −1

2
π]

Thusr =
5
6

andθ = −π

2
. As should be expected from the plot in example 5.6, the centroid is along the

negativey-axis.

CAUTION: It is tempting to try to compute ther-component of the centroid directly as

r =
1
A

∫ 2π

0

∫ 1−sin(θ)

0

r r dr dθ

by putting anr into the moment integral instead of anx or y. This is ABSOLUTELY WRONG!
It leads to the incorrect result:
> 1/A*Muint(rˆ2, r=0..r0, theta=0..2*Pi); value(%);

2
3

∫ 2 π

0

∫ 1−sin(θ)

0

r2 dr dθ

π

10
9
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EXAMPLE 5.10. Find the mass and moment of inertia about thez-axis of the solid between the paraboloids
z = x2 + y2 andz = 8 − x2 − y2 with densityρ = 1 + x2 + y2.

SOLUTION: We first input the paraboloids and density but in cylindrical coordinates:
> z1:=rˆ2: z2:=8 - rˆ2: rho:=1+rˆ2:

Equating the two paraboloids,r2 = 8 − r2, we find they intersect atr = 2. So the mass is given by
> Muint(rho*r, z=z1..z2, r=0..2, theta=0..2*Pi); M:=value(%);

∫ 2 π

0

∫ 2

0

∫ 8−r2

r2
(1 + r2) r dz dr dθ

M :=
112
3

π

Notice that you need to get the order of integration correct since thez limits depend onr. Finally, the moment
of inertia about thez-axis is
> Muint(rˆ2*rho*r, z=z1..z2, r=0..2, theta=0..2*Pi); Iz:=value(%);

∫ 2 π

0

∫ 2

0

∫ 8−r2

r2
r3 (1 + r2) dz dr dθ

Iz := 64 π

EXAMPLE 5.11. Find the mass and center of mass of a hemisphere of radiusa if its density is proportional
to the distance from the center of the base.
NOTE: To avoid confusion between the density and the spherical radial coordinateρ, you should call the
densityδ. You will also need to clear out the variablerho .
> rho:=’rho’:

SOLUTION: We take the base to lie in thexy-plane with the center at the origin. Then the distance from
the center of the base is the spherical coordinateρ and the density is
> delta := K * rho:
whereK is a proportionality constant. Then the mass is
> Muint( delta * rhoˆ2 * sin(phi), rho=0..a, theta=0..2*Pi, phi=0..Pi/2
); M:=value(%); ∫ 1/2 π

0

∫ 2 π

0

∫ a

0

K ρ3 sin(φ) dρ dθ dφ

M :=
1
2

K a4 π

(Don’t forget the Jacobianρ2 sin(φ).) By symmetry, the center of mass must be on thez-axis. So it remains
to compute thez-component of the center of mass. In spherical coordinates, thez-coordinate is
> z0:=rho*cos(phi):
Then the moment away from thexy-plane is
> Muint( z0 * delta * rhoˆ2 * sin(phi), rho=0..a, theta=0..2*Pi,
phi=0..Pi/2 ); Mxy:=value(%);∫ 1/2 π

0

∫ 2 π

0

∫ a

0

ρ4 cos(φ)K sin(φ) dρ dθ dφ
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Mxy :=
1
5

K a5 π

and thez-component of center of mass is
> zbar:=Mxy/M;

zbar :=
2
5

a

Notice that this is reasonable because the center of mass is inside the hemisphere.

5.3 Multiple Integrals in General Curvilinear Coordinates

5.3.1 General Curvilinear Coordinates
8A curvilinear coordinate system inRn is a list ofn functions ofn variables giving then rectangular coordi-
nates as functions of then curvilinear coordinates. In general,

(x1,x2, . . . , xn) = ~R(u1, u2, . . . , un)

=
(
x1(u1, u2, . . . , un), x2(u1, u2, . . . , un), . . . , xn(u1, u2, . . . , un)

)
or more briefly,

~x = ~R(~u) .

Of course, the variable names could change. A function of this type is also called a vector function of several
variables. In particular, a general curvilinear coordinate system inR

2 has the form

(x, y) = ~R(u, v) =
(
x(u, v), y(u, v)

)
.

and a general curvilinear coordinate system inR
3 has the form

(x, y, z) = ~R(u, v, w) =
(
x(u, v, w), y(u, v, w), z(u, v, w)

)
.

Throughout this section, we will look at two examples, one inR
2 and one inR3:

• the 2-dimensional bipolar coordinate system given by

(x, y) = ~R(u, v) =
(

sinh v

cosh v − cosu
,

sinu

cosh v − cosu

)

• and the 3-dimensional paraboloidal coordinate system given by

(x, y, z) = ~R(u, v, θ) =
(

uv cos θ, uv sin θ,
u2 − v2

2

)
.

Maplealready knows about a large number of curvilinear coordinate systems(including bipolar and para-
bo\-loidal). A complete list may be found by looking at the help page:
> ?coords
Additional coordinate systems may be added using the commandaddcoords from theplots package,
but that is beyond this book. For more information see
> ?addcoords

8Stewart§16.9.
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For the purposes of this book, a curvilinear coordinate system may be entered intoMaple using the
vec calc commandmakefunction or its aliasMF. The first argument is the list of curvilinear coordi-
nates, and the second argument is the list of expressions for the rectangular coordinates.

EXAMPLE 5.12. Enter the (a) bipolar and (b) paraboloidal coordinate systems intoMaple.
SOLUTION: a) The bipolar coordinate system is

> R2:=MF([u, v],[ sinh(v)/(cosh(v)-cos(u)), sin(u)/(cosh(v)-cos(u)) ]);

R2 := [(u, v) → sinh(v)
cosh(v) − cos(u)

, (u, v) → sin(u)
cosh(v) − cos(u)

]

b) The paraboloidal coordinate system is
> R3:=MF([u, v, theta],[ u*v*cos(theta), u*v*sin(theta), (uˆ2 - vˆ2)/2
]);

R3 := [(u, v, θ) → u v cos(θ), (u, v, θ) → u v sin(θ), (u, v, θ) → 1
2

u2 − 1
2

v2]

A coordinate curve is the curve obtained by allowing one curvilinear coordinate to vary while the other
coordinates are held fixed. If you draw several coordinate curves for each coordinate, you obtain a coordinate
grid for the curvilinear coordinate system. For the coordinate systems which are already known toMaple
the commandcoordplot from theplots package will plot a 2 dimensional coordinate grid and the com-
mandcoordplot3d will plot an abbreviated 3 dimensional coordinate grid (also showing the coordinate
surfaces).

EXAMPLE 5.13. Plot a coordinate grid for the (a) bipolar and (b) paraboloidal coordinate systems.
SOLUTION: a) A coordinate grid for bipolar coordinates is

> coordplot(bipolar);

b) A coordinate grid for paraboloidal coordinates is
> coordplot3d(paraboloidal);
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A coordinate tangent vector to a coordinate curve is obtained by differentiating with respect to the pa-
rameter on that curve, i.e. the curvilinear coordinate which is varying. Since the remaining variables are held
fixed, these are partial derivatives. Thus, in a general 3-dimensional coordinate system, the three coordinate
tangent vectors are

Ru =
∂R

∂u
, Rv =

∂R

∂v
, Rw =

∂R

∂w

In Maple, if the coordinate system has been defined usingMF, these may be computed usingD.

EXAMPLE 5.14. Compute the coordinate tangent vectors for the (a) bipolar and (b) paraboloidal coordinate
systems.

SOLUTION: a) The coordinate tangent vectors for the bipolar coordinate system are:
> R2u:=D[1](R2); R2v:=D[2](R2);

R2u := [(u, v) → − sinh(v) sin(u)
(cosh(v) − cos(u))2

, (u, v) → cos(u)
cosh(v) − cos(u)

− sin(u)2

(cosh(v) − cos(u))2
]

R2v := [(u, v) → cosh(v)
cosh(v) − cos(u)

− sinh(v)2

(cosh(v) − cos(u))2
, (u, v) → − sinh(v) sin(u)

(cosh(v) − cos(u))2
]

b) The coordinate tangent vectors for the paraboloidal coordinate system are:
> R3u:=D[1](R3); R3v:=D[2](R3); R3theta:=D[3](R3);

R3u := [(u, v, θ) → v cos(θ), (u, v, θ) → v sin(θ), (u, v, θ) → u]

R3v := [(u, v, θ) → u cos(θ), (u, v, θ) → u sin(θ), (u, v, θ) → −v]

R3theta := [(u, v, θ) → −u v sin(θ), (u, v, θ) → u v cos(θ), 0]

The Jacobian matrix of a 2-dimensional curvilinear coordinate system is the matrix whose columns are
the coordinate tangent vectors~Ru and ~Rv:

∂(x, y)
∂(u, v)

=




∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v
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Its determinant is the Jacobian determinant:

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ = det




∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v




And the absolute value of the determinant is the Jacobian factor:

J(u, v) =
∣∣∣∣
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣
∣∣∣∣ =

∣∣∣∣∣∣∣det




∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v




∣∣∣∣∣∣∣
Informally, any of the three may be called the Jacobian. Similar definitions hold in 3 and higher dimensions.

In Maple, the Jacobian matrix is computed using thevec calc commandJAC and displayed as a
matrix by evaluating at a point and using thematrix command from thelinalg package. The Jacobian
determinant is computed using thevec calc commandJAC DETand the Jacobian factor is computed by
taking the absolute value of the Jacobian determinant or more often by simply changing the sign of the
determinant when necessary.

EXAMPLE 5.15. Compute the Jacobian matrix, determinant and factor for the (a) bipolar and (b) parabo\-
loidal coordinate systems.

SOLUTION: a) For the bipolar coordinate system these are:
> JM:=JAC(R2): matrix(JM(x,y));


− sinh(y) sin(x)

(cosh(y) − cos(x))2
cosh(y)

cosh(y) − cos(x)
− sinh(y)2

(cosh(y) − cos(x))2

cos(x)
cosh(y) − cos(x)

− sin(x)2

(cosh(y) − cos(x))2
− sinh(y) sin(x)

(cosh(y) − cos(x))2




> JD:=factor(JAC_DET(R2)(x,y));

JD :=
1

(cos(x) − cosh(y))2

Notice that the Jacobian determinant is everywhere positive (except at the origin). So the Jacobian factor
is:
> J:=JD;

J :=
1

(cos(x) − cosh(y))2

b) For the paraboloidal coordinate system we have:
> JM:=JAC(R3): matrix(JM(x,y,z));


y cos(z) x cos(z) −x y sin(z)

y sin(z) x sin(z) x y cos(z)

x −y 0
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> JD:=factor(JAC_DET(R3)(x,y));

JD := y x (y2 + x2)
Notice that the Jacobian determinant is positive in the 1st and 3rd quadrants and negative in the 2nd and 4th

quadrants. So the Jacobian factor is:
> J:=abs(JD);

J :=
∣∣y x (y2 + x2)

∣∣

5.3.2 Multiple Integrals
9The differential of area is the product of the Jacobian factor and the differentials of the curvilinear coordi-
nates,dA = J(u, v) du dv. So an integral over a regionR in R

2 has the form∫∫
R

f dA =
∫∫
R

f(x, y) dx dy =
∫∫
R

f(u, v)J(u, v) du dv .

Similarly, the differential of volume isdV = J(u, v, w) du dv dw and an integral over a regionR in R
3 has

the form ∫∫∫
R

f dV =
∫∫∫

R

f(x, y, z) dx dy dz =
∫∫∫

R

f(u, v, w)J(u, v, w) du dv dw .

Further, the differential ofn-dimensional volume isdV = J(u1, u2, . . . , un) du1 du2 · · · dun and an integral
over a regionR in R

n has the form∫
· · ·

∫
R

f dV =
∫
· · ·

∫
R

f(x1, x2, . . . xn) dx1 dx2 · · · dxn (5.1)

=
∫
· · ·

∫
R

f(u1, u2, . . . , un)J(u1, u2, . . . , un) du1 du2 · · · dun . (5.2)

EXAMPLE 5.16. For spherical coordinates10, describe the coordinate curves and compute the coordinate
tangent vectors, the Jacobian matrix the Jacobian determinant, the Jacobian factor and the volume element.

SOLUTION: The spherical coordinate system is given by
> R:=MF([rho, theta, phi], [rho*sin(phi)*cos(theta),
rho*sin(phi)*sin(theta), rho*cos(phi)]);

R := [(ρ, θ, φ) → ρ sin(φ) cos(θ), (ρ, θ, φ) → ρ sin(φ) sin(θ), (ρ, θ, φ) → ρ cos(φ)]
Theρ-lines are the radial lines, theθ-lines are the lines of latitude, and theφ-lines are the lines of longitude.
The coordinate tangent vectors are
> Rr:=D[1](R); Rtheta:=D[2](R); Rphi:=D[3](R);

Rr := [(ρ, θ, φ) → sin(φ) cos(θ), (ρ, θ, φ) → sin(φ) sin(θ), (ρ, θ, φ) → cos(φ)]

9Stewart§16.9.
10Stewart§16.8.
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Rtheta := [(ρ, θ, φ) → −ρ sin(φ) sin(θ), (ρ, θ, φ) → ρ sin(φ) cos(θ), 0]

Rphi := [(ρ, θ, φ) → ρ cos(φ) cos(θ), (ρ, θ, φ) → ρ cos(φ) sin(θ), (ρ, θ, φ) → −ρ sin(φ)]
The Jacobian matrix and the Jacobian determinant are
> JAC(R); JAC_DET(R);

[[(ρ, θ, φ) → sin(φ) cos(θ), (ρ, θ, φ) → −ρ sin(φ) sin(θ), (ρ, θ, φ) → ρ cos(φ) cos(θ)],
[(ρ, θ, φ) → sin(φ) sin(θ), (ρ, θ, φ) → ρ sin(φ) cos(θ), (ρ, θ, φ) → ρ cos(φ) sin(θ)],
[(ρ, θ, φ) → cos(φ), 0, (ρ, θ, φ) → −ρ sin(φ)]]

(ρ, θ, φ) → −sin(φ) ρ2

Notice that the Jacobian determinant−ρ2 sin(φ) is negative (which says that this spherical coordinate system
is left handed). So the Jacobian is its negative
> J:=-JAC_DET(R)(rho, theta, phi);

J := sin(φ) ρ2

and the volume element isdV = ρ2 sin(φ) dρ dθ dφ. This justifies the formula given in section 5.2.3 and
used in example 5.8 which was stated and used there without any real geometrical proof.

In computing a multiple integral, the most important thing is to pick a curvilinear coordinate system
adapted to the region and/or the integrand. This is done in the next examples:

EXAMPLE 5.17. Compute the integral
∫∫

R

(x2 − y2) dA over the parallelogramR between the lines

y = x, y = x + 2, y = 4 − 3x andy = 8 − 3x.
SOLUTION: To see the region, we first plot the four lines:

> plot( {x, x+2, 4-3*x, 8-3*x }, x=0..2.5);

–2

0

2

4

6

8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4x

To do the integral, we first want to construct an adapted curvilinear coordinate system. Examining the four
lines, we see that if we defineu = y − x andv = y + 3x then the four boundaries becomeu = 0, u = 2,
v = 4 andv = 8. So we enter these two equations and solve forx andy:
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> eqs:= { u=y-x, v=y+3*x };

eqs := {u = y − x, v = y + 3 x}
> sol:=solve(eqs, {x,y });

sol := {x = −1
4

u +
1
4

v, y =
1
4

v +
3
4

u}
This is the curvilinear coordinate system we will use. It can be converted into a list of expressions:
> Rexp:=subs(sol,[x,y]);

Rexp := [−1
4

u +
1
4

v,
1
4

v +
3
4

u]

and then into a list of arrow defined functions:
> R:=MF([u, v], Rexp);

R := [(u, v) → −1
4

u +
1
4

v, (u, v) → 1
4

v +
3
4

u]

The Jacobian determinant is

> JAC_DET(R);

−1
4

Since the Jacobian determinant is negative, the Jacobian is
> J:= - JAC_DET(R);

J :=
1
4

and the area element isdA =
1
4

du dv. The last thing we need to do before computing the integral is to

rewrite the integrand in terms of the curvilinear coordinates

> subs(sol, xˆ2 - yˆ2); integrand:=simplify(%);

(−1
4

u +
1
4

v)2 − (
1
4

v +
3
4

u)2

integrand := −1
2

u2 − 1
2

u v

So the integral is (Don’t forget the Jacobian.)
> Muint(integrand*J, v=4..8, u=0..2); value(%);

∫ 2

0

∫ 8

4

− 1
8

u2 − 1
8

u v dv du

−22
3
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EXAMPLE 5.18. Compute the volume between the paraboloids3z = x2 + y2 and3z = x2 + y2 + 4 above
the region between the parabolas2y = x2 and2y = x2 + 3 betweenx = −2 andx = 2 by using the
curvilinear coordinate systemu = x, v = 2y − x2 andw = 3z − x2 − y2.

SOLUTION: To see the solid region, we plot the shadow region in thexy-plane and the upper and lower
surfaces over this region:
> shadow:= plot3d(0, x=-2..2, y=xˆ2/2..(xˆ2+3)/2):
> lower:= plot3d( (xˆ2+yˆ2)/3, x=-2..2, y=xˆ2/2..(xˆ2+3)/2,
color=gray):
> upper:= plot3d( (xˆ2+yˆ2+4)/3, x=-2..2, y=xˆ2/2..(xˆ2+3)/2):
> display( {shadow, lower, upper }, orientation=[75,75], axes=normal);

1

2

3

4

5

6

1
2

3

y

–2–112 x

To do the integral, we first enter the equations for the curvilinear coordinates and solve forx, y andz:
> eqs:= { u=x, v=2*y-xˆ2, w=3*z-xˆ2-yˆ2 };

eqs := {u = x, v = 2 y − x2, w = 3 z − x2 − y2}
> sol:=solve(eqs, {x, y, z });

sol := {x = u, y =
1
2

v +
1
2

u2, z =
1
3

w +
1
3

u2 +
1
12

v2 +
1
6

v u2 +
1
12

u4}
We then convert this into a list of arrow-defined functions:
> Rexp:=subs(sol,[x, y, z]); R:=MF([u, v, w], Rexp);

Rexp := [u,
1
2

v +
1
2

u2,
1
3

w +
1
3

u2 +
1
12

v2 +
1
6

v u2 +
1
12

u4]

R := [(u, v, w) → u, (u, v, w) → 1
2

v +
1
2

u2, (u, v, w) → 1
3

w +
1
3

u2 +
1
12

v2 +
1
6

v u2 +
1
12

u4]

The Jacobian determinant is
> J:=JAC_DET(R);

J :=
1
6
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Since this is positive, it is also the Jacobian factor and the volume element isdV =
1
6

du dv dw. The last

thing we need to do before computing the integral is to notice that the boundary equations say the limits are
−2 ≤ u ≤ 2, 0 ≤ v ≤ 3 and0 ≤ w ≤ 4.

So the volume integral is (Don’t forget the Jacobian.)
> Muint(1*J, u=-2..2, v=0..3, w=0..4); V:=value(%);∫ 4

0

∫ 3

0

∫ 2

−2

1
6

du dv dw

V := 8

EXAMPLE 5.19. Compute the volume inside the conez =
√

x2 + y2 for 0 ≤ z ≤ 1.
SOLUTION: In cylindrical coordinates the cone is given byz = r. The piece up toz = 1 may be plotted

as
> plot3d(z, theta=0..2*Pi, z=0..1, axes=normal, coords=cylindrical);
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1

–1
–0.6
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0.4
0.6

0.8
1

–1
–0.6

–0.2

0.4
0.6

0.8
1

Remember, the default for a cylindrical plot is to giver as a function ofθ andz. So the volume inside the
cone is
> Muint(1*r, r=0..z, theta=0..2*Pi, z=0..1); V:=value(%);∫ 1

0

∫ 2 π

0

∫ z

0

r dr dθ dz

V :=
1
3

π

Of course, this isV =
1
3
× Base × height =

1
3
× π(1)2 × 1.

Integrals are not limited to 3-dimensions. The next example generalized the previous example.

EXAMPLE 5.20. In R
4, find the 4-dimensional volume inside the 4-dimensional cone which has the rect-

angular equationw =
√

x2 + y2 + z2 for 0 ≤ w ≤ 1.
SOLUTION: The 4-dimensional generalization of cylindrical coordinates is given by

> R:=MF([rho,theta,phi,w], [rho*sin(phi)*cos(theta),
rho*sin(phi)*sin(theta), rho*cos(phi), w]);
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R := [(ρ, θ, φ, w) → ρ sin(φ) cos(θ), (ρ, θ, φ, w) → ρ sin(φ) sin(θ), (ρ, θ, φ, w) → ρ cos(φ),
(ρ, θ, φ, w) → w]

which is spherical coordinates forx, y andz with an extraw coordinate. Then the equation of the cone
is w = ρ. We can’t plot in 4D but we can still compute the 4-volume. The Jacobian determinant and the
Jacobian factor are
> JAC_DET(R); J:= - JAC_DET(R)(rho,theta,phi,w);

(ρ, θ, φ, w) → −sin(φ) ρ2

J := sin(φ) ρ2

So the volume is
> Muint(1*J, rho=0..w, theta=0..2*Pi, phi=0..Pi, w=0..1); V:=value(%);∫ 1

0

∫ π

0

∫ 2 π

0

∫ w

0

sin(φ) ρ2 dρ dθ dφ dw

V :=
1
3

π

You should notice that this isV =
1
4
× Base × height =

1
4
× 4

3
π(1)3 × 1.

11Sometimes you need to make two changes of variables, as in the next example.

EXAMPLE 5.21. Find the volume below the functionz = e−x2/16−y2/9 above the regionE in thexy-plane

enclosed in the ellipse
x2

16
+

y2

9
= 25

SOLUTION: The integrand is
> z1:= exp(-xˆ2/16-yˆ2/9);

z1 := e(−1/16 x2−1/9 y2)

So the rectangular integral is
> Muint(z1,x,y); ∫ ∫

e(−1/16 x2−1/9 y2) dx dy

over the ellipseE.

We first notice that the formula for the ellipse will be simpler if we define curvilinear coordinatesu =
x

4
andv =

y

3
so that the equation of the ellipse becomesu2 + v2 = 25 which is a circleC of radius 5 in the

uv-plane. So we define the curvilinear coordinates
> R:=MF([u,v],[4*u,3*v]);

R := [(u, v) → 4 u, (u, v) → 3 v]
compute the Jacobian
> JR:=JAC_DET(R);

JR := 12
11Stewart§16.9.
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and redefine the integrand
> z2:=subs( x = R(u,v)[1], y = R(u,v)[2], z1);

z2 := e(−u2−v2)

So the integral is now
> Muint(z2*JR, u, v); ∫ ∫

12 e(−u2−v2) du dv

over the circleC.
We now notice that it would be better to do this in polar coordinates(ρ, θ) in theuv-plane. So we define

the coordinate transformation
> T:=MF([rho, theta], [rho*cos(theta), rho*sin(theta)]);

T := [(ρ, θ) → ρ cos(θ), (ρ, θ) → ρ sin(θ)]
compute the Jacobian
> JT:=JAC_DET(T)(rho,theta);

JT := ρ

and redefine the integrand (Don’t forget thatJR is now part of the integrand.)
> z3:=simplify(subs( u = T(rho,theta)[1], v = T(rho,theta)[2], z2*JR));

z3 := 12 e(−ρ2)

So the integral is now
> Muint(z3*JT, rho, theta); ∫ ∫

12 e(−ρ2) ρ dρ dθ

over the region in theρθ-plane which is just the rectangle0 ≤ ρ ≤ 5 and0 ≤ θ ≤ 2π. So the integral and
the final volume are
> Muint(z3*JT, rho=0..5, theta=0..2*Pi); V:=value(%);∫ 2 π

0

∫ 5

0

12 e(−ρ2) ρ dρ dθ

V := 2 (−6 e(−25) + 6)π

Of course, we could have done this in a single step using the elliptic coordinate system(ρ, θ) defined by
x = 4ρ cos(θ) andy = 3ρ sin(θ) whose Jacobian is12ρ.

5.4 Exercises

• Do Lab: 9.8.

• Do Projects: 10.8, 10.9, 10.7 and 10.10.

1. Compute the double integral
∫ 1

−1

∫ 1

0

(x3y3 + 3xy2) dy dx.
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2. Evaluate the triple integral
∫ 1

0

∫ z

0

∫ y

0

xyz dx dy dz.

3. Consider the integral
∫ 4

0

∫ \sqrtx

x/2

x2y dy dx.

(a) Compute the integral.

(b) Plot the region of integration in thexy-plane.

(c) Reverse the order of integration and recompute the integral.

4. Consider the integral
∫ √

π

0

∫ √
π

y

sin(x2) dx dy

(a) On paper, by hand, draw the region of integration in thexy-plane.

(b) Reverse the order of integration and compute the integral showing all the intermediate steps.

(c) Return to the original order of integration and compute the integral again showing all the inter-
mediate steps.

NOTE: FresnelS is a special function that Maple knows about.

(d) What is the derivative of FresnelS? What is FresnelS(0)?

5. Evaluate the double integral
∫ 3

0

∫ 9

y2
y cos (x2) dx dy explicitly and by reversing the order of inte-

gration. Examine the intermediate steps. Which one could you do by hand?

6. Change the order of integration in the integral
∫ 9

0

∫ 3

√
y

sin(πx3) dx dy. Try to compute both

integrals. Examine the intermediate steps. Explain what happened.

7. Change the order of integration in the integral
∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy. Try to compute both

integrals. Examine the intermediate steps. Explain what happened.

8. Find the mass and center of mass of the solid bounded by the parabolic cylindery = x2 and the
two planes given by z = 0 (thexy-plane) and y + z = 4 (a slanted plane). Here the variable
density function is given by ρ = 1 + x + y + z.

9. Compute the integral
∫∫

sin6(x2 + y2) dx dy over the ring between the circlesx2 + y2 =
π

2
and x2 + y2 = π.

10. Find the area of the region insider = 4 sin θ and outside r = 2. Plot the two curves.

11. Find the area and centroid of the region which lies inside the cardioidr = 5(1+cosθ) and outside
the circle r = 5. Plot the two curves.

12. Find the area and centroid of the region which lies inside the curver = 3 cos θ and outside the
curve r = 2 − cos θ. Plot the two curves.
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13. Change the triple integral
∫ 1

−1

∫ √
1−xΨ42

−√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2 dz dy dx into cylindrical coor-

dinates. Examine the intermediate steps. Which one would you prefer to do by hand?

14. Change the triple integral
∫ 5

−5

∫ √
25−x2

0

∫ √
25−x2−y2

0

1√
x2 + y2 + z2

dz dy dx into spherical

coordinates. Examine the intermediate steps. Which one would you prefer to do by hand?

15. Use spherical coordinates to evaluate the triple integral
∫∫∫

B

x2 + y2 + z2 dV whereB is the ball

x2 + y2 + z2 ≤ 9.

16. Compute the volume and centroid of the solid bounded on the sides by the circular cylinder
x2 + y2 = 4, below by the plane z = 0, and above by the slanted planey + z = 3.

17. Find the mass and center of mass of a solid hemisphereH of radiusa whose density at any point is
proportional to the distance from the center of the base of the hemisphere.

18. Use the transformationT : x =
2
3
u +

1
3
v, y = −1

3
u +

1
3
v to evaluate

∫∫
Q

x + 2y

cos(x − y)
dA,

whereQ is the parallelogram in thexy-plane bounded by the lines x + 2y = 0, x − y = 1,
x + 2y = 2, x − y = 0. NOTE: Theinverse transformationis T−1 : u = x − y, v = x + 2y.
This is useful in determining the new limits of integration.

19. Use the transformationT : x =
1
2
u +

1
2
v, y = −1

2
u +

1
2
v to evaluate

∫∫
Q

x − y

x + y
dA,

whereQ is the parallelogram in thexy-plane bounded by the lines x + y = 2, x − y = 0,
x + y = 4, x − y = −2. NOTE: Theinverse transformationis T−1 : u = x − y, v = x + y.

20. Plot the four curves y =
1
x

, y =
2
x

, y =
2
x2

, y =
4
x2

for .5 ≤ x ≤ 5

and 0 ≤ y ≤ 5. Then compute the integral
∫∫
R

x2y dx dy over the “diamond” shaped region

bounded by these four curves.

HINT: Define the curvilinear coordinatesu = xy and v = x2y. In terms ofu andv, what
are the boundary curves? What are the ranges foru andv for the region? Solve forx andy in terms of
u andv. Find the Jacobian factor and the integrand. Then integrate.

21. Plot the four curves y = 1 +
1
2

ex, y = 2 +
1
2

ex, y = 3 − 1
2

ex, y = 6 − 1
2

ex

for −1 ≤ x ≤ 3 and 0 ≤ y ≤ 5. Then compute the integral
∫∫
R

y2e2x dx dy over the

“diamond” shaped region bounded by these four curves.

HINT: Define the curvilinear coordinatesu = y − 1
2

ex and v = y +
1
2

ex. In terms ofu

andv, what are the boundary curves? What are the ranges foru andv for the region? Solve forx and
y in terms ofu andv. Find the Jacobian factor and the integrand. Then integrate.



Chapter 6

Line and Surface Integrals

6.1 Parametrized Curves
1Parametric curves were introduced2 in section 1.3 and their differential properties3 were discussed in section
2.2. In this section, we will discuss their integral properties4.

So, consider a parametrized curve whose position vector is given by~r(t) =
(
x(t), y(t), z(t)

)
. Then its

velocity is~v(t) =
d~r

dt
=

(
dx

dt
,
dy

dt
,
dz

dt

)
and its speed is|~v(t)| =

√
dx

dt

2

+
dy

dt

2

+
dz

dt

2

.

6.1.1 Line Integrals of Scalars

In section 2.2, we used the(scalar) differential of arc length,

ds =
√

dx2 + dy2 + dz2 = |~v| dt ,

to compute the arc length fromA = ~r(a) to B = ~r(b) as

s(A, B) =
∫ B

A

ds =
∫ b

a

|~v| dt.

It can also be used to define the line integral of ascalar functionf(t) defined along the curve to be∫ B

A

fds =
∫ b

a

f(t)|~v(t)| dt .

Alternatively, if f(x, y, z) is defined throughout space, then it may be restricted to the curve by composing
with ~r(t) and then its integral is ∫ B

A

fds =
∫ b

a

f(~r(t))|~v(t)| dt.

1Stewart Chs. 11, 14, 17.
2Stewart§§11.1, 14.1.
3Stewart§§14.2, 14.3, 14.4.
4Stewart§17.2.
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EXAMPLE 6.1. Plot the spiral helix~r(t) = (t cos(t), t sin(t), t) for 0 ≤ t ≤ 8π and compute the integral
of the functionf(x, y, z) = z(2 + xy) over this portion of the spiral helix.

SOLUTION: We enter the curve and plot it:
> r:=MF(t,[t*cos(t), t*sin(t), t]);

r := [t → t cos(t), t → t sin(t), t → t]
> spacecurve(r(t), t=0..8*Pi, numpoints=96, axes=normal,
orientation=[30,50], thickness=2);
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The functionf(x, y, z) = z(2+x2 +y2) may be restricted to the spiral helix by forming the composition

f(~r(t)) = t
(
2 + (t cos(t))2 + (t sin(t))2

)
. In Maplewe enter the function

> f:=MF([x,y,z], z*(2 + xˆ2 + yˆ2));

f := (x, y, z) → z (2 + x2 + y2)
and form the composition
> fr:=simplify(f(op(r(t))));

fr := 2 t + t3

Notice the use ofop to strip the square brackets offr(t) .

The integral off betweent = 0 andt = 8π is
∫ (8π,0,8π)

(0,0,0)

f ds =
∫ 8π

0

f(~r(t))|~v| dt. UsingMaple, the

velocity and speed are
> v:=D(r);

v := [t → cos(t) − t sin(t), t → sin(t) + t cos(t), 1]
> speed:=simplify(len(v(t)));

speed :=
√

2 + t2

So, the integral is
> Int(fr * speed, t=0..8*Pi); value(%);∫ 8 π

0

(2 t + t3)
√

2 + t2 dt

1
5

(2 + 64 π2)(5/2) − 4
5

√
2
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6.1.2 Mass, Center of Mass and Moment of Inertia

Table B.2 in Appendix B, shows the standard applications of line integrals of scalar functions. As examples,
we will discuss the mass, center of mass and moment of inertia of a wire with a specified linear density.

Suppose the wire has the shape of a curve~r(t) and has linear densityρ(t) at the point~r(t). (Notice that
ρ(t) is measured in units of mass per unit length so thatρ(t) ds is the mass of a piece of wire of lengthds.)
Then the mass of the wire betweenA = ~r(a) andB = ~r(b) is

M =
∫ B

A

ρ ds =
∫ b

a

ρ(t)|~v| dt .

and the center of mass is

(x, y, z) =
(

Myz

M
,
Mxz

M
,
Mxy

M

)

where the first moments are

Myz =
∫ B

A

xρ ds =
∫ b

a

x(t) ρ(t)|~v| dt

Mxz =
∫ B

A

y ρ ds =
∫ b

a

y(t) ρ(t)|~v| dt

Mxy =
∫ B

A

z ρ ds =
∫ b

a

z(t) ρ(t)|~v| dt .

EXAMPLE 6.2. Suppose a wire has the shape of the spiral helix of example 6.1, and has density proportional
to the distance from thexy-plane. Find its mass and center of mass.

SOLUTION: The distance from thexy-plane isz. So the density isρ = Kz (for some constantK), which
may be entered as
> rho:=K*r(t)[3];

ρ := K t

Hence the mass is
> Int(rho * speed, t=0..8*Pi); M:=value(%);∫ 8 π

0

K t
√

2 + t2 dt

M :=
1
3

(2 + 64 π2)(3/2) K − 2
3

√
2K

To find the center of mass, we first compute the moments.Maple is unable to compute the integrals
exactly usingvalue , for example:
> Int(r(t)[1] * rho * speed, t=0..8*Pi); Myz:=value(%);∫ 8 π

0

t2 cos(t)K
√

2 + t2 dt

Myz :=
∫ 8 π

0

t2 cos(t)K
√

2 + t2 dt
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So we get an approximate value usingevalf :
NOTE: The commandexpand is needed to factor out the constantK.
> Myz:=evalf(expand(Myz));

Myz := 1894.954419 K

The other two moments are
> Int(r(t)[2] * rho * speed, t=0..8*Pi); Mxz:=evalf(expand(%));∫ 8 π

0

t2 sin(t)K
√

2 + t2 dt

Mxz := −15749.84329 K

> Int(r(t)[3] * rho * speed, t=0..8*Pi); Mxy:=evalf(expand(%));∫ 8 π

0

t2 K
√

2 + t2 dt

Mxy := 100061.0758 K

and the center of mass is
> CM:=evalf([Myz/M, Mxz/M, Mxy/M]);

CM := [.3564659633, −2.962753618, 18.82281041]
Examine the plot in example 6.1 and notice that the center of mass is near thez-axis but above the center
since the density of the spiral helix is greater toward the top.

The moments of inertia about the three axes are:

Ix =
∫ B

A

(y2 + z2) ρ ds =
∫ b

a

(y(t)2 + z(t)2) ρ(t)|~v| dt

Iy =
∫ B

A

(x2 + z2) ρ ds =
∫ b

a

(x(t)2 + z(t)2) ρ(t)|~v| dt

Iz =
∫ B

A

(x2 + y2) ρ ds =
∫ b

a

(x(t)2 + y(t)2) ρ(t)|~v| dt

EXAMPLE 6.3. Find the moments of inertia of a wire in the shape of the spiral helix of example 6.1 with
density proportional to the distance from thexy-plane.

SOLUTION: The quantities were all defined in the previous examples. So the moments of inertia are
> Int( (r(t)[2]ˆ2 + r(t)[3]ˆ2) * rho * speed, t=0..8*Pi);
Ix:=evalf(expand(%)); ∫ 8 π

0

(t2 sin(t)2 + t2)K t
√

2 + t2 dt

Ix := .3008290674 107K
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> Int( (r(t)[1]ˆ2 + r(t)[3]ˆ2) * rho * speed, t=0..8*Pi);
Iy:=evalf(expand(%)); ∫ 8 π

0

(t2 cos(t)2 + t2)K t
√

2 + t2 dt

Iy := .3024140862 107 K

> Int( (r(t)[1]ˆ2 + r(t)[2]ˆ2) * rho * speed, t=0..8*Pi);
Iz:=evalf(expand(%)); ∫ 8 π

0

(t2 cos(t)2 + t2 sin(t)2)K t
√

2 + t2 dt

Iz := .2010810512 107K

6.1.3 Line Integrals of Vectors

Given a vector field

~F (x, y, z) =
(
F1(x, y, z), F2(x, y, z), F3(x, y, z)

)
,

the line integral5 of ~F over a curve~r(t) is

∫ B

A

~F · ~ds =
∫ b

a

~F (~r(t)) · ~v(t) dt =
∫ B

A

~F · T̂ ds

where thevector differential of arc lengthis:

~ds =
(
dx, dy, dz

)
=

(dx

dt
,
dy

dt
,
dz

dt

)
dt = ~v dt = T̂ ds .

and where~F (~r(t)) is the composition of the vector field~F (x, y, z) and the curve~r(t). We will also say that
~F (~r(t)) is the restriction of~F to the curve or the value of~F along the curve. Writing the integral in the form∫ B

A

~F · T̂ ds with the unit tangent vector̂T , is useful for theoretical purposes, but it is more convenient to

compute it in the form
∫ b

a

~F (~r(t)) · ~v(t) dt .

EXAMPLE 6.4. Compute the line integral
∫ (6π,0,6π)

(0,0,0)

~F · ~ds of the vector field~F = (3xz, 2xy, x2) along

the spiral helix~r(t) = (t cos(t), t sin(t), t). Then plot the vector field and the spiral helix in the same plot.
SOLUTION: We input the curve and the vector field:

> r:=MF(t, [t*cos(t), t*sin(t), t]);

r := [t → t cos(t), t → t sin(t), t → t]

5Stewart§17.2.
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> F:=MF([x,y,z], [3*x*z, 2*x*y, xˆ2]);

F := [(x, y, z) → 3 x z, (x, y, z) → 2 x y, (x, y, z) → x2]
Then we compute the velocity and evaluate the vector field on the curve:
> v:=D(r);

v := [t → cos(t) − t sin(t), t → sin(t) + t cos(t), 1]
> Fr:=F(op(r(t)));

Fr := [3 t2 cos(t), 2 t2 cos(t) sin(t), t2 cos(t)2]
(Again, notice the use ofop to strip off the square brackets.) Next we compare the endpoints(0, 0, 0) and
(6π, 0, 6π) with (thez-component of) the parametrization(t cos(t), t sin(t), t) and observe that the parameter
range is0 ≤ t ≤ 6π . Hence the integral is
> Int(Fr &. v(t), t=0..6*Pi); value(%);∫ 6 π

0

4 t2 cos(t)2 − 3 t3 cos(t) sin(t) + 2 t3 cos(t)2 sin(t) + 2 t2 cos(t) − 2 t2 cos(t)3 dt

162 π3 +
93
4

π

Finally, we plot the spiral helix and the vector field and display them in the same plot:
> pr:=spacecurve(r(t), t=0..6*Pi, numpoints=96, thickness=2):
> pF:=fieldplot3d(F(x,y,z), x=-6*Pi..6*Pi, y=-6*Pi..6*Pi, z=0..6*Pi):
> display( {pr,pF }, axes=normal, orientation=[30,50]);
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The line integral of a vector field can also be written as:

∫ B

A

~F · ~ds =
∫ B

A

F1(x, y, z) dx + F2(x, y, z) dy + F3(x, y, z) dz

In this form, the integral is computed (by hand) by replacing the coordinates and the differentials by their
values on the curve and then integrating with respect to the parameter. However, on the computer, it is still
easier to integrate the dot product of the vector field and the velocity.
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EXAMPLE 6.5. Compute the line integral
∫ (−3π,0,3π)

(0,0,0)

−x2y dx + y2xdy + z3 dz along the spiral helix

~r(t) = (t cos(t), t sin(t), t).

SOLUTION: We notice that the integral is
∫ (−3π,0,3π)

(0,0,0)

~F · ~ds for the vector field~F = (−x2y, y2x, z3) So

we enter the vector field:
> F:=MF([x,y,z], [-xˆ2*y, yˆ2*x, zˆ3]);

F := [(x, y, z) → −x2 y, (x, y, z) → y2 x, (x, y, z) → z3]
and evaluate the vector field on the curve:
> Fr:=F(op(r(t)));

Fr := [−t3 cos(t)2 sin(t), t3 sin(t)2 cos(t), t3]
Next we compare the endpoints with (thez-component of) the parametrization and conclude that the param-
eter range is0 ≤ t ≤ 3π. Hence the integral is
> Int(Fr &. v(t), t=0..3*Pi); value(%);∫ 3 π

0

− 2 t3 cos(t)3 sin(t) + t3 + sin(t) t3 cos(t) + 2 t4 cos(t)2 − 2 t4 cos(t)4 dt

243
20

π5 +
81
4

π4

6.1.4 Work and Circulation

Table B.3 in Appendix B, shows the standard applications of line integrals of vector functions. As examples,
we consider the work a force does on a particle and the circulation of a fluid (or of an electric or magnetic
field).

Work If a particle moves along a curve~r(t) due to the action of a force~F (x, y, z), then the work done on
the particle is the line integral of the tangential component of the force along the curve:

Work =
∫ B

A

~F · T̂ ds =
∫ B

A

~F · ~ds .

EXAMPLE 6.6. A 57 kg satelite is falling out of orbit along the spiral curve

R(t) =
(

(7124 − 13t) cos
(

2πt

87

)
, (7124− 13t) sin

(
2πt

87

)
, 0

)
where t is in minutes. Find the work

done on the satelite by the gravitational force~F = −GMm

r3
~r as the satelite falls from an altitude of 7124 km

(measured from the center of the earth) to the earth’s surface at 6371 km.
SOLUTION: We first input the curve and compute the velocity:

> R:=MF(t,[ (7124 - 13*t) * cos( 2*Pi*t/87 ), (7124 - 13*t) * sin(
2*Pi*t/87 ), 0]);

R := [t → (7124 − 13 t) cos(
2
87

π t), t → (7124− 13 t) sin(
2
87

π t), 0]
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> V:=D(R);

V := [t → −13 cos(
2
87

π t) − 2
87

(7124− 13 t) sin(
2
87

π t)π,

t → −13 sin(
2
87

π t) +
2
87

(7124− 13 t) cos(
2
87

π t)π, 0]

In the force equation, the gravitational constant isG = 6.67 × 10−11 m3/kg/sec2, the mass of the earth is
M = 5.97 × 1024 kg, the mass of the satelite ism = 57 kg, the vector from the center of the earth is
~r = (x, y, z) and the distance from the center of the earth isr =

√
x2 + y2 + z2. We enter the constants and

compute the force:

> G:=6.67 * 10ˆ(-11): M:=5.97 * 10ˆ24: m:=57:

> F:=MF( [x,y,z], evall( G*M*m * [x,y,z] / sqrt(xˆ2+yˆ2+zˆ2)ˆ3 ) );

F := [(x, y, z) → .2269734300 1017 x

(x2 + y2 + z2)(3/2)
,

(x, y, z) → .2269734300 1017 y

(x2 + y2 + z2)(3/2)
,

(x, y, z) → .2269734300 1017 z

(x2 + y2 + z2)(3/2)
]

We then evaluate the force on the curve:

> FR:=simplify(F(op(R(t))));

FR := [−100000.

cos(.07222052079 t) (−.7359848498 1012 + .1343038047 1010 t) csgn(−548. + t)
(−548. + t)3

,

−100000.

sin(.07222052079 t) (−.7359848498 1012 + .1343038047 1010 t) csgn(−548. + t)
(−548. + t)3

,

0]

To find the range for the parameter, we compare the curve to the formula for cylindrical coordinates
(r cos θ, r sin θ, z). So the radius from the center of the earth isr = 7124 − 13t. Thus, the altitude is
7124 km att = 0. We solve for the time when the altitude is 6371 km:

> t2:=fsolve( 7124 - 13*t = 6371, t);

t2 := 57.92307692

So the work integral is

> Int(FR &. V(t), t=0..t2); W:=evalf(%);

∫ 57.92307692

0

.2000000 107 csgn(−548. + t) (−.4783901525 1012 + .872974731 109 t)
−.164566592 109 + 900912. t− 1644. t2 + t3

dt

W := −.3765637247 1012
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Circulation The instantaneous motion of a fluid is measured by its velocity field~Vf (x, y, z) which gives
the velocity of the fluid at the point(x, y, z). The line integral of the tangential component of the velocity
field around a closed curve~r(t) is called the circulation of the fluid around the curve and measures the net
flow of the fluid around the curve:

Circulation =
∮

~r(t)

~Vf · T̂ ds =
∮

~r(t)

~Vf · ~ds

NOTE: There are two velocities here: the velocity field of the fluid denoted by~Vf and the velocity of the
curve denoted by~v.

It is also common to compute the circulation of an electric field
∮

~E · ~ds or of a magnetic field
∮

~B · ~ds.

EXAMPLE 6.7. Plot the fluid velocity field~Vf = (−y, x) and compute its circulation around the two
families of circlesx2 + y2 = a2 and(x − 2)2 + y2 = a2.

SOLUTION: We input the velocity vector field and plot it:
> Vf:=MF([x,y], [-y,x]);

Vf := [(x, y) → −y, (x, y) → x]
> fieldplot(Vf(x,y), x=-5..5, y=-5..5, scaling=constrained);
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y
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Notice that fluid seems to circulate around the origin.
The first family of circles are centered at the origin. We enter a parametrization and compute the velocity

of the curve:
> r:=MF(t,[a*cos(t),a*sin(t)]);

r := [t → a cos(t), t → a sin(t)]
> v:=D(r);

v := [t → −a sin(t), t → a cos(t)]
The restriction of the fluid velocity to the curve is
> Vfr:=Vf(op(r(t)));

Vfr := [−a sin(t), a cos(t)]
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and hence the circulation is
> Int(Vfr &. v(t), t=0..2*Pi); C:=value(%);∫ 2 π

0

a2 dt

C := 2 a2 π

The second family of circles are centered at the point(2, 0). We enter a parametrization and compute the
velocity of the curve:
> r:=MF(t,[2+a*cos(t),a*sin(t)]);

r := [t → 2 + a cos(t), t → a sin(t)]
> v:=D(r);

v := [t → −a sin(t), t → a cos(t)]
The restriction of the fluid velocity to the curve is
> Vfr:=Vf(op(r(t)));

Vfr := [−a sin(t), 2 + a cos(t)]
and hence the circulation is
> Int(Vfr &. v(t), t=0..2*Pi); C:=value(%);∫ 2 π

0

a2 + 2 a cos(t) dt

C := 2 a2 π

Notice that for both families of circles, the circulation is twice the area of the circle. This is not a coincidence
and will be explained in subsection 8.3.2 using Green’s Theorem6.

6.2 Parametrized Surfaces

In R
n, a parametric curve7 has one parameter, a parametric surface8 has two parameters and a curvilinear

coordinate system9 hasn parameters. In sections 1.3, 2.2 and 6.1, we studied parametrized curves and their
differential and integral properties10. Similarly, in sections 5.3 and 5.3, we studied curvilinear coordinate
systems and their differential and integral properties.

In section 1.3 we introduced parametrized surfaces. We now study their differential and integral proper-
ties11. These properties are analogous to those for curves and curvilinear coordinate systems. We will restrict
attention to surfaces inR3 but point out those properties which don’t generalize toR

n because they depend
on the cross product.

6Stewart§17.4.
7Stewart§11.1, 14.1.
8Stewart§17.6.
9Stewart§16.9.

10Stewart§§14.2, 14.3, 14.4.
11Stewart§17.6, 17.7.
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6.2.1 Tangent and Normal Vectors

A surface is specified by giving a list of 3 functions of 2 variables which give the 3 rectangular coordinates
as functions of the 2 parameters or coordinates. Thus,

(x, y, z) = ~R(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
.

A coordinate curve is the curve obtained by allowing one parameter to vary while the other parameter is held
fixed. If you draw several coordinate curves for each parameter, you obtain a coordinate grid for the surface.
The tangent vector to a coordinate curve is obtained by differentiating with respect to the parameter which is
varying:

~Ru =
∂ ~R

∂u
and ~Rv =

∂ ~R

∂v

In R
3, there is one further vector which can computed, and that is the normal vector which is perpendicular

to the surface and may be computed as the cross product of the two coordinate tangent vectors:

~N = ~Ru × ~Rv

A surface may be entered intoMapleusing thevec calc commandmakefunction or its aliasMF.
The first argument is the list of parameters, and the second argument is the list of expressions for the rectan-
gular coordinates. You can plot a parametric surface with its coordinate grid by using theplot3d command
with a parametric argument. The coordinate tangent vectors may be computed usingD and the normal may
be computed using thevec calc commandcross or thevec calc operator&x.

EXAMPLE 6.8. Plot the spiral ramp~R(r, θ) = (r cos(θ), r sin(θ), θ) for 0 ≤ r ≤ 9 and0 ≤ θ ≤ 8π. Then
compute the coordinate tangent vectors~Rr and ~Rθ and the normal vector~N .

SOLUTION: We enter the surface and plot it:
> R:=MF([r, theta],[r*cos(theta), r*sin(theta), theta]);

R := [(r, θ) → r cos(θ), (r, θ) → r sin(θ), (r, θ) → θ]
> plot3d( R(r, theta), r=0..9, theta=0..8*Pi, grid=[10,97],
scaling=constrained, orientation=[45,65]);

From the plot, we see why the surface is called a spiral ramp.
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We next compute the coordinate tangent vectors and the normal vector.
> Rr:=D[1](R); Rtheta:=D[2](R);

Rr := [(r, θ) → cos(θ), (r, θ) → sin(θ), 0]

Rtheta := [(r, θ) → −r sin(θ), (r, θ) → r cos(θ), 1]
> N:=simplify(Rr(r, theta) &x Rtheta(r, theta));

N := [sin(θ), −cos(θ), r]
NOTE: The cross product operator&x expects to act on expressions. So we must evaluate the tangent vectors
at the point(r, theta) before taking the cross product.
For future reference, notice that the normal points basically upward since thez componentNz = r is positive.

6.2.2 Surface Area

The(scalar) differential of surface areais

dS =
∣∣∣ ~N

∣∣∣ du dv

Here the length of the normal| ~N | plays the role of the Jacobian for the parametric surface. Hence, the area
of a regionR on a parametric surface is given by

A =
∫∫
R

dS =
∫∫
R

∣∣∣ ~N
∣∣∣ du dv

where the limits on the integrals must be taken as the appropriate ranges for the parametersu andv. Notice
that these formulas are analogous to those for a curve giving the scalar differential of arc length and the arc
length in terms of the length of the velocity.

EXAMPLE 6.9. Find the area of one cycle of the spiral ramp of example 6.8 for0 ≤ r ≤ 9.
SOLUTION: We first compute the length of the normal:

> lenN:=simplify(len(N));

lenN :=
√

1 + r2

One cycle of the ramp occurs for0 ≤ θ ≤ 2π. So, the area of the ramp is
> Muint(lenN, r=0..9, theta=0..2*Pi); A:=value(%); evalf(%);∫ 2 π

0

∫ 9

0

√
1 + r2 dr dθ

A := 2 (
9
2

√
82 − 1

2
ln(−9 +

√
82))π

265.1250052
This is slightly larger than the area of a circle of radius 9:A = π92 = 81π ≈ 254.
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6.2.3 Surface Integrals of Scalars

Thescalardifferential of surface area,dS, can also be used to define the surface integral of ascalarfunction
f(u, v) defined along a surface R to be∫∫

R

fdS =
∫∫
R

f(u, v) | ~N | du dv .

Alternatively, if f(x, y, z) is defined throughout space, then it may be restricted to the surface by composing
with ~R(u, v) and then its integral is∫∫

R

fdS =
∫∫
R

f(~R(u, v)) | ~N | du dv.

EXAMPLE 6.10. Compute the integral of the functionf(x, y, z) = x + y − z over the spiral ramp of
example 6.8 for0 ≤ r ≤ 9 and0 ≤ θ ≤ π.

SOLUTION: The functionf may be entered as
> f:=MF([x,y,z], x + y - z);

f := (x, y, z) → x + y − z

and its restriction to the spiral rampf(~R(r, θ)) is:
> fR:=f(op(R(r, theta)));

fR := r cos(θ) + r sin(θ) − θ

(Notice the use ofop to strip off the square brackets.)

Then the integral off over the spiral ramp is
∫∫
R

f dS =
∫ π

0

∫ 9

0

f(~R(r, θ))| ~N | dr dθ, which may be

computed usingMapleas
> Muint(fR * lenN, r=0..9, theta=0..Pi); value(%);∫ π

0

∫ 9

0

(r cos(θ) + r sin(θ) − θ)
√

1 + r2 dr dθ

−2
3

+
164
3

√
82 − 9

4
π2

√
82 +

1
4

π2 ln(−9 +
√

82)

6.2.4 Mass, Center of Mass and Moment of Inertia

Table B.2 in Appendix B, shows the standard applications of surface integrals of scalar functions. As exam-
ples, we will discuss the mass, center of mass and moment of inertia of a region of a surface with a specified
surface density.

Suppose a sheet of plastic has the shape of a regionR on a surface~R(u, v) and has surface densityρ(u, v)
at the point~R(u, v). (Notice thatρ(u, v) is measured in units of mass per unit area so thatρ(u, v) dS is the
mass of a piece of the surface with areadS.) Then the mass of the plastic sheet is

M =
∫∫
R

ρ dS =
∫∫
R

ρ(u, v) | ~N | du dv.
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EXAMPLE 6.11. Suppose the dome of a grain silo has the shape of the paraboloid

z = 30− x2 + y2

20
for z ≥ 10 and has a densityρ = 320+

x2 + y2

10
so that the dome is thicker at the bottom.

Plot the dome and find the total mass of the dome.
SOLUTION: The surface may be parametrized in polar (or cylindrical) coordinates as

> R:=MF([r, theta],[r*cos(theta), r*sin(theta), 30 - rˆ2/20]);

R := [(r, θ) → r cos(θ), (r, θ) → r sin(θ), (r, θ) → 30 − 1
20

r2]

The bottom of the dome is atz = 10 = 30− r2

20
or atr = 20. So we plot the dome and save it for future use:

> pdome:=plot3d(R(r, theta), r=0..20, theta=0..2*Pi, axes=normal,
scaling=constrained, view=[-20..20, -20..20, 0..30],
orientation=[30,80]): pdome;
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In these coordinates, the density may be entered as
> rho := 320 + rˆ2/10:
The coordinate tangent vectors are
> Rr:=D[1](R); Rtheta:=D[2](R);

Rr := [(r, θ) → cos(θ), (r, θ) → sin(θ), (r, θ) → − 1
10

r]

Rtheta := [(r, θ) → −r sin(θ), (r, θ) → r cos(θ), 0]
The coordinate normal vector and its length are
> N:=simplify(cross( Rr(r, theta), Rtheta(r, theta) ));
lenN:=simplify(len(N));

N := [
1
10

r2 cos(θ),
1
10

r2 sin(θ), r]

lenN :=
1
10

√
r2 (r2 + 100)

So the mass is
> Muint(rho * lenN, r=0..20, theta=0..2*Pi); M:=value(%);∫ 2 π

0

∫ 20

0

1
10

(320 +
1
10

r2)
√

r2 (r2 + 100)dr dθ
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M := 2 (
170000

3

√
5 − 31600

3
)π

To find the center of mass, we need to find the first moments:

Myz =
∫∫
R

xρ dS =
∫∫
R

x(u, v)ρ(u, v) | ~N | du dv

Mxz =
∫∫
R

y ρ dS =
∫∫
R

y(u, v)ρ(u, v) | ~N | du dv

Mxy =
∫∫
R

z ρ dS =
∫∫
R

z(u, v)ρ(u, v) | ~N | du dv

Then the center of mass is

(x, y, z) =
(

Myz

M
,
Mxz

M
,
Mxy

M

)

EXAMPLE 6.12. Find the center of mass of the grain silo dome of example 6.11.
SOLUTION: By symmetry,x = 0 andy = 0. To findz, we first find thez-moment

> Muint(R(r,theta)[3] * rho * lenN, r=0..20, theta=0..2*Pi);
Mxy:=value(%); ∫ 2 π

0

∫ 20

0

1
10

(30 − 1
20

r2) (320 +
1
10

r2)
√

r2 (r2 + 100)dr dθ

Mxy := 2 (
23500000

21

√
5 − 7076000

21
)π

Then thez-component of the center of mass is
> zbar:=simplify(Mxy/M); evalf(%);

zbar :=
10
7

5875
√

5 − 1769
425

√
5 − 79

18.63803258
Notice that the center of mass is slightly below the center of the height of the dome.

Finally the moments of inertia about the 3 axes are:

Ix =
∫∫
R

(y2 + z2) ρ dS =
∫∫
R

(y(u, v)2 + z(u, v)2)ρ(u, v) | ~N | du dv

Iy =
∫∫
R

(x2 + z2) ρ dS =
∫∫
R

(x(u, v)2 + z(u, v)2)ρ(u, v) | ~N | du dv

Iz =
∫∫
R

(x2 + y2) ρ dS =
∫∫
R

(x(u, v)2 + y(u, v)2)ρ(u, v) | ~N | du dv
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EXAMPLE 6.13. Find the moment of inertia about thez-axis of the grain silo dome of example 6.11.
SOLUTION: The moment of inertia about thez-axis is

> Muint( (R(r,theta)[1]ˆ2 + R(r,theta)[2]ˆ2) * rho * lenN, r=0..20,
theta=0..2*Pi); Iz:=value(%);∫ 2 π

0

∫ 20

0

1
10

(r2 cos(θ)2 + r2 sin(θ)2) (320 +
1
10

r2)
√

r2 (r2 + 100)dr dθ

Iz :=
488000000

21

√
5π +

17600000
21

π

6.2.5 Surface Integrals of Vectors

Given a vector field

~F (x, y, z) =
(
F1(x, y, z), F2(x, y, z), F3(x, y, z)

)
,

the surface integral of~F over a surface~R(u, v) is∫∫
R

~F · ~dS =
∫∫
R

~F (~R(u, v)) · ~N du dv =
∫∫
R

~F · N̂ dS

where thevector differential of surface areais:

~dS =
(
dy dz, dz dx, dx dy

)
=

(∣∣∣∣∂(y, z)
∂(u, v)

∣∣∣∣ ,
∣∣∣∣∂(z, x)
∂(u, v)

∣∣∣∣ ,
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣
)

du dv = ~N du dv = N̂ dS .

and where~F (~R(u, v)) is the composition of the vector field~F (x, y, z) and the surface~R(u, v)). We will also
say that~F (~R(u, v))) is the restriction of~F to the surface or the value of~F along the surface. Writing the

integral in the form
∫∫
R

~F · N̂ dS with the unit normal vector̂N , is useful for theoretical purposes, but it is

more convenient to compute it in the form
∫∫
R

~F (~R(u, v)) · ~N du dv .

It should be noticed that if you reverse the direction of the normal vector~N then the integral of any vector
field changes sign. This means that if you plan to integrate a vector field over a surface then you must specify
the side of the surface to which the normal should point and only use a parametrization for which the normal
points to the correct side of the surface. However, if you pick a parametrization and find that the normal is
backwards, you may correct the problem by reversing the normal by multiplying by−1.

EXAMPLE 6.14. Plot the vector field~V (x, y, z) = (yz, xz,−z2) and the grain silo dome of example 6.11.
(Think of the vector field as rain falling on the dome.) Then compute the integral of~V over the surface of the
grain silo dome with normal pointing downward.

SOLUTION: The vector field may be entered as
> V:=MF([x,y,z], [y*z, x*z, -zˆ2]);

V := [(x, y, z) → y z, (x, y, z) → x z, (x, y, z) → −z2]
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Then we plot it and display it with the dome (previously plotted in example 6.11).
> pV:= fieldplot3d(V(x,y,z), x=-20..20, y=-20..20, z=0..30):
> display( {pdome,pV });
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In example 6.11, we parametrized the silo dome as~R(r, θ) =
(

r cos θ, r sin θ, 30 − r2

20

)
and computed the

normal to be:
> N;

[
1
10

r2 cos(θ),
1
10

r2 sin(θ), r]

SinceNz = r > 0, the normal points upward and we must reverse it to point downward:
> N:=-N;

N := [− 1
10

r2 cos(θ), − 1
10

r2 sin(θ), −r]

When~V is restricted to the silo dome, the composition is
> VR:=V(op(R(r, theta)));

VR := [r sin(θ) (30 − 1
20

r2), r cos(θ) (30 − 1
20

r2), −(30 − 1
20

r2)2]

(Again, notice the use ofop to strip off the square brackets.)

The integral of~V over the silo dome is
∫∫
R

~V · ~dS =
∫ 2π

0

∫ 20

0

~V (~R(θ, φ)) · ~N dr dθ. UsingMaple, the

integral is
> Muint(VR &. N, r=0..20, theta=0..2*Pi); value(%);∫ 2 π

0

∫ 20

0

− 6 r3 sin(θ) cos(θ) +
1

100
r5 sin(θ) cos(θ) + 900 r − 3 r3 +

1
400

r5 dr dθ

520000
3

π
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The surface integral of a vector field can also be written as:∫∫
R

~F · ~dS =
∫∫
R

F1(x, y, z) dy dz + F2(x, y, z) dz dx + F3(x, y, z) dx dy

In this form, the integral is computed (by hand) by replacing the coordinates by their values on the curve and
the products of differentials by the appropriate Jacobian determinants. The result is integrated with respect to
the parameters. However, on the computer, it is still easier to compute the dot product of the vector field and
the normal.

EXAMPLE 6.15. Compute the surface integral
∫∫
S

−x2y dy dz+y2xdz dx+z3 dx dy over the spiral ramp

~R(r, θ) = (r cos θ, r sin θ, θ) for 0 ≤ r ≤ 5 and0 ≤ θ ≤ 3π and with the normal pointing upward.
SOLUTION: We input the surface and compute the tangent vectors and the normal vector:

> R:=MF([r, theta], [r * cos(theta), r * sin(theta), theta]);

R := [(r, θ) → r cos(θ), (r, θ) → r sin(θ), (r, θ) → θ]
> Rr:=D[1](R); Rtheta:=D[2](R);

Rr := [(r, θ) → cos(θ), (r, θ) → sin(θ), 0]

Rtheta := [(r, θ) → −r sin(θ), (r, θ) → r cos(θ), 1]
> N:=simplify(Rr(r, theta) &x Rtheta(r, theta));

N := [sin(θ), −cos(θ), r]
SinceNz = r > 0, the normal points upward and we do not need to reverse the normal. Next we look at the
coefficients ofdy dz, dz dx anddx dy to identify the vector field and evaluate the vector field on the curve:
> F:=MF([x,y,z], [- xˆ2 * y, yˆ2 * x, zˆ3]);

F := [(x, y, z) → −x2 y, (x, y, z) → y2 x, (x, y, z) → z3]
> FR:=F(op(R(r, theta)));

FR := [−r3 cos(θ)2 sin(θ), r3 sin(θ)2 cos(θ), θ3]
Finally, we compute the surface integral:
> Muint(FR &. N, r=0..5, theta=0..3*Pi); value(%);∫ 3 π

0

∫ 5

0

− 2 r3 cos(θ)2 + 2 r3 cos(θ)4 + θ3 r dr dθ

2025
8

π4 − 1875
16

π

6.2.6 Flux and Expansion

Table B.3 in Appendix B, shows the standard applications of line integrals of vector functions. As examples,
we consider the flux of a fluid through an open surface and the expansion of a fluid through a closed surface.
These applications may also be applied to an electric or magnetic field.
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Flux If a fluid flows through a surface~R(u, v), then the volume of fluid that flows through the surface per
unit time is called the flux of the fluid through the surface and is computed as the surface integral of the
normal component of the velocity field over the surface. The flux will be positive if the fluid flows through
the surface in the direction of the normal vector. In particular, if the fluid velocity field is~Vf , then the flux is:

F lux =
∫∫
R

~Vf · N̂ dS =
∫∫
R

~Vf · ~dS .

EXAMPLE 6.16. Suppose a fluid is moving with the velocity field~Vf = (x − y, x + y, 2z). Find the flux
of the fluid outward through the piece of the cylinderx2 + y2 = 4 for 0 ≤ z ≤ 3. Then plot the fluid velocity
and the cylinder in the same plot.

SOLUTION: The surface may be parametrized as
> R:=MF([theta, z], [2 * cos(theta), 2 * sin(theta), z]);

R := [(θ, z) → 2 cos(θ), (θ, z) → 2 sin(θ), (θ, z) → z]

So the tangent and normal vectors are
> Rtheta:=D[1](R); Rz:=D[2](R);

Rtheta := [(θ, z) → −2 sin(θ), (θ, z) → 2 cos(θ), 0]

Rz := [0, 0, 1]

> N:=cross(Rtheta(theta,z),Rz(theta,z));

N := [2 cos(θ), 2 sin(θ), 0]

Examining the sign of thex- andy-components of the normal, we verify that the normal points outward. We
now input the velocity field and restrict it to the surface:
> Vf:=MF([x,y,z], [x-y, x+y, 2*z]);

Vf := [(x, y, z) → x − y, (x, y, z) → x + y, (x, y, z) → 2 z]

> VfR:=Vf(op(R(theta, z)));

VfR := [2 cos(θ) − 2 sin(θ), 2 cos(θ) + 2 sin(θ), 2 z]

Then the flux is
> Muint( dot( VfR, N), theta=0..2*Pi, z=0..3 ); Flux_cyl:=value(%);

∫ 3

0

∫ 2 π

0

4 dθ dz

Flux cyl := 24 π

We plot the fluid velocity and the cylinder and then display them together:
> pVf:=fieldplot3d(Vf(x,y,z), x=-3..3, y=-3..3, z=0..3):

> pR:=plot3d(R(theta, z), theta=0..2*Pi, z=0..3):

> display( {pVf, pR }, axes=normal, orientation=[35,75]);
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Expansion If the fluid flows through a closed surface, then the flux through the surface (with the outward
normal) is called the expansion of the fluid out of the solid region enclosed by the surface.

EXAMPLE 6.17. Suppose a fluid is moving with the velocity field~Vf = (x − y, x + y, 2z). Find the
expansion of the fluid out of the solid cylinderx2 + y2 ≤ 4 for 0 ≤ z ≤ 3.

SOLUTION: The flux of the fluid through the curved surface of the cylinder was found in the previous
example. It remains to compute the flux through the top and bottom surfaces with outward normals. Both the
top and bottom surfaces may be parametrized as
> R:=MF([r, theta], [r * cos(theta), r * sin(theta), z0]);

R := [(r, θ) → r cos(θ), (r, θ) → r sin(θ), (r, θ) → z0 ]
wherez0 is 3 for the top and 0 for the bottom. In both cases the tangent and normal vectors are
> Rr:=D[1](R); Rtheta:=D[2](R);

Rr := [(r, θ) → cos(θ), (r, θ) → sin(θ), 0]

Rtheta := [(r, θ) → −r sin(θ), (r, θ) → r cos(θ), 0]

> N:=simplify(cross(Rr(r, theta),Rtheta(r, theta)));

N := [0, 0, r]
Examining the sign of thez-component of the normal, we see that this normal points upward. So we need to
reverse the normal for the bottom:
> N2:=-N;

N2 := [0, 0, −r]
We now restrict the vector field to the surface:
> VfR:=Vf(op(R(r, theta)));

VfR := [r cos(θ) − r sin(θ), r cos(θ) + r sin(θ), 2 z0 ]
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Then the flux through the top is
> z0:=3; Muint( dot( VfR, N), r=0..2, theta=0..2*Pi ); Flux_top:=
value(%);

z0 := 3
∫ 2 π

0

∫ 2

0

6 r dr dθ

Flux top := 24 π

and the flux through the bottom is
> z0:=0; Muint( dot( VfR, N2), r=0..2, theta=0..2*Pi ); Flux_bot:=
value(%);

z0 := 0
∫ 2 π

0

∫ 2

0

0 dr dθ

Flux bot := 0
Adding the fluxes, we have that the net expansion is
> Flux_cyl + Flux_top + Flux_bot;

48 π

Since the net expansion is positive, we see that there is a net flow of fluid out of the surface.

6.3 Exercises

• Do Project: 10.11.

1. If a wire has the shape of the spiral~r(t) =
(
t cos(t), t sin(t)

)
for 0 ≤ t ≤ 2π and has linear

density ρ(t) = t, compute the mass and center of mass of the wire.

2. If a wire has the shape of the astroid~r(t) =
(
cos3(t), sin3(t)

)
for 0 ≤ t ≤ 2π and has linear

density ρ(x, y) = x2 + y2, compute the mass and center of mass of the wire.

3. Compute the integral which represents the work done by the force field~F (x, y) = (x, y + 2) in
moving an object along an arch of the cycloid~r(t) = (t − sin t, 1 − cos t) for 0 ≤ t ≤ 2π.

4. Compute
∮

C

(−y3 dx + x3 dy) once counterclockwise around the circlex2 + y2 = 9.

5. Repeat example 6.7 but for the velocity field:~Vf =
( −y

x2 + y2
,

x

x2 + y2

)
. For each family of

circles, plot the circulation as a function of the radiusa and discuss the dependence ona.

NOTE: Before computing the integral for the second family of circles, you will need to impose the
assumption 0 < a < 2 (and separately the assumption2 < a ) by usingMaple’s assume
command. (Otherwise,Maple is unable to do the integral.) You do this by executing:
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assume(0<a,a<2); From then onMaplewill write a asa˜ to indicate that an assumption has
been made ona. You may turn off the tildes by clicking onOPTIONS—ASSUMEDVARIABLES—NO

ANNOTATION.

6. The surface of a sphere of radius 2 may be parametrized as

~R(θ, φ) = (2 sin(φ) cos(θ), 2 sin(φ) sin(θ), 2 cos(φ)) .

Plot the sphere and compute the coordinate tangent vectors and the normal vector. Does the normal
point radially inward or outward?

7. What percent of the earth’s surface is above the arctic circle at 66.5◦ north latitude? (In spherical
coordinates that’s atφ = 23.5◦.)

NOTE: In simplifying the length of the normal, you may encounter the expressioncsgn(sin( φ)) .
The functioncsgn is called the “complex sign” and is+1 if its argument is positive and is−1 if its
argument is negative. At this pointMapledoes not know thatsin(φ) ≥ 0 since0 ≤ φ ≤ π. It will
discover this fact from the limits on the area integrals.

8. Find the area of the part of the parametric surface~R(u, w) = (u + w, u −w, w) that lies over the
triangular shadow region in thexy-plane with vertices (0, 0), (4, 2), and (0, 2).

9. Evaluate the surface integral
∫∫
S

y dS, where the surfaceS is the part of the plane3x + 2y + z = 6

that lies in the first octant.

10. Find the mass, center of mass and moment of inertia about thez-axis of the spiral ramp of example 6.8
for 0 ≤ r ≤ 9 and 0 ≤ θ ≤ 8π if the mass density is given by ρ = 2z.

NOTE: The center of mass may not be on thez-axis.

11. Consider a thin funnel whose conically-shaped surfaceS is given by z =
√

x2 + y2 for 1 ≤
z ≤ 4. Usecylindrical coordinates to parametrically specifyS. The shadow region (projection of
the funnel surface onto thexy-plane) is a washer or ring. Accordingly, what are the ranges forr and
θ? Compute the mass and center of mass of the funnel, given that itsvariabledensity is ρ = 10− z.

12. Consider the sphere of radius 2 centered at the origin. Compute the integral of the vector field
~F (x, y, z) = (yz, xz, z2) over the eighth of the sphere in the first octant with normal pointing
away from the origin.

13. Suppose the velocity field of a fluid is the radial vector field~Vf = (x, y, z). Plot the velocity field
and compute the expansion of the fluid out of the two families of spheresx2 + y2 + z2 = a2 and
x2 + y2 + (z − 2)2 = a2. For each family of spheres, relate the expansion to the volume of the
sphere. This is not a coincidence and will be explained in subsection 8.5.2 using Gauss’ Theorem.

14. Repeat exercise 13 but for the velocity field,

~Vf =
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
. For both families of spheres,

plot the expansion as a function of the radiusa and discuss the dependence ona.

NOTE: Before computing the integral for the second family of spheres, you will need toassume
0 < a < 2 (and separately 2 < a ). See exercise 5.
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15. In physics, the integral form of Gauss’ Law for electrostatics is
∫∫
S

~E · ~dS = 4πQ where~E is the

electric field andQ is the total electric charge inside the closed surfaceS. Compute the total charge
inside the cylinder x2 + y2 ≤ a2 for 0 ≤ z ≤ h for each of the following electric fields. (k
is a constant.)

a) ~E = (kx(x2 + y2), ky(x2 + y2), 0)

b) ~E = (kx, ky, 0)

c) ~E = (
kx

x2 + y2
,

ky

x2 + y2
, 0)

One of these fields represents the electric field of a line of charge along thez-axis since the total charge
is proportional to the lengthh and independent of the radiusa of the cylinder. Which one?
One of these fields represents the electric field of a uniform charge distribution since the total charge is
proportional to the volume of the cylinder. Which one?

16. An electric charge distribution along a curve is specified by giving the linear charge densityλ which
is measured in units of charge per unit length. Assume there is a uniform charge density along the
z-axis with constant charge densityλ. Thus the charge in a lengthL is Q = Lλ. This produces

an electric field ~E = (
2λx

x2 + y2
,

2λy

x2 + y2
, 0).

a) Compute the flux of the electric field through a cylinder of radiusr and lengthL centered on the
z-axis.

b) Compute the flux of the electric field through a cylinder of radiusr < a and lengthL
centered on the linex = a andy = 0.
NOTE: Before computing the integral, you will need toassume 0 < r < a. See exercise 5.

c) Compute the flux of the electric field through a cylinder of radiusr > a and lengthL
centered on the linex = a andy = 0. NOTE: This timeassume 0 < a < r.

d) Discuss the results by relating the flux to the amount of charge inside the cylinder. (See exercise
15 and lab 9.11.)

17. Assume there is a uniform electric currentI moving up thez-axis. This produces the magnetic field

~B =
2I

x2 + y2
(−y, x, 0).

a) Compute the circulation of the magnetic field counterclockwise around the circlex2 +y2 = r2

in thexy-plane.

b) Compute the circulation of the magnetic field counterclockwise around the circle(x − a)2 +
y2 = r2 in thexy-plane if r < a.
NOTE: Before computing the integral, you will need toassume 0 < r < a. See exercise 5.

c) Compute the circulation of the magnetic field counterclockwise around the circle(x − a)2 +
y2 = r2 in thexy-plane if r > a. NOTE: This timeassume 0 < a < r.

d) Discuss the results by relating the circulation to the current passing through the circle. (See lab
9.12.)



Chapter 7

Vector Differential Operators

7.1 The Del Operator and the Gradient
1In rectangular coordinates, it is useful to introduce the “del”-operator given by

~∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
= ı̂

∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z
.

Thus~∇ is the vector whose components are the partial derivative operators. Throughout this chapter, we will
use the~∇ operator to construct other differential operators. However,BEWARE:
CAUTION: The ~∇ operator only makes sense in rectangular coordinates.

For example, when the~∇ operator is applied to a scalar field (i.e. a function)f , it produces a vector field
whose entries are the partial derivatives off . In subsection 3.1.4 this was defined to be the gradient2 of the
function:

~∇f = gradf =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
It may be computed using the commandgrad in the linalg package which acts on expressions or using
the commandGRADin thevec calc package which acts on arrow-defined functions. Examples appear in
subsection 3.1.4. The applications, interpretation and plots of the gradient are discussed in subsections 3.2.4,
3.2.5, 3.2.6 and 3.2.7.

7.2 Divergence

7.2.1 Computation

The divergence3 of a vector field~F = (F1, F2, F3) is defined by

div ~F = ~∇ · ~F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

1Stewart§17.5.
2Stewart§15.6.
3Stewart§17.5.
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where we have interpreted the formula as the dot product of the~∇ operator and the vector field~F except that
multiplication has been replaced by differentiation. The result is a scalar field (or function).

The interpretation of the divergence is discussed in lab 9.9. Basically, the divergence at a pointP measures
the expansion of the vector field out of a small sphere atP (or out of a circle inR2).

In Maple, you may compute the divergence by using thelinalg commanddiverge for expressions
or by using thevec calc commandDIV for arrow-defined functions.

EXAMPLE 7.1. Plot each of the following 2-dimensional vector fields for−2 ≤ x ≤ 2 and−2 ≤ y ≤ 2
along with a circle centered at(1, 1) of radius.5.

a) ~r = (x, y)

b) ~ω = (y,−x)

From the plot, is the divergence positive, negative or zero? (It is positive, if more or bigger vectors come out
of the circle than go in; negative, if more go in than out.) Then compute the divergence.

SOLUTION: We enter each vector field usingMF, plot it usingfieldplot anddisplay it with the cir-
cle produced using thecircle command from theplottools package. Then we compute the divergence
usingDIV .

a) For~r = (x, y) we have
> r:=MF([x,y], [x,y]);

r := [(x, y) → x, (x, y) → y]
> fp:=fieldplot(r(x,y), x=-2..2, y=-2..2):
> with(plottools):
> display(fp, circle([1,1],.5), scaling=constrained);

–2

–1

0

1

2

y

–2 –1 1 2x

CAUTION: The vectors produced byfieldplot may not have the correct lengths. They have been scaled
to look good in the plot. However, the directions and relative lengths are correct.
Notice that bigger vectors come out of the circle. So the divergence should be positive. It is:
> div_r:=DIV(r);

div r := 2
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b) For~ω = (y,−x) we have

> omega:=MF([x,y], [y,-x]);

ω := [(x, y) → y, (x, y) → −x]

> fp:=fieldplot(omega(x,y), x=-2..2, y=-2..2):

> display(fp, circle([1,1],.5), scaling=constrained);

–2

–1

0

1

2

y

–2 –1 1 2x

Notice that the same size and number of vectors go in as out of the circle. So the divergence should be zero.
It is:

> div_omega:=DIV(omega);

div omega := 0

EXAMPLE 7.2. Plot the 3-dimensional vector field~F = (0,−2y, 0) for −2 ≤ x ≤ 2, −2 ≤ y ≤ 2 and
−2 ≤ z ≤ 2 along with a sphere centered at(1, 1, 1) of radius1. From the plot, is the divergence positive,
negative or zero? (It is positive, if more or bigger vectors come out of the sphere than go in; negative, if more
go in than out.) Then compute the divergence.

SOLUTION: We first enter the vector field usingMF, plot it usingfieldplot3d anddisplay it with
the sphere produced using thesphere command from theplottools package. Then we compute the
divergence usingDIV :

> F:=MF([x,y,z], [0, -2*y, 0]);

F := [0, (x, y, z) → −2 y, 0]

> fp:=fieldplot3d(F(x,y,z), x=-2..2, y=-2..2, z=-2..2):

> display(fp,sphere([1,1,1],1), scaling=constrained,
orientation=[15,80]);
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CAUTION: The vectors produced byfieldplot3d may not have the correct lengths. They have been
scaled to look good in the plot. However, the directions and relative lengths are correct.
Notice that bigger vectors go into the sphere. So the divergence should be negative. It is:
> div_F:=DIV(F);

div F := −2

7.2.2 Applications

EXAMPLE 7.3. In physics, the differential form of Gauss’ Law for electrostatics is~∇ · ~E = 4πρc where~E
is the electric field andρc is the electric charge density. Compute the charge density for each of the following
electric fields. (k is a constant.) See exercise 6.15.

a) ~E = (kx(x2 + y2), ky(x2 + y2), 0)

b) ~E = (kx, ky, 0)

c) ~E = (
kx

x2 + y2
,

ky

x2 + y2
, 0)

For each field, compute the total charge inside the cylinderx2 + y2 ≤ a2 for 0 ≤ z ≤ h.
One of these fields represents the electric field of a line of charge along thez-axis. Which one?
One of these fields represents the electric field of a uniform charge distribution. Which one?

SOLUTION: (To save space, we omit some output.)
a) For ~E = (kx(x2 + y2), ky(x2 + y2), 0), we compute

> E:=MF([x,y,z], [k*x * (xˆ2+yˆ2), k*y * (xˆ2+yˆ2), 0]):
> rho:=simplify(1/(4*Pi)* DIV(E)(x,y,z));

ρ :=
k (x2 + y2)

π
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Since the density is non-zero and non-constant, this electric field is neither a line of charge along thez-axis
nor a uniform distribution. In cylindrical coordinates, the density is

> rho:=k*rˆ2/Pi:

So the total charge is

> Q:=Muint(rho*r, r=0..a, theta=0..2*Pi, z=0..h); Q:=value(%);

Q :=
∫ h

0

∫ 2 π

0

∫ a

0

k r3

π
dr dθ dz

Q :=
1
2

k a4 h

This should agree with your result from exercise 6.15(a).

b) For ~E = (kx, ky, 0), we compute

> E:=MF([x,y,z], [k*x, k*y, 0]):

> rho:=1/(4*Pi)* DIV(E)(x,y,z);

ρ :=
1
2

k

π

Since this is constant,~E is the electric field for a uniform charge distribution. So the total charge is

> Q:=Muint(rho*r, r=0..a, theta=0..2*Pi, z=0..h); Q:=value(%);

Q :=
∫ h

0

∫ 2 π

0

∫ a

0

1
2

k r

π
dr dθ dz

Q :=
1
2

k a2 h

This should agree with your result from exercise 6.15(b).

c) For ~E = (
kx

x2 + y2
,

ky

x2 + y2
, 0), we compute

> E:=MF([x,y,z], [k*x / (xˆ2+yˆ2), k*y / (xˆ2+yˆ2), 0]):

> rho:=1/(4*Pi)* DIV(E)(x,y,z);

ρ := 0

Since the density is zero, there does not appear to be any charge anywhere. However, this conclusion is based
on Gauss’ equation which only holds at points where the electric field is well-defined. Since the electric field
is undefined (infinite) on thez-axis, Gauss’ equation fails and there may still be charge along thez-axis. In
fact, you should have found in example 6.15(c) that there is a uniform charge density along thez-axis.
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7.3 Curl

7.3.1 Computation

In R
3, the curl4 of a vector field~F = (F1, F2, F3) is defined by

curl ~F = ~∇× ~F =

∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=

(
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

)

where we have interpreted the formula as the cross product of the~∇ operator and the vector field~F except
that multiplication has been replaced by differentiation. The result is a 3-dimensional vector field.

The interpretation of the curl is discussed in lab 9.10. Basically, the direction of the curl specifies the axis
and direction of rotation (by the right hand rule) while the magnitude of the curl specifies the rate of rotation.

In Maple, you may compute the curl by using thelinalg commandcurl for a vector of expressions
or by using thevec calc commandCURLfor a list of arrow-defined functions.

EXAMPLE 7.4. Each of the following vector fields was plotted as a 2-dimension al vector field in example
7.1. Now regard each as a 3-dimensional vector field by appending 0 as thez-component.

a) ~r = (x, y, 0)

b) ~ω = (y,−x, 0)

By examining the circulation around the circle , is thez component of the curl positive (counterclockwise),
negative (clockwise) or zero? Now compute the curl. Notice that each curl ends up pointing in thez-direction.
Is thez component positive, negative or zero?

SOLUTION: After examining the plot, we re-enter the vector field usingMF, and compute the curl using
CURL.

a) For~r = (x, y, 0) we examine the plot and see that the vectors circulate around the circle clockwise as
much as counterclockwise. So we expect thez component of the curl is zero. We compute:
> r:=MF([x,y,z], [x, y, 0]);

r := [(x, y, z) → x, (x, y, z) → y, 0]
> curl_r:=CURL(r);

curl r := [0, 0, 0]
b) For ~ω = (y,−x, 0) we examine the plot and see that bigger vectors circulate clockwise around the

circle. So we expect thez component of the curl is negative. We compute:
> omega:=MF([x,y,z], [y, -x, 0]);

ω := [(x, y, z) → y, (x, y, z) → −x, 0]
> curl_omega:=CURL(omega);

curl omega := [0, 0, −2]

4Stewart§17.5.
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EXAMPLE 7.5. Compute the curl of the vector field~u = (−z, 0, x) and convert the curl to spherical coor-
dinates. Then plot~u and orient the plot according to the direction of~∇× ~u. What do you notice?

SOLUTION: We enter~u, compute the curl and convert to spherical coordinates:
> u:=MF([x,y,z], [-z,0,x]);

u := [(x, y, z) → −z, 0, (x, y, z) → x]
> curl_u:=CURL(u);

curl u := [0, −2, 0]
> r2s(curl_u(x,y,z));

[2, −1
2

π,
1
2

π]

So the curl points in the directionθ = −π
2 rad= −90◦ andφ = π

2 rad= 90◦. We now plot~u, taking the
orientation to be the direction of the curl:
> fieldplot3d(u(x,y,z), x=-2..2, y=-2..2, z=-2..2,
orientation=[-90,90]);

Notice that the vector field rotates counterclockwise around the direction of the curl.

7.3.2 Applications

EXAMPLE 7.6. In physics, the differential form of Ampere’s Law for magnetostatics is~∇ × ~B = 4π ~J
where~B is the magnetic field and~J is the electric current density. (A current has the units of charge per unit
time, while a current density has the units of charge per unit time per unit area. Thus if you integrate a current
density over a surface, you get the total current passing through that surface.) Compute the current density
for the magnetic field~B = (x3z, y3z, 0).

SOLUTION: We enter the magnetic field and compute its curl:
> B:=MF([x,y,z], [xˆ3*z, yˆ3*z, 0]);

B := [(x, y, z) → x3 z, (x, y, z) → y3 z, 0]



146 CHAPTER 7. VECTOR DIFFERENTIAL OPERATORS

> curlB:=CURL(B);

curlB := [(x, y, z) → −y3, (x, y, z) → x3, 0]
Dividing by 4π gives the current density:
> J:=evall(1/(4*Pi)*curlB(x,y,z));

J := [−1
4

y3

π
,

1
4

x3

π
, 0]

Notice that just because a vector field lies in thexy-plane does not mean that its curl must be perpendicular
to thexy-plane.

7.4 Higher Order Differential Operators and Identities

In this section, we will investigate the second and higher order differential operators which may be construc-
ted from the gradient, divergence and curl, and the identities satisfied by some of these.

7.4.1 Laplacian of a Scalar

The divergence of the gradient of a scalarf is also called the Laplacian5 of f and is simply the sum of the
second partial derivatives off with respect to each variable:

~∇ · ~∇f = ~∇2f = Lap(f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

A function satisfying~∇2f = 0 is called harmonic.
In Maple, you may compute the Laplacian by using thelinalg commandlaplacian for expressions

or by using thevec calc commandLAP for arrow-defined functions.

EXAMPLE 7.7. Compute the Laplacian of each of the following functions.

a) f = ax2 + by2 + cz2 + 2pyz + 2qxz + 2rxy wherea, b, c, p, q andr are constants.

b) g = ex cos(y)

SOLUTION: For each vector field, we enter the function usingMFand compute the Laplacian usingLAP:
a) Forf = ax2 + by2 + cz2 + 2pyz + 2qxz + 2rxy we compute

> f:=MF([x,y,z], a*xˆ2 + b*yˆ2 + c*zˆ2 + 2*p*y*z + 2*q*x*z + 2*r*x*y);

f := (x, y, z) → a x2 + b y2 + c z2 + 2 p y z + 2 q x z + 2 r x y
> Lf:=LAP(f);

Lf := (x, y, z) → 2 a + 2 b + 2 c

b) Forg = 5x3 sin(y) we compute
> g:=MF([x,y], exp(x)*cos(y));

g := (x, y) → ex cos(y)

5Stewart§17.5.
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> Lg:=LAP(g);

Lg := 0
Sog is harmonic.

7.4.2 Laplacian of a Vector

The divergence of the gradient of a vector~F = (F1, F2, F3) is called the Laplacian6 of ~F and is simply the
Laplacian of each component of~F :

~∇ · ~∇ ~F = ~∇2 ~F = Lap(~F ) =
∂2 ~F

∂x2
+

∂2 ~F

∂y2
+

∂2 ~F

∂z2
=

(
~∇2F1, ~∇2F2, ~∇2F3

)
In Maple, the vec calc commandLAP is designed to compute the Laplacian of any array or list of

arrow-defined functions. For arrays or lists of expressions, you mustmap the linalg commandlapla-
cian onto the array or list.

EXAMPLE 7.8. Compute the Laplacian of the electric field of a point charge:

~E =
~r

r3
=

(
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)

SOLUTION: We enter the electric field usingMF, compute the Laplacian usingLAP:
> E:=MF([x,y,z], [ x/(xˆ2+yˆ2+zˆ2)ˆ(3/2), y/(xˆ2+yˆ2+zˆ2)ˆ(3/2),
z/(xˆ2+yˆ2+zˆ2)ˆ(3/2) ]):
> LE:=LAP(E);

LE := [0, 0, 0]
So ~E is a harmonic vector field.

7.4.3 Hessian of a Scalar

The gradient of the gradient of a scalarf is also called the Hessian off and is simply the matrix of all second
partial derivatives off :

~∇~∇f = Hess(f) =




∂2f

∂x∂x
· · · ∂2f

∂x∂z
...

...
...

∂2f

∂z∂x
· · · ∂2f

∂z∂z




In subsection 4.1.2, we used the leading principal minor determinants of the Hessian to classify the critical
points of a function as local maxima or local minima.

In Maple, you may compute the Hessian by using thelinalg commandhessian for expressions or
by using thevec calc commandHESSfor arrow-defined functions. To display the result as a matrix, use
the linalg commandmatrix which only works for expressions.

6Stewart§17.5.
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EXAMPLE 7.9. Compute the Hessian of the functionf = ax2 + by2 + cz2 + 2pyz + 2qxz + 2rxy.
SOLUTION: We enter the function usingMF, compute the Hessian usingHESSand display it using

matrix :
> f:=MF([x,y,z], a*xˆ2 + b*yˆ2 + c*zˆ2 + 2*p*y*z + 2*q*x*z + 2*r*x*y);

f := (x, y, z) → a x2 + b y2 + c z2 + 2 p y z + 2 q x z + 2 r x y

> Hf:=HESS(f): matrix(Hf(x,y,z)); 


2 a 2 r 2 q

2 r 2 b 2 p

2 q 2 p 2 c




7.4.4 Higher Order Gradients of Scalars

The gradient of a scalar field,f , is the vector,~∇f , of first partial derivatives off , namely
∂f

∂xi
.

The second order gradient off (i.e. the Hessian) is the matrix,~∇~∇f , of second partial derivatives off ,

namely
∂2f

∂xi∂xj
.

Similarly, the third order gradient off is the three-dimensional array,~∇~∇~∇f , of third partial derivatives

of f , namely
∂3f

∂xi∂xj∂xk
.

And in general thek-th order gradient off is thek-dimensional array,~∇ · · · ~∇f , of k-th partial derivatives

of f , namely
∂kf

∂xi1 · · · ∂xik

.

These higher dimensional arrays are called tensors and are beyond the scope of this book. However,
the higher order partial derivatives have been used in subsection 3.2.3 to construct the Higher Order Taylor
Polynomial Approximations.

7.4.5 Curl of a Gradient

The curl of the gradient of a scalarf satisfies the first of two extremely important identities7. We first consider
some examples.

EXAMPLE 7.10. Compute the curl of the gradient of each of the following functions:

a) f = ax2 + by2 + cz2 + 2pyz + 2qxz + 2rxy

b) g = cos (ey) − sin
(x

z

)
SOLUTION: We enter each function usingMFand compute the curl of the gradient usingGRADandCURL:
a) Forf = ax2 + by2 + cz2 + 2pyz + 2qxz + 2rxy we compute

> f:=MF([x,y,z], a*xˆ2 + b*yˆ2 + c*zˆ2 + 2*p*y*z + 2*q*x*z + 2*r*x*y):

7Stewart§17.5.
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> grad_f:=GRAD(f);

grad f := [(x, y, z) → 2 a x + 2 q z + 2 r y, (x, y, z) → 2 b y + 2 p z + 2 r x,

(x, y, z) → 2 c z + 2 p y + 2 q x]

> curl_grad_f:=CURL(grad_f);

curl grad f := [0, 0, 0]

b) Forg = cos (ey) − sin
(x

z

)
we compute

> g:=MF([x,y,z], cos(exp(y)) - sin(x/z)):

> grad_g:=GRAD(g);

grad g :=


(x, y, z) → −

cos(
x

z
)

z
, (x, y, z) → −sin(ey) ey, (x, y, z) →

cos(
x

z
)x

z2




> curl_grad_g:=CURL(grad_g);

curl grad g := [0, 0, 0]

Try several other functions. You’ll always get~0 = (0, 0, 0). From these we conjecture that for any
functionf(x, y, z), we have the identity

curl(grad f) = ~0 or ~∇× ~∇f = ~0

You should prove this by hand but it can also be proved usingMaple: First we clearf and compute its
gradient.
> f:=’f’:

> grad_f:= grad(f(x,y,z), [x,y,z]);

grad f :=
[

∂

∂x
f(x, y, z),

∂

∂y
f(x, y, z),

∂

∂z
f(x, y, z)

]
Finally, we compute the curl:
> curl_grad_f:=curl(grad_f, [x,y,z]);

curl grad f := [0, 0, 0]

You always get~0 = (0, 0, 0).

7.4.6 Divergence of a Curl

The divergence of the curl of a vector~F satisfies the second extremely important identity8. We first consider
some examples.

8Stewart§17.5.
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EXAMPLE 7.11. Compute the divergence of the curl of the vector field~F = (sin(xy), cos(yz), tan(zx)).
SOLUTION: We enter the vector field usingMFand compute the divergence of the curl usingCURLand

DIV :
> F:=MF([x,y,z], [ sin(xˆy), cos(yˆz), tan(zˆx) ]):
> curl_F:=CURL(F);

curl F := [(x, y, z) → sin(yz) yz ln(y), (x, y, z) → −(1 + tan(zx)2) zx ln(z),
(x, y, z) → −cos(xy)xy ln(x)]

> div_curl_F:=DIV(curl_F);

div curl F := 0

Try several other vector fields. You’ll always get0. From these we conjecture that for any vector field
~F (x, y, z), we have the identity

div(curl ~F ) = 0 or ~∇ · ~∇× ~F = 0

You should prove this by hand but it can also be proved usingMaple: We start with a general vector field
~F = (F1, F2, F3) and compute its curl.
> curl_F:= curl([F1(x,y,z), F2(x,y,z), F3(x,y,z)], [x,y,z]);

curl F :=
[
(

∂

∂y
F3(x, y, z)) − (

∂

∂z
F2(x, y, z)), (

∂

∂z
F1(x, y, z)) − (

∂

∂x
F3(x, y, z)),

(
∂

∂x
F2(x, y, z)) − (

∂

∂y
F1(x, y, z))

]
Finally, we compute the divergence:
> div_curl_F:=diverge(curl_F, [x,y,z]);

div curl F := 0
You always get0.

7.4.7 Differential Identities

So far in this chapter we have derived two indentities:

1. curl(grad f) = ~0 or ~∇× ~∇f = ~0

2. div(curl ~F ) = 0 or ~∇ · ~∇× ~F = 0

There is a third identity relating second derivatives:

3. curl(curl ~F ) = grad(div ~F ) − Lap(~F ) or ~∇× ~∇× ~F = ~∇(~∇ · ~F ) − ~∇2 ~F

There are many other identities satisfied by the gradient, divergence and curl. The most important of these
are the product rules listed here:9

9Stewart§17.5.
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4. grad(fg) = f grad g + g grad f or ~∇(fg) = f ~∇g + g~∇f

5. grad(~F · ~G) = (~F · grad)~G + (~G · grad)~F or ~∇(~F · ~G) = (~F · ~∇)~G + (~G · ~∇)~F

where~F ·grad or ~F · ~∇ is the directional derivative operator which acts on a vector~G by differentiating
each component of~G.

6. div(f ~G) = f div ~G + grad f · ~G or ~∇ · (f ~G) = f ~∇ · ~G + ~∇f · ~G

7. div(~F × ~G) = (curl ~F ) · ~G + ~F · (curl ~G) or ~∇ · (~F × ~G) = (~∇× ~F ) · ~G + ~F · (~∇× ~G)

8. curl(f ~G) = grad f × ~G + f curl ~G or ~∇× (f ~G) = ~∇f × ~G + f ~∇× ~G

9. curl(~F × ~G) = (curl ~F ) × ~G − ~F × (curl ~G) or ~∇× (~F × ~G) = (~∇× ~F ) · ~G − ~F · (~∇× ~G)

These identities will be proved in the exercises. They are all proved by computing the left and right sides and
subtracting. You will need to use thegrad , diverge andcurl commands from thelinalg package.

7.5 Finding Potentials

In the last section, we proved two important identities:

• ~∇× ~∇f = ~0

• ~∇ · ~∇× ~A = 0

These can be rephrased as the two statements:

• If ~F = ~∇f , then ~∇× ~F = 0 .

• If ~G = ~∇× ~A , then ~∇ · ~G = 0 .

In general, the converses are not always true. They depend on the region on which the vector fields are
defined. In particular,

• If ~F is defined in a “nice” region R and ~∇ × ~F = 0 , then ~F = ~∇f for some
function f defined in R . f is called a scalar potential for~F .

• If ~G is defined in a “nice” region R and ~∇ · ~G = 0 , then ~G = ~∇ × ~A for some
vector field ~A defined in R . ~A is called a vector potential for~G.

The meaning of “nice” is different in the two cases. Suffice it to say that if the regionR is contractable (it has
no holes of any type) then the region is “nice” for both cases.

It remains to explain how the scalar and vector potentials may be found.
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7.5.1 Scalar Potentials
10Suppose you are given a vector fieldF as a list of arrow-defined functions as produced by theMFcommand.
Then thevec calc commandPOT(F, ’f’) will return true if F has a scalar potential and will return
false if there is no potential. In addition, if there is a scalar potential, this command will store the potential
in the variablef .
NOTE: There must be single forward quotes around the variablef .

Similarly, if F is a vector of expressions in the variables[x, y, z] , then thelinalg command
potential(F, [x,y,z], ’f’) will give the same results.

EXAMPLE 7.12. Determine if each of the following vector fields has a scalar potential and if it does, find
it.

a) ~F = (yz, xz, xy)

b) ~u = (yz,−xz, xy)

SOLUTION: For each vector field, we enter the function usingMF, test for existence of a scalar potential
using bothCURLandPOTand write out the potential (if it exists) usingeval on the potential found byPOT.

a) For ~F = (yz, xz, xy), we compute:
> F:=MF([x,y,z], [y*z,x*z,x*y]):
> CURL(F); POT(F, ’f’);

[0, 0, 0]

true
Since the curl is zero and~F is defined in all of space, there is a scalar potential. Its value may be seen in two
ways:
> eval(f); f(x,y,z);

(x, y, z) → x y z

x y z

You can check it by computing the gradient:
> GRAD(f);

[(x, y, z) → y z, (x, y, z) → x z, (x, y, z) → x y]
b) For~u = (yz,−xz, xy), we compute:

> u:=MF([x,y,z], [y*z,-x*z,x*y]):
> CURL(u); POT(u, ’f’);

[(x, y, z) → 2 x, 0, (x, y, z) → −2 z]

false
Since the curl is not zero, there cannot be a scalar potential.
CAUTION: When there is no scalar potential, the functionf gets a wierd value. Don’t use it as a scalar
potential!
> eval(f);

(x, y, z) → x y

10Stewart§17.3.
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7.5.2 Vector Potentials

Suppose you are given a vector fieldGas a list of arrow-defined functions as produced by theMFcommand.
Then thevec calc commandVECPOT(G, ’A’) will return true if Ghas a vector potential and will
returnfalse if there is no potential. In addition, if there is a vector potential, this command will store the
potential in the variableA.
NOTE: There must be single forward quotes around the variableA.

Similarly, if G is a vector of expressions in the variables[x, y, z] , then thelinalg command
vecpotent(G, [x,y,z], ’A’) will give the same results.

EXAMPLE 7.13. Determine if each of the following vector fields has a vector potential and if it does, find
it.

a) ~G = (yz, xz, xy)

b) ~v = (xz, xy, yz)

SOLUTION: For each vector field, we enter the function usingMF, test for existence of a vector potential
using bothDIV and VECPOTand write out the potential (if it exists) usingeval on the side result of
VECPOT.

a) For ~G = (yz, xz, xy), we compute:
> G:=MF([x,y,z], [y*z,x*z,x*y]):
> DIV(G); VEC_POT(G, ’A’);

0

true
Since the divergence is zero and~G is defined in all of space, there is a vector potential.Mapleagrees. Its
value may be seen in two ways:
> eval(A);

[(x, y, z) → 1
2

x z2 − 1
2

x y2, (x, y, z) → −1
2

y z2, 0]

> A(x,y,z);

[
1
2

x z2 − 1
2

x y2, −1
2

y z2, 0]

You can check it by computing the curl:
> CURL(A);

[(x, y, z) → y z, (x, y, z) → x z, (x, y, z) → x y]
which is back to~G.

b) For~v = (xz, xy, yz), we compute:
> v:=MF([x,y,z], [x*z,x*y,y*z]):
> DIV(v); VEC_POT(v, ’A’);

(x, y, z) → z + x + y

false
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Since the divergence is not zero, there cannot be a vector potential.
CAUTION: When there is no vector potential, the variableA gets a wierd value. Don’t use it as a vector
potential!
> eval(A);

(x, y, z) → y z

7.6 Exercises

1. Find the divergence and curl of the vector field~F (x, y, z) = (exz,−2eyz, 3xey).

2. Plot each of the following 2-dimensional vector fields for−1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 along
with a circle centered at(.75, .75) of radius.25. From the plot, is the divergence positive, negative or
zero? (It is positive, if more or bigger vectors come out of the circle than go in; negative, if more go in
than out.) Then compute the divergence.

(a) ~F = (x3, 0) (b) ~G = (0, x3)

3. Plot each of the following 3-dimensional vector fields for−2 ≤ x ≤ 2, −2 ≤ y ≤ 2 and
−2 ≤ z ≤ 2 along with a sphere centered at(1, 1, 1) of radius1. From the plot, is the divergence
positive, negative or zero? (It is positive, if more or bigger vectors come out of the sphere than go in;
negative, if more go in than out.) Then compute the divergence.

(a)~r = (x, y, z) (b) ~u = (0, 0, z) (c)~v = (0, z,−y)

4. Each of the following vector fields was plotted as a 2-dimension al vector field in exercise 2. Now
regard each as a 3-dimensional vector field by appending 0 as thez-component.

(a) ~F = (x3, 0, 0) (b) ~G = (0, x3, 0)

By examining the circulation around the circle , is thez component of the curl positive (counterclock-
wise), negative (clockwise) or zero? Now compute the curl. Notice that each curl ends up pointing in
thez-direction. Is thez component positive, negative or zero?

5. For each of the vector fields in exercise 3, rotate the plot to see if there is an axis about which the vector
field circulates. (HINT: Orient the plot so one axis points straight at you.) Then compute the curl to
see that it points along the axis of rotation.

6. Check that the function f(x, y, t) = e−( x+y√
2
−ct)2 + e−( x−y√

2
+ct)2 satisfies the 2-dimensional wave

equation
∂2f

∂x2
+

∂2f

∂y2
− 1

c2

∂2f

∂t2
= 0. You should definef as an expression, take thex andy

derivatives using thelinalg commandlaplacian and take thet derivatives usingdiff . Make a
movie of the wave (forc = 2) by using the commands
> f2:=subs(c=2,f);
> animate3d(f2, x=-20..20, y=-20..20, t=-12..12, view=0..2,
frames=25);

Then click in the plot and click on thePLAY ARROW on the button bar. Repeat for the functions:
f = e−(x−ct)2 − e−(y+ct)2 and f = sin(x − ct) − cos(y + ct).
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7. Prove the identities #3 – #9 of subsection 7.4.7. You will need to use thegrad , diverge andcurl
commands from thelinalg package. See the proofs at the end of subsections 7.4.5 and 7.4.6.

8. Show that ~F (x, y, z) = (4x3 +y2−3z, 2xy−2y−6yz,−3x−3y2−8z) is a conservative vector
field (i.e. ~∇× ~F = 0 ) and find a scalar potential functionf such that ~F = ~∇f .

9. Show that ~F (x, y, z) = (−12x2y3z3+2x3,−8xz, 6xy3z4−6x2z−3x4y2) is a solenoidal vector
field (i.e. ~∇ · ~F = 0 ) and find a vector potential~A such that ~F = ~∇× ~A.

10. The electric field of a point charge is

~E =
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
. Since~E is not defined at the

origin, there may or may not be a scalar potential defined everywhere but the origin even if~∇× ~E = 0.
Compute the curl of~E to see it is zero. Then find the scalar potential and determine where it is
undefined. Check the potential by computing its gradient.

11. The magnetic field of an electric current along thez-axis is ~B =
( −y

x2 + y2
,

x

x2 + y2
, 0

)
. Since

~B is not defined on thez-axis, there may or may not be a scalar potential defined everywhere but the
z-axis even if~∇× ~B = 0. Compute the curl of~B to see it is zero. Then find the scalar potential and
determine where it is undefined. Check the potential by computing its gradient.

12. The magnetic field of an electric current along thez-axis is ~B =
( −y

x2 + y2
,

x

x2 + y2
, 0

)
. Since

~B is not defined on thez-axis, there may or may not be a vector potential defined everywhere but the
z-axis even if~∇ · ~B = 0. Compute the divergence of~B to see it is zero. Then find a vector potential
and determine where it is undefined. Check the potential by computing its curl.

13. The electric field of a point charge is

~E =
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
. Since ~E is not defined at the

origin, there may or may not be a vector potential defined everywhere but the origin even if~∇ · ~E = 0.
Compute the divergence of~E to see it is zero. Then find a vector potential and determine where it is
undefined. Check the potential by computing its curl.

In this case theVECPOTcommand makes an error and cannot find the potential. “Oh well, nobody’s
perfect.” So you will need to find this vector potential “by hand” by solving the equations:

∂A3

∂y
− ∂A2

∂z
= E1

∂A1

∂z
− ∂A3

∂x
= E2

∂A2

∂x
− ∂A1

∂y
= E3

Remember, you are only looking for some solution, not all solutions. So look for a solution with
A3 = 0. Solve the first two equations forA2 andA1 and then check that the third equation is satisfied.



Chapter 8

Fundamental Theorems of Vector
Calculus

8.1 Generalizing the Fundamental Theorem of Calculus

1In single variable calculus, the Fundamental Theorem of Calculus shows that the integral and the derivative
are essentially inverse operators except for an additive constant. The integral is defined as a limit of Riemann
sums, but the Fundamental Theorem of Calculus shows that the integral may also be computed in terms of
anti-derivatives. Specifically, the Fundamental Theorem of Calculus may be stated in three forms:

The Fundamental Theorem of Calculus.

d

dx

∫ x

a

f(t) dt = f(x) (1)

∫ x

a

dg(t)
dt

dt = g(x) − g(a) (2)

∫ b

a

f(t) dt = F (b) − F (a) where
dF

dt
= f(t) (3)

The first two forms show that derivatives and integrals are inverse operators except for an additive constant
of integration:−g(a) . The third form is used to compute integrals in terms of antiderivatives. It is the second
form which generalizes to all the theorems of several variable calculus to be discussed in this chapter.

1Stewart Ch. 17.
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8.2 Fundamental Theorem of Calculus for Curves

The Fundamental Theorem of Calculus for Curves.2If ~r(t) is a curve inR
n traversed from a point

A = ~r(a) to a pointB = ~r(b) and if f is a differentiable function defined in a neighborhood of the curve,
then ∫ B

A
~r(t)

~∇f · ~ds = f(B) − f(A)

8.2.1 Verification

EXAMPLE 8.1. Verify the Fundamental Theorem of Calculus for Curves by computing both sides for the
functionf(x, y) = x cos(y) − y2 sin(x2) and the curve~r(t) = (t cos(t), t sin(t)) for 0 ≤ t ≤ 4π.
NOTE: This is not a proof of the theorem because you are not verifying it for a general function and curve.

SOLUTION: We enter the function and the curve usingMF:
> f:=MF([x,y],x*cos(y) - yˆ2*sin(xˆ2)):
> r:=MF(t,[t*cos(t), t*sin(t)]):

Then we compute the gradient of the function usingGRADand evaluate on the curve:
> delf:=GRAD(f);

delf := [(x, y) → cos(y) − 2 y2 cos(x2)x, (x, y) → −x sin(y) − 2 y sin(x2)]
> delfr:=delf(op(r(t)));

delfr := [cos(t sin(t)) − 2 t3 sin(t)2 cos(t2 cos(t)2) cos(t),
−t cos(t) sin(t sin(t)) − 2 t sin(t) sin(t2 cos(t)2)]

Next, we compute the velocity usingD:
> v:=D(r);

v := [t → cos(t) − t sin(t), t → sin(t) + t cos(t)]
Finally, wedot the gradient into the velocity and integrate usingInt andvalue to obtain the left hand
side: (This takesMaplea relatively long time.)
> Int(delfr &. v(t),t=0..4*Pi); LHS=value(%);∫ 4 π

0

cos(t sin(t)) cos(t) − cos(t sin(t)) t sin(t) − 2 t3 %1cos(t)2 + 2 t3 %1cos(t)4

+ 2 t4 %1cos(t) sin(t) − 2 t4 %1 cos(t)3 sin(t) − t cos(t) sin(t sin(t)) sin(t)
− t2 cos(t)2 sin(t sin(t)) − 2 t sin(t2 cos(t)2) + 2 t sin(t2 cos(t)2) cos(t)2

− 2 t2 sin(t) sin(t2 cos(t)2) cos(t)dt

%1 := cos(t2 cos(t)2)

LHS = 4 π

On the other hand, we compute the right hand side by evaluating the function at the initial and final points:
> A:=r(0); B:=r(4*Pi);

2Stewart§17.3.
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A := [0, 0]

B := [4 π, 0]
So the right hand side is
> RHS=f(op(B))-f(op(A));

RHS = 4 π

Notice thatMaple took a long time to compute the left side of the F.T.C.C. and it would take you an even
longer time, but it was trivial to compute the right side of the F.T.C.C.

8.2.2 Applications

Path Independence for Line Integrals 3An integral
∫ B

A
~r(t)

~F · ~ds is path independent in a regionR if the

value of the integral is the same for any curve~r(t) which starts atA, ends atB and stays in the regionR.
If the vector field~F has a scalar potential in the regionR, i.e. ~F = ~∇f for some functionf defined in

the regionR, then the Fundamental Theorem of Calculus for Curves shows that
∫

~F · ~ds =
∫

~∇f · ~ds may
be computed asf(B)− f(A) and so is path independent inR. Conversely, if

∫
~F · ~ds is path independent in

R, then the formula

f(P ) =
∫ P

A

~F · ~ds

defines a scalar potentialf(P ) in the regionR. HereA is a fixed point in the regionR andP is a variable
point inR.

If ~F does not have a scalar potential, then
∫

~F · ~ds is not path independent and must be computed
explicitly.

EXAMPLE 8.2. Compute each of the following integrals. If the integral is path independent, you may find
a potential and use the Fundamental Theorem of Calculus for Curves.

a)
∫ (1,0,2

(1,0,0)

π)~F · ~ds for the vector field~F = (2xz2+yz, xz, 2x2z+xy) along the helix~r(t) = (cos t, sin t, t).

b)
∫ (1,0,2π)

(1,0,0)

~G · ~ds for the vector field~G = (yz,−xz, z2) along the helix~r(t) = (cos t, sin t, t).

SOLUTION: a) We first enter the curve and the vector field:
> r:=MF(t,[cos(t), sin(t), t]):
> F:=MF([x,y,z],[2*x*zˆ2+y*z,x*z,2*xˆ2*z+x*y]):
To check if~F has a scalar potential, we compute the curl and use thePOTcommand (Notice the single quotes
around thef .):
> CURL(F);

[0, 0, 0]

3Stewart§17.3.
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> POT(F,’f’);

true
Both methods show that~F has a potential, but thePOTcommand stores the potential in the variablef :
> eval(f);

(x, y, z) → x2 z2 + x y z

So we evaluate the integral by using the F.T.C.C. The initial and final points are
> A:=[1,0,0]: B:=[1,0,2*Pi]:

So the integral is
> f(op(B))-f(op(A));

4 π2

b) The curve is the same as in part (a). The vector field is
> G:=MF([x,y,z],[y*z, -x*z, zˆ2]):

It does not have a potential since
> POT(G,’g’);

false
So the F.T.C.C. does not apply and the integral must be done by hand. First notice that the curve~r(t) =
(cos t, sin t, t) hasz = t while the endpoints are(1, 0, 0) and(1, 0, 2π). So the parameter range is0 ≤ t ≤
2π. Next, the velocity is
> v:=D(r);

v := [−sin, cos, 1]
and the vector field on the curve is
> Gr:=G(op(r(t)));

Gr := [t sin(t), −cos(t) t, t2]
So the integral is
> Int(Gr &. v(t),t=0..2*Pi); value(%); ∫ 2 π

0

t2 − t dt

8
3

π3 − 2 π2

Work, Conservative Forces and Potential Energy 4If a particle moves along a curve~r(t) under the action
of a force~F from a pointA = ~r(a) to a pointB = ~r(b), then the work done by the force on the particle is
defined to be

Work =
∫ B

A
~r(t)

~F · ~ds .

4Stewart§17.3.
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The force~F is called conservative if the work integralW is path independent or equivalently if the force
has a scalar potential, i.e.~F = ~∇V . In that case the scalar potentialV is called the potential energy and, by
the Fundamental Theorem of Calculus for Curves, the work is the change in the potential energy:

Work =
∫ B

A
~r(t)

~∇V · ~ds = V (B) − V (A) .

(See Table B.3 in Appendix B.) Note, the potential energy is only defined up to an additive constant which is
sometimes fixed by requiring the potential energy to be zero at infinity.

EXAMPLE 8.3. The gravitational force of a massM on a massm is ~F = −GMm

|~r|3 ~r where~r is the

vector from M to m. If M is fixed at the origin andm is at (x, y, z), then ~r = (x, y, z) and

~F = − GMm√
x2 + y2 + z2

3 (x, y, z). Find the work done in moving the massm from A = (a, 0, 0) to

B = (b, 0, 0) along thex-axis. Then find the work done in moving the massm from |~r| = ∞ to |~r| = R
along an arbitrary path.

SOLUTION: We enter the force and check to see if it has a scalar potential:

> F:=MF([x,y,z], [-G*M*m*x/(xˆ2+yˆ2+zˆ2)ˆ(3/2),
-G*M*m*y/(xˆ2+yˆ2+zˆ2)ˆ(3/2), -G*M*m*z/(xˆ2+yˆ2+zˆ2)ˆ(3/2)]):

> POT(F,’V’);

true

Yes it does. So the work is path independent, the force is conservative and the potential energy is

> eval(V);

(x, y, z) → GM m√
x2 + y2 + z2

(Notice that the potential energy is normalized to zero at infinity.) To compute the work, we enter the initial
and final points:

> A:=[a,0,0]: B:=[b,0,0]:

and find the change in potential energy:

> W:=V(op(B))-V(op(A));

W :=
GM m√

b2
− GM m√

a2

Since the potential energy only depends on the distance from the origin|~r| and the work is path independent,
the work in bringing a mass from|~r| = ∞ to |~r| = R along an arbitrary path is

> Winf:=limit(subs(b=R,W),a=infinity);

Winf :=
GM m√

R2
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8.3 Green’s Theorem

Green’s Theorem. 5If R is a “nice” region inR
2 and∂R is its boundary curve traversed so thatR stays

on the left, and ifP andQ are differentiable functions defined in a neighborhood ofR, then∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
∂R

P dx + Q dy

We will not clarify the definition of a “nice” region. There are two variants of Green’s Theorem. First, if
we define the vector field~F = (P, Q), then Green’s Theorem may be rewritten as:

2-Dimensional Stokes’ Theorem.6If R is a “nice” region inR
2 and∂R is its boundary curve traversed

so thatR stays on the left, and if~F is a differentiable vector field defined in a neighborhood ofR, then∫∫
R

(~∇× ~F ) · k̂ dx dy =
∮

∂R

~F · ~ds

where~∇× ~F is computed by extending~F to the 3-dimensional vector field~F = (F1, F2, 0).

Second, if we define the vector field~G = (Q,−P ), then Green’s Theorem may be rewritten as:

2-Dimensional Gauss’ Theorem.7If R is a “nice” region inR
2 and∂R is its boundary curve traversed

so thatR stays on the left, and if~G is a differentiable vector field defined in a neighborhood ofR, then∫∫
R

~∇ · ~G dxdy =
∮

∂R

~G · ~dn

where the normal vector differential is~dn = (dy,−dx) =
(

dy

dt
,−dx

dt

)
dt.

8.3.1 Verification

EXAMPLE 8.4. Verify Green’s Theorem and its variants for the indicated functions or vector field on the
region between the parabolay = x2 and the liney = 4. Notice all three cases produce the same integrals.

a) Green’s Theorem withP = −y3 andQ = x3.

b) The 2-Dimensional Stokes’ Theorem with~F = (−y3, x3).

c) The 2-Dimensional Gauss’ Theorem with~G = (x3, y3).

NOTE: This is not a proof of the theorem because you are not verifying it for general functions and regions.
SOLUTION:
a) For the left side of Green’s Theorem, we first enterP andQ:

> P:=-yˆ3: Q:=xˆ3:

5Stewart§17.4.
6Stewart§17.8.
7Stewart§17.9.
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We then compute the integrand
∂Q

∂x
− ∂P

∂y
and integrate:

> integrand:=diff(Q,x)-diff(P,y);

integrand := 3 x2 + 3 y2

> Muint(integrand,y=xˆ2..4,x=-2..2); LHS=value(%);∫ 2

−2

∫ 4

x2
3 x2 + 3 y2 dy dx

LHS =
8576
35

The right side is the sum of two line integrals, the first along the curve(x1, y1) = (t, t2) for −2 ≤ t ≤ 2
and the second along the curve(x2, y2) = (2 − t, 4) for 0 ≤ t ≤ 4. Notice the total curve is traversed
counterclockwise. For the first curve, the coordinates, their derivatives, the functionsP andQ and the line
integral are:
> x1:=t: y1:=tˆ2:
> dx1:=diff(x1,t); dy1:=diff(y1,t);

dx1 := 1

dy1 := 2 t

> P1:=subs(x=x1,y=y1,P); Q1:=subs(x=x1,y=y1,Q);

P1 := −t6

Q1 := t3

> Int(P1*dx1+Q1*dy1,t=-2..2); I1:=value(%);∫ 2

−2

− t6 + 2 t4 dt

I1 :=
−384
35

For the second curve, the analogous quantities are
> x2:=2-t: y2:=4:
> dx2:=diff(x2,t); dy2:=diff(y2,t);

dx2 := −1

dy2 := 0
> P2:=subs(x=x2,y=y2,P); Q2:=subs(x=x2,y=y2,Q);

P2 := −64

Q2 := (2 − t)3

> Int(P2*dx2+Q2*dy2,t=0..4); I2:=value(%);∫ 4

0

64 dt
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I2 := 256
So the total line integral is:
> RHS=I1+I2;

RHS =
8576
35

b) For the left side of the 2-Dimensional Stokes’ Theorem, we enter the vector field as the 3-dimensional
field ~F = (−y3, x3, 0):
> F:=MF([x,y,z],[-yˆ3,xˆ3,0]):
compute thêk-component of the curl and integrate:
> integrand:=CURL(F)[3](x,y,z);

integrand := 3 x2 + 3 y2

> Muint(integrand,y=xˆ2..4,x=-2..2); LHS=value(%);∫ 2

−2

∫ 4

x2
3 x2 + 3 y2 dy dx

LHS =
8576
35

For the right side, there are again two parts. For the first curve, the position, velocity, vector field on the curve
and line integral are
> r1:=MF(t,[t,tˆ2,0]); v1:=D(r1); Fr1:=F(op(r1(t)));

r1 := [t → t, t → t2, 0]

v1 := [1, t → 2 t, 0]

Fr1 := [−t6, t3, 0]
> Int(Fr1 &. v1(t),t=-2..2); I1:=value(%);∫ 2

−2

− t6 + 2 t4 dt

I1 :=
−384
35

For the second curve, the analogous quantities are
> r2:=MF(t,[2-t,4,0]); v2:=D(r2); Fr2:=F(op(r2(t)));

r2 := [t → 2 − t, 4, 0]

v2 := [−1, 0, 0]

Fr2 := [−64, (2 − t)3, 0]
> Int(Fr2 &. v2(t),t=0..4); I2:=value(%); ∫ 4

0

64 dt

I2 := 256
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So the total line integral is again:
> RHS=I1+I2;

RHS =
8576
35

c) For the left side of the 2-Dimensional Gauss’ Theorem, we enter the vector field:
> G:=MF([x,y],[xˆ3,yˆ3]):
compute the divergence and integrate:
> integrand:=DIV(G)(x,y);

integrand := 3 x2 + 3 y2

> Muint(integrand,y=xˆ2..4,x=-2..2); LHS=value(%);∫ 2

−2

∫ 4

x2
3 x2 + 3 y2 dy dx

LHS =
8576
35

For the right side, there are again two parts. For the first curve, the position and velocity were entered in part
(b). The normal vector, vector field on the curve and line integral are
> n1:=[v1[2],-v1[1]]; Gr1:=G(op(r1(t)));

n1 := [t → 2 t, −1]

Gr1 := [t3, t6]
> Int(Gr1 &. n1(t),t=-2..2); I1:=value(%);∫ 2

−2

− t6 + 2 t4 dt

I1 :=
−384
35

For the second curve, the analogous quantities are
> n2:=[v2[2],-v2[1]]; Gr2:=G(op(r2(t)));

n2 := [0, 1]

Gr2 := [(2 − t)3, 64]
> Int(Gr2 &. n2(t),t=0..4); I2:=value(%); ∫ 4

0

64 dt

I2 := 256
So the total line integral is again:
> RHS=I1+I2;

RHS =
8576
35

Notice we have gotten the same answer six different ways.
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8.3.2 Applications

Area as a Line Integral 8Several special cases of Green’s Theorem allow one to compute the area enclosed

in a closed curve as a line integral around the curve. In particular, ifP = ay andQ = bx then
∂Q

∂x
− ∂P

∂y
=

b − a. Hence, ∮
∂R

ay dx + bx dy =
∫∫
R

(b − a) dx dy = (b − a)Area(R)

Thus, making three different choices fora andb, we have

Area(R) = −
∮

∂R

y dx =
∮

∂R

xdy =
1
2

∮
∂R

−y dx + xdy

NOTE: This formula for area explains the results in example 6.7.

EXAMPLE 8.5. Compute the area of each of the following regions.

a) The region between the parabolay = x2 and the liney = 4.

b) The region inside one loop of the polar daisyr = sin(4θ).

SOLUTION:

a) We will use the formulaArea(R) =
∮

∂R

−y dx. So the relevant vector field is

> F:=MF([x,y],[-y,0]);

F := [(x, y) → −y, 0]
The boundary of the region between the parabolay = x2 and the liney = 4 must be traversed counterclock-
wise. For the parabola, the position, velocity, vector field on the curve and line integral are
> r1:=MF(t,[t,tˆ2]); v1:=D(r1); Fr1:=F(op(r1(t)));

r1 := [t → t, t → t2]

v1 := [1, t → 2 t]

Fr1 := [−t2, 0]
> Int(Fr1 &. v1(t),t=-2..2); A1:=value(%);∫ 2

−2

− t2 dt

A1 :=
−16
3

For the line, the analogous quantities are
> r2:=MF(t,[2-t,4]); v2:=D(r2); Fr2:=F(op(r2(t)));

r2 := [t → 2 − t, 4]

8Stewart§17.4.
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v2 := [−1, 0]

Fr2 := [−4, 0]
> Int(Fr2 &. v2(t),t=0..4); A2:=value(%); ∫ 4

0

4 dt

A2 := 16
So the total area is:
> Area=A1+A2;

Area =
32
3

c) Before computing the area, we plot the polar daisy,r = sin(4θ):
> polarplot(sin(4*theta), theta=0..2*Pi, scaling=constrained);

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8

We see that one loop has the parameter range0 ≤ θ ≤ π

4
. Since the rectangular coordinates are related to the

polar coordinates byx = r cos θ, y = r sin θ, the rectangular parametrization is
> R:=MF(theta, [sin(4*theta)*cos(theta), sin(4*theta)*sin(theta)]);

R := [θ → sin(4 θ) cos(θ), θ → sin(4 θ) sin(θ)]
and the velocity is
> V:=D(R);

V := [θ → 4 cos(4 θ) cos(θ) − sin(4 θ) sin(θ), θ → 4 cos(4 θ) sin(θ) + sin(4 θ) cos(θ)]

We will use the formulaArea(R) =
∮

∂R

xdy. So the relevant vector field is

> F:=MF([x,y],[0,x]);

F := [0, (x, y) → x]
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and its value on the curve is
> FR:=F(op(R(theta)));

FR := [0, sin(4 θ) cos(θ)]
So the area is
> Int(FR &. V(theta),theta=0..Pi/4); Area=value(%);

∫ 1/4 π

0

768 cos(θ)8 − 624 cos(θ)6 + 192 cos(θ)4 − 16 cos(θ)2 − 320 cos(θ)10 dθ

Area =
1
16

π

Obviously, you would not like to do this integral by hand.

8.4 Stokes’ Theorem (The Curl Theorem)

Stokes’ Theorem. 9If S is a “nice” parametrized surface inR3 and∂S is its boundary curve traversed so
that the normal to the surface and the velocity of the curve are related by the right hand rule, and if~F is a
differentiable vector field defined in a neighborhood ofS, then∫∫

S

(~∇× ~F ) · ~dS =
∮
∂S

~F · ~ds

We will not clarify the definition of a “nice” region.

8.4.1 Verification

EXAMPLE 8.6. Verify Stokes’ Theorem by computing both sides for the vector field~F = (yz,−xz, xyz)
and the surfaceS which is the hyperbolic paraboloidz = x2 − y2 above the square−2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2 with normal pointing toward increasingz. NOTE: This is not a proof of the theorem because
you are not verifying it for general vector fields and surfaces.

SOLUTION: The hyperbolic paraboloidz = x2−y2 is above a square. So we use rectangular coordinates
to parametrize the surface:
> R:=MF([u,v], [u, v, uˆ2 - vˆ2]):

NOTE: We could have usedx andy as the parameters instead ofu andv, but that is sometimes confusing.
The tangent and normal vectors are:

> Ru:=D[1](R); Rv:=D[2](R); N:=Ru(u,v) &x Rv(u,v);

Ru := [1, 0, (u, v) → 2 u]

Rv := [0, 1, (u, v) → −2 v]

N := [−2 u, 2 v, 1]

9Stewart§17.8.
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Since thez-component of~N is positive, it points up as required. Next, we enter the vector field and compute
its curl:
> F:=MF([x,y,z],[y*z, -x*z, x*y*z]):
> curlF:=CURL(F);

curlF := [(x, y, z) → x z + x, (x, y, z) → y − y z, (x, y, z) → −2 z]
Then we evaluate the curl on the surface, dot into the normal and integrate to obtain the left hand side of
Stokes’ Theorem:
> curlFR:=curlF(op(R(u,v)));

curlFR := [u (u2 − v2) + u, v − v (u2 − v2), −2 u2 + 2 v2]
> Muint(curlFR &. N, u=-2..2, v=-3..3); LHS=value(%);∫ 3

−3

∫ 2

−2

− 2 u4 − 4 u2 + 4 v2 + 2 v4 du dv

LHS = 784
The boundary of the hyperbolic paraboloid consists of four curves. We parametrize them so they are

traversed counterclockwise as seen from the positivez-axis and compute the velocities: (We suppress the
output.)
> r1:=MF(u,[u, -3, uˆ2-9]): v1:=D(r1): #for u=-2..2
> r2:=MF(v,[2, v, 4-vˆ2]): v2:=D(r2): #for v=-3..3
> r3:=MF(t,[-t, 3, tˆ2-9]): v3:=D(r3): #for t=-2..2
> r4:=MF(t,[-2, -t, 4-tˆ2]): v4:=D(r4): #for t=-3..3
Then we restrict~F to each curve, dot into the velocity and integrate: (To save space, we display the answers
on one line.)
> I1:=int(F(op(r1(u))) &. v1(u), u=-2..2):
> I2:=int(F(op(r2(v))) &. v2(v), v=-3..3):
> I3:=int(F(op(r3(t))) &. v3(t), t=-2..2):
> I4:=int(F(op(r4(t))) &. v4(t), t=-3..3):
> I1, I2, I3, I4;

1516
5

,
444
5

,
1516

5
,

444
5

The sum of these integrals is the right side of Stokes’Theorem:
> RHS=I1 + I2 + I3 + I4;

RHS = 784

8.4.2 Applications

Surface Integrals as Line Integrals and Line Integrals as Surface Integrals 10If an exercise asks you to
use Stokes’ Theorem to do a surface integral, it really means you are to do a line integral. On the other hand,
if an exercise asks you to use Stokes’ Theorem to do a line integral, it really means you are to do a surface
integral.

10Stewart§17.8.
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EXAMPLE 8.7. Use Stokes’ Theorem to compute the surface integral
∫∫
P

~G · ~dS where

~G = (−xz,−yz, x2 + y2 + z2) andP is the paraboloidz = x2 + y2 for z ≤ 9 with normal pointing in and
up.

SOLUTION: The statement of the problem really means we are to find a vector potential and do a line
integral of the vector potential around the boundary curve. So we first enter the vector field~G and find a
vector potential:
> G:=MF([x,y,z], [-x*z, -y*z, xˆ2+yˆ2+zˆ2]):
> VEC_POT(G, ’A’);

true
> A;

[(x, y, z) → −1
2

y z2 − x2 y − 1
3

y3, (x, y, z) → 1
2

x z2, 0]

Then by Stokes’ Theorem, we have∫∫
P

~G · ~dS =
∫∫
P

(~∇× ~A) · ~dS =
∮

∂P

~A · ~ds

The boundary of the paraboloid is the circlex2 + y2 = 9 in the planez = 9 traversed counterclockwise as
seen from the positivez-axis. So we enter the curve and compute the velocity:
> r:=MF(t,[3*cos(t), 3*sin(t), 9]):
> v:=D(r);

v := [t → −3 sin(t), t → 3 cos(t), 0]
Finally, we evaluate the vector potential on the curve and integrate:
> Ar:=A(op(r(t)));

Ar := [−243
2

sin(t) − 27 cos(t)2 sin(t) − 9 sin(t)3,
243
2

cos(t), 0]

> Int(Ar &. v(t), t=0..2*Pi); value(%);∫ 2 π

0

27 cos(t)2 +
783
2

− 54 cos(t)4 dt

1539
2

π

EXAMPLE 8.8. Use Stokes’ Theorem to compute the line integral
∮
∂T

~F · ~ds of the vector field

~F = (xy2 + zy, 2xyz, yz2 − xy) along the line segments from(2, 0, 0) to (0, 3, 0) to (0, 0, 4) and back to
(2, 0, 0).

SOLUTION: Notice that the three line segments form the boundary of the triangleT with vertices(2, 0, 0),
(0, 3, 0) and(0, 0, 4) and normal pointing up into the first octant. So the statement of the problem really means

we are to compute the surface integral
∫∫
T

(~∇× ~F ) · ~dS.
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We first need to parametrize the plane of the triangle. The vertices are:
> A:=[2,0,0]: B:=[0,3,0]: C:=[0,0,4]:
The tangent vectors are:
> AB:=B-A; AC:=C-A;

AB := [−2, 3, 0]

AC := [−2, 0, 4]
Then the parametrized plane isX = A + s

−→
AB + t

−→
AC and the triangle corresponds to0 ≤ s ≤ 1 and

0 ≤ t ≤ 1 − s. We enter this as
> R:=MF([s,t], evall(A + s*AB + t*AC));

R := [(s, t) → 2 − 2 s − 2 t, (s, t) → 3 s, (s, t) → 4 t]
Notice that the tangent vectors are just

−→
AB and

−→
AC. So the normal vector is:

> N:=AB &x AC;

N := [12, 8, 6]
which points into the first octant as required. Now the vector field and its curl are:
> F:=MF([x,y,z], [x*yˆ2+z*y, 2*x*y*z, y*zˆ2-x*y]):
> curlF:=CURL(F);

curlF := [(x, y, z) → z2 − x − 2 x y, (x, y, z) → 2 y, (x, y, z) → 2 y z − 2 x y − z]
and the restriction of the curl to the plane of the triangle is:
> curlFR:=curlF(op(R(s,t)));

curlFR := [16 t2 − 2 + 2 s + 2 t− 6 (2 − 2 s − 2 t) s, 6 s, 24 s t− 6 (2 − 2 s − 2 t) s − 4 t]
Finally its integral over the triangle is:
> Muint(curlFR &. N, t=0..1-s, s=0..1); value(%);∫ 1

0

∫ 1−s

0

192 t2 − 24 − 144 s + 216 s2 + 360 s t dt ds

13

Surface Independence for Surfaces Integrals A surface integral
∫∫
S

~F · ~dS is surface independent in a

regionR if the value of the integral is the same for any surfaceS which stays in the regionR and has the
same boundary curve∂S.

If the vector field~F has a vector potential in the regionR, i.e. ~F = ~∇ × ~A for some vector field~A

defined in the regionR, then Stokes’ Theorem shows that
∫∫
S

~F · ~dS =
∫∫
S

~∇× ~A · ~dS may be computed

as the line integral
∮
∂S

~A · ~ds and so is surface independent inR. If ~F does not have a vector potential, then

∫∫
S

~F · ~dS must be computed explicitly.
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EXAMPLE 8.9. Consider the surfaceS which is the graphz = sin(x) sin(y) for 0 ≤ x ≤ π and0 ≤ y ≤ π

with normal pointing up. Compute
∫∫
S

~F · ~dS over the surfaceS for each of the following vector fields. If

the integral is surface independent, you may use Stokes’ Theorem and change the surface.

a) ~F = (y − xz, x − yz, x2 + y2 + z2)

b) ~F = (xz − y, yz − x, x2 + y2 + z2)

SOLUTION:
a) We first enter the vector field:

> F:=MF([x,y,z], [y-x*z, x-y*z, xˆ2 + yˆ2 + zˆ2]):

To check if ~F has a vector potential, we compute the divergence:

> DIV(F);

0

So ~F has a vector potential, and Stokes’ Theorem says∫∫
S

~F · ~dS =
∫∫
S

~∇× ~A · ~dS =
∮
∂S

~A · ~ds

However, the boundary ofS, is also the boundary of the square0 ≤ x ≤ π and0 ≤ y ≤ π in thexy-plane.
Let T denote this square with normal pointing up. Then Stokes’ Theorem also says∮

∂S

~A · ~ds =
∮

∂T

~A · ~ds =
∫∫
T

~∇× ~A · ~dS =
∫∫
T

~F · ~dS

In other words,
∫∫
S

~F · ~dS is surface independent and it is easier to compute
∫∫
T

~F · ~dS. The square may

be parametrized as

> R:=MF([x,y],[x,y,0]);

R := [(x, y) → x, (x, y) → y, 0]

Its tangent vectors are~Rx = (1, 0, 0) and ~Ry = (0, 1, 0) and its normal vector is~N = (0, 0, 1). With these
parameters,~F may be evaluated on the square by settingz = 0 and its dot product with~N is justF3. So the
desired integral is:

> Muint(F[3](x,y,0), x=0..Pi, y=0..Pi); value(%);∫ π

0

∫ π

0

x2 + y2 dx dy

2
3

π4



172 CHAPTER 8. FUNDAMENTAL THEOREMS OF VECTOR CALCULUS

NOTE: Notice we never used the vector potential~A. So there was no reason to use theVECPOTcommand.
b) Once again we enter the vector field:

> F:=MF([x,y,z], [x*z-y, y*z-x, xˆ2 + yˆ2 + zˆ2]):

and check if~F has a vector potential:
> DIV(F);

(x, y, z) → 4 z

It does not! So we cannot use Stokes’ Theorem. The surfaceS may be parametrized as
> R:=MF([x,y],[x,y,sin(x)*sin(y)]):

and so its tangent and normal vectors are
> Rx:=D[1](R); Ry:=D[2](R); N:=Rx(x,y) &x Ry(x,y);

Rx := [1, 0, (x, y) → cos(x) sin(y)]

Ry := [0, 1, (x, y) → sin(x) cos(y)]

N := [−cos(x) sin(y), −sin(x) cos(y), 1]
On the surface, the vector field becomes
> FR:=F(op(R(x,y)));

FR := [x sin(x) sin(y) − y, y sin(x) sin(y) − x, x2 + y2 + sin(x)2 sin(y)2]
So the integral is
> Muint(FR &. N, x=0..Pi, y=0..Pi); value(%);∫ π

0

∫ π

0

− cos(x)x sin(x) + cos(x)x sin(x) cos(y)2 + cos(x) sin(y) y − cos(y) y sin(y)

+ cos(y) y sin(y) cos(x)2 + sin(x) cos(y)x + x2 + y2 + 1 − cos(y)2 − cos(x)2

+ cos(x)2 cos(y)2dxdy

1
2

π2 +
2
3

π4

Circulation and Flux In subsection 6.1.4, we discussed the circulation of a vector field and in subsection
6.2.6, we discussed the flux of a vector field. (See Table B.3 in Appendix B.) These are not directly related
by Stokes’ Theorem. Rather, the circulation of a vector field~v is equal to the flux of its curl:

Circulation =
∮
∂S

~v · ~ds =
∫∫
S

(~∇× ~v) · ~dS .

On the other hand, if the vector field~v has a vector potential~A, then the flux of~v is equal to the circulation
of its vector potential:

F lux =
∫∫
S

~v · ~dS =
∫∫
S

(~∇× ~A) · ~dS =
∮
∂S

~A · ~ds
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EXAMPLE 8.10. Find the circulation of the vector field~F = (−y3z, x3z, z4) counterclockwise around the
circlex2 + y2 = 4 in the planez = 5.

SOLUTION: We could explicitly compute the circulation as the line integral
∮
C

~F · ~ds. However we will

use Stokes’ Theorem and compute the circulation as the surface integral
∫∫
S

(~∇× ~F ) · ~dS. So we enter the

vector field and compute the curl:
> F:=MF([x,y,z], [-yˆ3*z, xˆ3*z, zˆ4]):
> curlF:=CURL(F);

curlF := [(x, y, z) → −x3, (x, y, z) → −y3, (x, y, z) → 3 x2 z + 3 y2 z]

We parametrize the disk and compute the tangent and normal vectors:
> R:=MF([r, theta], [r*cos(theta), r*sin(theta), 5]):
> Rr:=D[1](R): Rtheta:=D[2](R): N:=simplify(Rr(r,theta) &x
Rtheta(r,theta));

N := [0, 0, r]

Since the circle is traversed counterclockwise, the normal to the disk should point up as it does. Finally we
evaluate~∇× ~F on the surface, dot into the normal and integrate:
> Muint(curlF(op(R(r,theta))) &. N, r=0..2, theta=0..2*Pi);
Circ:=value(%); ∫ 2 π

0

∫ 2

0

15 r3 dr dθ

Circ := 120 π

EXAMPLE 8.11. Find the flux of the vector field~F =
(
xy2, yx2,−z(x2 + y2)

)
upward through the

paraboloidz = x2 + y2 for z ≤ 9.

SOLUTION: We could explicitly compute the flux as the surface integral
∫∫
P

~F · ~dS. However we will

use Stokes’ Theorem and compute the flux as the line integral
∮

∂P

~A · ~ds where~A is a vector potential for~F .

So we enter the vector field and see if it has a vector potential:
> F:=MF([x,y,z],[x*yˆ2, y*xˆ2, -z*(xˆ2+yˆ2)]):
> VEC_POT(F,’A’);

true

So ~F does have a vector potential which is:
> A;

[(x, y, z) → y x2 z, (x, y, z) → −x y2 z, 0]
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We now parametrize the boundary circle. Since the paraboloid is oriented upward, the circle should be
traversed counterclockwise:
> r:=MF(theta, [3*cos(theta), 3*sin(theta), 9]):

Next we compute the velocity and restrict the vector potential to the circle:
> v:=D(r); Ar:=A(op(r(theta)));

v := [θ → −3 sin(θ), θ → 3 cos(θ), 0]

Ar := [243 sin(θ) cos(θ)2, −243 cos(θ) sin(θ)2, 0]
So the flux is:
> Int(Ar &. v(theta), theta=0..2*Pi); Flux=value(%);∫ 2 π

0

− 1458 cos(θ)2 + 1458 cos(θ)4 dθ

Flux = −729
2

π

8.5 Gauss’ Theorem (The Divergence Theorem)

Gauss’ Theorem. 11If V is a “nice” solid region inR3 and∂V is its boundary surface oriented with the
normal pointing out from the volume, and if~F is a differentiable vector field defined in a neighborhood of
V , then ∫∫∫

V

~∇ · ~F dV =
∫∫
∂V

~F · ~dS

We will not clarify the definition of a “nice” region.

8.5.1 Verification

EXAMPLE 8.12. Verify Gauss’ Theorem by computing both sides for the vector fieldF = (x3z2, y3z2, z3)
and the solid regionV above the paraboloidz = x2 + y2 and below the planez = 9. NOTE: This is not a
proof of the theorem because you are not verifying it for general vector fields and volumes.

SOLUTION: We enter the vector field and compute the divergence:
> F:=MF([x,y,z], [xˆ3*zˆ2, yˆ3*zˆ2, zˆ3]):
> divF:=DIV(F);

divF := (x, y, z) → 3 x2 z2 + 3 y2 z2 + 3 z2

It is easiest to integrate over the solid paraboloid in cylindrical coordinates (Don’t forget the Jacobian!):
> divFcyl:=simplify(divF(r*cos(theta), r*sin(theta), z));

divFcyl := 3 r2 z2 + 3 z2

11Stewart§17.9.
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> Muint(divFcyl*r, z=rˆ2..9, r=0..3, theta=0..2*Pi); LHS=value(%);∫ 2 π

0

∫ 3

0

∫ 9

r2
(3 r2 z2 + 3 z2) r dz dr dθ

LHS =
452709

20
π

There are two boundary surfaces. First, the paraboloid may be parametrized as
> R1:=MF([r,theta], [r*cos(theta), r*sin(theta), rˆ2]):
The tangent and normal vectors are:
> R1r:=D[1](R1); R1theta:=D[2](R1);
> N1:=simplify(R1r(r,theta) &x R1theta(r,theta));

R1r := [(r, θ) → cos(θ), (r, θ) → sin(θ), (r, θ) → 2 r]

R1theta := [(r, θ) → −r sin(θ), (r, θ) → r cos(θ), 0]

N1 := [−2 r2 cos(θ), −2 r2 sin(θ), r]
This normal points up, but the outward normal should point down. So we reverse the normal:
> N1:=-N1;

N1 := [2 r2 cos(θ), 2 r2 sin(θ), −r]
The restriction of~F to the paraboloid is
> FR1:=F(op(R1(r, theta)));

FR1 := [r7 cos(θ)3, r7 sin(θ)3, r6]
So the integral is
> Muint(FR1 &. N1, r=0..3, theta=0..2*Pi); I1:=value(%);∫ 2 π

0

∫ 3

0

4 r9 cos(θ)4 + 2 r9 − 4 r9 cos(θ)2 − r7 dr dθ

I1 :=
321489

20
π

Second, the plane may be parametrized by
> R2:=MF([r,theta], [r*cos(theta), r*sin(theta), 9]):
The tangent and normal vectors are:
> R2r:=D[1](R2); R2theta:=D[2](R2);
> N2:=simplify(R2r(r,theta) &x R2theta(r,theta));

R2r := [(r, θ) → cos(θ), (r, θ) → sin(θ), 0]

R2theta := [(r, θ) → −r sin(θ), (r, θ) → r cos(θ), 0]

N2 := [0, 0, r]
This time the normal points up as it should. The restriction of~F to the plane is
> FR2:=F(op(R2(r, theta)));

FR2 := [81 r3 cos(θ)3, 81 r3 sin(θ)3, 729]
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So the integral is
> Muint(FR2 &. N2, r=0..3, theta=0..2*Pi); I2:=value(%);∫ 2 π

0

∫ 3

0

729 r dr dθ

I2 := 6561 π

So the total integral over the boundary is:
> RHS=I1+I2;

RHS =
452709

20
π

8.5.2 Applications

Surface Integrals as Volume Integrals 12If an exercise asks you to use Gauss’ Theorem to do a surface
integral over a closed surface, it really means you are to do a volume integral.

EXAMPLE 8.13. Use Gauss’ Theorem to compute the following surface integrals over the complete surface
of the cylinderC given byx2 + y2 ≤ 4 for 0 ≤ z ≤ 5 with normal pointing out.

a)
∫∫
∂C

~F · ~dS for F = (x3z, y3z, x2 + y2 + z2).

b)
∫∫
∂C

~G · ~dS for G = (−xz,−yz, x2 + y2 + z2).

SOLUTION:
a) We enter the vector field and compute the divergence:

> F:=MF([x,y,z], [xˆ3*z, yˆ3*z, xˆ2+yˆ2+zˆ2]):
> divF:=DIV(F);

divF := (x, y, z) → 3 x2 z + 3 y2 z + 2 z

Then we evaluate the divergence in cylindrical coordinates and integrate:
> divFcyl:=simplify(divF(r*cos(theta), r*sin(theta), z));

divFcyl := 3 r2 z + 2 z
> Muint(divFcyl*r, r=0..2, theta=0..2*Pi, z=0..5); value(%);∫ 5

0

∫ 2 π

0

∫ 2

0

(3 r2 z + 2 z) r dr dθ dz

400 π

b) We enter the vector field and compute the divergence:
> G:=MF([x,y,z], [-x*z, -y*z, xˆ2+yˆ2+zˆ2]):
> divG:=DIV(G);

divG := 0
12Stewart§17.9.
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Since the divergence is zero, the integral is automatically zero.

Volume as a Surface Integral A special case of Gauss’ Theorem allows one to compute the volume en-
closed in a closed surface as a surface integral. In particular, for the general position vector~r = (x, y, z) the
divergence is~∇ · ~r = 3. Hence,∫∫

∂V

~r · ~dS =
∫∫∫

V

3 dV = 3Volume(V )

Thus

Volume(V ) =
1
3

∫∫
∂V

~r · ~dS

NOTE: This formula for volume explains the results in exercise 6.13.

EXAMPLE 8.14. Use a surface integral to compute the volume of the region between the paraboloidz =
x2 + y2 and the planez = 9.

SOLUTION: As in example 8.12, there are two boundary surfaces. For the paraboloid, the parametrization
and normal vector are:
> R1(r,theta); N1;

[r cos(θ), r sin(θ), r2]

[2 r2 cos(θ), 2 r2 sin(θ), −r]

In the integral
1
3

∫∫
∂V

~r · ~dS the vector field is
1
3

of the position vector~R1. So the first surface integral is

> 1/3*Muint(R1(r,theta) &. N1, r=0..3, theta=0..2*Pi); V1:=value(%);

1
3

∫ 2 π

0

∫ 3

0

r3 dr dθ

V1 :=
27
2

π

For a disk in the planez = 9, the parametrization and normal vector are:
> R2(r,theta); N2;

[r cos(θ), r sin(θ), 9]

[0, 0, r]
So the second surface integral is
> 1/3*Muint(R2(r,theta) &. N2, r=0..3, theta=0..2*Pi); V2:=value(%);

1
3

∫ 2 π

0

∫ 3

0

9 r dr dθ

V2 := 27 π
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So the volume is:
> Volume=V1+V2;

Volume =
81
2

π

Expansion, Divergence and Source The expansion of a vector field was introduced in subsection 6.2.6.
By Gauss’ Theorem, the expansion of a vector field out of a surface is the integral of its divergence over the
enclosed volume:

Expansion =
∫∫
∂V

~v · ~dS =
∫∫∫

V

~∇ · ~v dV .

(See Table B.3 in Appendix B.) If the expansion is interpreted as the amount of stuff flowing out of the
surface, then the divergence,~∇ · ~v, should be interpreted as the amount of stuff spreading out from a point.
Then its integral over a volumeV is again the net amunt of stuff which is flowing out of the volume.

The negative of the expansion is called the contraction; the negative of the divergence is called the con-
vergence. If the expansion is positive, we say the stuff is expanding out of the volume; if the expansion is
negative, we say the stuff is contracting. If the divergence is positive at a point then we say the point is a
source for the stuff; if the divergence is negative at a point then we say the point is a sink for the stuff.

EXAMPLE 8.15. Consider the velocity field~v = (x3z, y3z,
3
4
z4).

a) Locate the sources and sinks of the fluid.

b) Find the expansion of the fluid out of the cube−1 ≤ x ≤ 2, −1 ≤ y ≤ 2, −1 ≤ z ≤ 2 by two
methods. Is the fluid expanding or contracting out of the cube? Identify the faces of the cube on which
the fluid is flowing in or out of the cube.

SOLUTION:
a) We first enter the velocity field and compute the divergence:

> v:=MF([x,y,z], [xˆ3*z, yˆ3*z, 3/4*zˆ4]):
> div_v:=DIV(v); div_v:=factor(div_v(x,y,z));

div v := (x, y, z) → 3 x2 z + 3 y2 z + 3 z3

div v := 3 z (x2 + y2 + z2)
So the divergence is positive whenz > 0 and negative whenz < 0. Thus the points above thexy-plane are
sources and the points below thexy-plane are sinks.

b) We first compute the expansion using Gauss’ Theorem by integrating the divergence over the cube:
> Muint(div_v, x=-1..2, y=-1..2, z=-1..2); Expansion=value(%);∫ 2

−1

∫ 2

−1

∫ 2

−1

3 z (x2 + y2 + z2) dx dy dz

Expansion =
729
4
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Since the expansion is positive, the fluid is expanding out of the cube.
Next we compute the expansion explicitly by integrating the velocity over each face. We parametrize

each face (carefully choosing the order of the parameters so the normal will point outward.) and integrate the
velocity to obtain the flux out of that face: (To save space, we display the answers on one line.)
> R1:=MF([z,y], [-1,y,z]): F1:=siv(v, R1, y=-1..2, z=-1..2):
> R2:=MF([y,z], [2,y,z]): F2:=siv(v, R2, y=-1..2, z=-1..2):
> R3:=MF([x,z], [x,-1,z]): F3:=siv(v, R3, x=-1..2, z=-1..2):
> R4:=MF([z,x], [x,2,z]): F4:=siv(v, R4, x=-1..2, z=-1..2):
> R5:=MF([y,x], [x,y,-1]): F5:=siv(v, R5, x=-1..2, y=-1..2):
> R6:=MF([x,y], [x,y,2]): F6:=siv(v, R6, x=-1..2, y=-1..2):
> F1, F2, F3, F4, F5, F6;

9
2
, 36,

9
2
, 36,

−27
4

, 108

Thus the flux for each face is positive except forF5. So the fluid is flowing out of all of the faces of the cube
except the bottom face wherez = −1. Finally, we check that the total flux out of the cube is equal to the
expansion :
> TotalFlux=F1+F2+F3+F4+F5+F6;

TotalFlux =
729
4

8.6 Related Line, Surface and Volume Integrals

8.6.1 Related Line and Surface Integrals

SupposeC1 andC2 are twoopencurves which start atA and end atB and stay in a regionR. We say
thatC1 can be continuously deformed intoC2 within R if there is a surfaceS within R whose boundary is
∂S = C2 −C1. This means that the boundary ofS may be traversed with the proper orientation by travelling
forward alongC2 and then backward alongC1.

Similarly, supposeC1 andC2 are twoclosedcurves which stay in a regionR. We say thatC1 can be
continuously deformed intoC2 within R if there is a surfaceS within R whose boundary is∂S = C2 − C1.
This means that the boundary ofS consists of the two curvesC1 andC2 with C2 traversed forwards andC1

traversed backwards.
In either case,∂S = C2 − C1 and so Stokes’ Theorem says∫∫

S

~∇× ~F · ~dS =
∮
∂S

~F · ~ds =
∫
C2

~F · ~ds −
∫
C1

~F · ~ds

This may be rewritten as ∫
C2

~F · ~ds =
∫
C1

~F · ~ds +
∫∫
S

~∇× ~F · ~dS
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In other words, to compute
∫
C2

~F · ~ds, you may alternatively compute
∫
C1

~F · ~ds and
∫∫
S

~∇× ~F · ~dS, if that is

easier.
In the special case that~∇× ~F = 0 everywhere in the regionR, then∫

C2

~F · ~ds =
∫
C1

~F · ~ds

wheneverC1 can be continuously deformed intoC2 within R. For the case of open curves, this is a special
case of the path independence discussed at the beginning of section 8.2.2.

EXAMPLE 8.16. For each of the following vector fields, compute the line integral
∫
C

~F · ~ds along the curve

C which consists of the three line segments from(0, 0, 0) to (0, 0, π) to (π, π, π) to (π, π, 0).

a) ~F = (sin(x), sin(y), sin(z)).

b) ~F = (sin(y) − sin(z), sin(x) − sin(z), cos(x) + cos(y)).

SOLUTION:
a) We first enter the vector field and compute the curl:

> F:=MF([x,y,z], [sin(x), sin(y), sin(z)]):
> CURL(F);

[0, 0, 0]
Since the curl is zero, we can replace the integral alongC by a integral along the single line segmentL from
(0, 0, 0) to (π, π, 0). The parametrized line and the velocity are
> r:=MF(t,[t,t,0]): v:=D(r);

v := [1, 1, 0]
Along the curve the vector field is:
> Fr:=F(op(r(t)));

Fr := [sin(t), sin(t), 0]
So the integral is
> Int(Fr &. v(t), t=0..Pi); value(%); ∫ π

0

2 sin(t) dt

4
b) We enter the vector field and compute the curl:

> F:=MF([x,y,z], [sin(y) - sin(z), sin(x) - sin(z), cos(x) + cos(y)]):
> curlF:=CURL(F);

curlF := [
(x, y, z) → −sin(y) + cos(z), (x, y, z) → −cos(z) + sin(x), (x, y, z) → cos(x) − cos(y)
]
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Since the curl is non-zero, we can replace the integral alongC by a integral along the line segmentL from
(0, 0, 0) to (π, π, 0) plus an integral of the curl over the squareS with vertices(0, 0, 0), (0, 0, π), (π, π, π)
and(π, π, 0). The parametrized line and the velocity are the same as above. The restricted vector field and
the line integral are:
> Fr:=F(op(r(t)));

Fr := [sin(t), sin(t), 2 cos(t)]
> Int(Fr &. v(t), t=0..Pi); I_L:=value(%);∫ π

0

2 sin(t) dt

I L := 4
The parametrized square and the tangent and normal vectors are:
> R:=MF([s,t], [t,t,s]);

R := [(s, t) → t, (s, t) → t, (s, t) → s]
> Rs:=D[1](R); Rt:=D[2](R); N:=Rs &x Rt;

Rs := [0, 0, 1]

Rt := [1, 1, 0]

N := [−1, 1, 0]
Applying the right hand rule to the normal, we check that∂S = C − L as it should be. The restriction of the
curl to the surface is
> curlFR:=curlF(op(R(s,t)));

curlFR := [−sin(t) + cos(s), −cos(s) + sin(t), 0]
and the surface integral is
> Muint(curlFR &. N, s=0..Pi, t=0..Pi); I_S:=value(%);∫ π

0

∫ π

0

− 2 cos(s) + 2 sin(t) ds dt

I S := 4 π

So the line integral alongC is
> I_C:=I_L + I_S;

I C := 4 + 4 π

EXAMPLE 8.17. Compute the line integral
∮
C

~F · ~ds for the vector field~F =
( −y

x2 + y2
,

x

x2 + y2
, 0

)

counterclockwise around the closed curveC which is the octagon with vertices(3,−2, 3), (3, 2, 3), (2, 3, 2),
(−2, 3,−2), (−3, 2,−3), (−3,−2,−3), (−2,−3,−2) and(2,−3, 2).

SOLUTION: We first enter the vector field and compute the curl:
> F:=MF([x,y,z], [-y/(xˆ2+yˆ2), x/(xˆ2+yˆ2), 0]):
> CURL(F);

[0, 0, 0]
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Thus the curl is zero. However, notice that the vector field is not defined on thez-axis. So the curl is also
undefined on thez-axis. Thus the octagon may be replaced by any curve which also circles thez-axis once
counterclockwise. The simplest such curve is the circlex2 + y2 = 1 in thexy-plane:
> r:=MF(t,[cos(t),sin(t),0]):
The velocity, vector field,~F , and the line integral are:
> v:=D(r);

v := [−sin, cos, 0]
> Fr:=simplify(F(op(r(t))));

Fr := [−sin(t), cos(t), 0]
> Int(Fr &. v(t), t=0..2*Pi); value(%); ∫ 2 π

0

1 dt

2 π

8.6.2 Related Surface and Volume Integrals

SupposeS1 andS2 are twoopen surfaces which stay in a regionR and have the same boundary curve,
∂S1 = ∂S2 . We say thatS1 can be continuously deformed intoS2 within R if there is a solid regionV
within R whose boundary is∂V = S2 − S1. This means that the boundary ofV with outward normal
consists ofS2 with its normal unchanged andS1 with its normal reversed.

Similarly, supposeS1 andS2 are twoclosedsurfaces which stay in a regionR. We say thatS1 can
be continuously deformed intoS2 within R if there is a solid regionV within R whose boundary is∂V =
S2 − S1. This means that the boundary ofV with normal pointing out ofV consists of the two surfacesS1

andS2 with the normal ofS1 reversed.
In either case,∂V = S2 − S1 and so Gauss’ Theorem says∫∫∫

V

~∇ · ~F dV =
∫∫
∂V

~F · ~dS =
∫∫
S2

~F · ~dS −
∫∫
S1

~F · ~dS

This may be rewritten as ∫∫
S2

~F · ~dS =
∫∫
S1

~F · ~dS +
∫∫∫

V

~∇ · ~F dV

In other words, to compute
∫∫
S2

~F · ~dS, you may alternatively compute
∫∫
S1

~F · ~dS and
∫∫∫

V

~∇ · ~F dV , if

that is easier.
In the special case that~∇ · ~F = 0 everywhere in the regionR, then∫∫

S2

~F · ~dS =
∫∫
S1

~F · ~dS
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wheneverS1 can be continuously deformed intoS2 within R. For the case of open surfaces, this is a special
case of the surface independence discussed at the beginning of section 8.4.2.

EXAMPLE 8.18. For each of the following velocity fields, compute the flux integral
∫
C

~v · ~dS through the

coneC given byz2 = x2 + y2 for 0 ≤ z ≤ 4 with the normal pointing in and up.

a) v = (x, y,−2z).

b) v = (x, y,−3z).

SOLUTION:
a) We first enter the velocity field and compute the divergence:

> F:=MF([x,y,z], [x, y, -2*z]):
> DIV(F);

0
Since the divergence is zero, we can replace the integral over the coneC by a integral over the diskD given
by x2 + y2 ≤ 4 with z = 2. The parametrized disk and the flux integral are
> R:=MF([r,theta],[r*cos(theta), r*sin(theta), 2]):
> Siv(F,R, r=0..2, theta=0..2*Pi); value(%);∫ 2 π

0

∫ 2

0

− 4 r dr dθ

−16 π

b) We again enter the velocity field and compute the divergence:
> F:=MF([x,y,z], [x, y, -3*z]):
> divF:=DIV(F);

divF := −1
Since the divergence is non-zero, we can replace the integral over the coneC by a integral over the disk
D given byx2 + y2 ≤ 4 with z = 2 minus the integral of the divergence over the solid cone between
z =

√
x2 + y2 andz = 4. The volume integral is subtracted because the normal to the cone points into the

volume. The parametrized disk is given above. So the surface integral is
> Siv(F,R, r=0..2, theta=0..2*Pi); I_D:=value(%);∫ 2 π

0

∫ 2

0

− 6 r dr dθ

I D := −24 π

The solid cone may be parametrized in cylindrical coordinates. So the integral of the divergence is
> Muint(divF*r, z=r..2, r=0..2, theta=0..2*Pi); I_V:=value(%);∫ 2 π

0

∫ 2

0

∫ 2

r

− r dz dr dθ

I V := −8
3

π
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Notice that this is just the negative of the volume of a cone of radius 2 and height 2. So the flux integral
throughC is
> I_C:=I_D + I_V;

I C := −80
3

π

EXAMPLE 8.19. Compute the surface integral
∫∫
S

~F · ~dS of the vector field

~F =
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
over the closed surfaceS of the rectan-

gular solid−5 ≤ x ≤ 5, −4 ≤ y ≤ 4, −3 ≤ z ≤ 3 with outward normal.
SOLUTION: We first enter the vector field and compute the divergence:

> F:=MF([x,y,z], [x/(xˆ2+yˆ2+zˆ2)ˆ(3/2), y/(xˆ2+yˆ2+zˆ2)ˆ(3/2),
z/(xˆ2+yˆ2+zˆ2)ˆ(3/2)]):

> divF:=DIV(F)(x,y,z);

divF := 0

Thus the divergence is zero. However, notice that the vector field is not defined at the origin. So the divergence
is also undefined at the origin. Thus the surface of the rectangular solid may be replaced by any closed surface
which also encloses the origin. The simplest such surface is the spherex2 + y2 + z2 = 1:
> R:=MF([theta,phi], [sin(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)]):

The tangent and normal vectors are:
> Rtheta:=D[1](R): Rphi:=D[2](R):

> N:=Rtheta(theta,phi) &x Rphi(theta,phi);

N := [−sin(φ)2 cos(θ), −sin(φ)2 sin(θ), −sin(φ) sin(θ)2 cos(φ) − sin(φ) cos(θ)2 cos(φ)]

Again we need to reverse the normal and restrict the vector field to the curve:
> N:=-N;

N := [sin(φ)2 cos(θ), sin(φ)2 sin(θ), sin(φ) sin(θ)2 cos(φ) + sin(φ) cos(θ)2 cos(φ)]

> FR:=simplify(F(op(R(theta,phi))));

FR := [sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)]

Hence the expansion of~F is
> Muint(FR &. N, theta=0..2*Pi, phi=0..Pi); value(%);

∫ π

0

∫ 2 π

0

sin(φ) dθ dφ

4 π
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8.7 Exercises

• Do Labs: 9.9, 9.10, 9.11 and 9.12.

• Do Project: 10.12.

1. Verify the Fundamental Theorem of Calculus for Curves by computing both sides for the indicated
function and curve:

(a) f = x + y2 + z3 and ~r(t) = (t3, t2, t) for 1 ≤ t ≤ 2.

(b) f = xy2z3w4 and ~r(t) = (t4, t3, t2, t) for 1 ≤ t ≤ 2.

2. Find a scalar potentialf for the vector field ~F (x, y) = (2xy3, 3x2y2). Then use the Fundamental

Theorem of Calculus for Curves to evaluate
∫

C

~F · ~ds, where C is the line segment from

A = (2, 3) to B = (5, 2). Verify your result by computing the line integral directly.

3. Show that the line integral
∫

C

(2x sin y) dx+(x2 cos y− 3y2) dy is independent of path and eval-

uate it on any curve between(−1, 0) and (5, 1) using the Fundamental Theorem of Calculus
for Curves.

4. Find a scalar potentialf for the vector field ~F = (y, x) and use it to evaluate
∫

C

~F · ~ds, where

C is the arc of the quartic curve y = x4 − x3 from (1, 0) to (2, 8).

5. Compute each of the following integrals along the spiral~r(t) = (t cos t, t sin t) for 0 ≤ t ≤ 7π

3
.

If the integral is path independent, you may find a potential and use the Fundamental Theorem of
Calculus for Curves.

(a)
∫

xdx + y dy (b)
∫

xdx − y dy (c)
∫

y dx − xdy (d)
∫

y dx + xdy

6. Compute each of the following integrals once counterclockwise around the ellipse
~r(φ) = (4 cosφ, 3 sinφ). If the integral is path independent, you may find a potential and use the
Fundamental Theorem of Calculus for Curves.

(a)
∮

xdx + y dy (b)
∮

xdx − y dy (c)
∮

y dx − xdy (d)
∮

y dx + xdy

7. Verify Green’s Theorem by computing both sides for the line integral
∮

C

x4y5 dx+x7y6 dy, where

C is the circle x2 + y2 = 4 traversed once counterclockwise.

8. Use Green’s Theorem to evaluate the line integral
∮

C

(y + e
√

x) dx +
(
2x + cos(y2)

)
dy, where

C is the boundary of the region enclosed by the parabolasy = x2 and x = y2.

9. Repeat exercise 6 but use Green’s Theorem to do the integrals.

10. Compute the area of the region inside the general ellipse
x2

a2
+

y2

b2
= 1.

HINT: The general ellipse may be parametrized by~r(θ) = (a cos θ, b sin θ).
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11. Consider a propeller with three blades, the front face of which has the parametric boundary
~r(t) =

(
(3 + 2 cos 3t) cos t, (3 + 2 cos 3t) sin t

)
, for 0 ≤ t ≤ 2π. Use Green’s Theorem to

compute the area of the face of the propeller.

12. Verify Stokes’ Theorem by computing both sides for the vector field~F = (0, 0, 3
√

x2 + y2) and
the paraboloid z = x2 + y2 for z ≤ 4 with the normal pointing up and in.

NOTE: If an integral returns a complex number, useIm andRe to show that the integral is in fact real
and find its value.

13. Verify Stokes’ Theorem by computing both sides for the vector field~F = (yz, y2,−xy) and the
surfaceS which is the elliptic paraboloid y = x2 + z2 for y ≤ 9 with normal pointing in and
up along they-axis.

14. Use Stokes’ Theorem to evaluate the surface integral
∫∫
S

~∇× ~F · ~dS, where the surfaceS is the

part of the paraboloid y = 1 − x2 − z2 that lies to the right of thexz-plane, oriented toward the
xz-plane, and the vector field is ~F (x, y, z) = (yz3, sin(xyz), x3).

15. LetT be the triangular surface with verticesP = (0, 0, 2), Q = (2, 2, 2) and R = (2, 0, 2)
and letC be its boundary path traversed fromP to Q to R to P . Use rectangularcoordinates to
parametrizeT ; i.e., ~R(x, y) = ( , , ). The shadow region (the projection of the triangular
surface onto thexy-plane wherez = 0) is the triangular region with vertices P ′ = (0, 0), Q′ =
(2, 2) and R′ = (2, 0). Accordingly, what are the ranges ofx andy? Then use Stokes’ Theorem

to compute the line integral
∮

C

~F · ~ds where ~F (x, y, z) = (x2y2, x2z2, y2z2).

16. Use Stokes’ Theorem to evaluate the line integral
∮

C

~F · ~ds where ~F (x, y, z) = (x2z, xy2, z2)

andC is the curve of intersection of the planex + y + z = 1 with the cylinder x2 + y2 = 9,
oriented counterclockwise as viewed from above.

17. Verify Gauss’ Theorem by computing both sides for the indicated vector field and solid region:

(a) F = (x3, y3, z3) andV is the region inside of the spherex2 + y2 + z2 = 4.

(b) F =
(
cos(x), cos(y), cos(z)

)
andV is the region inside of the cube0 ≤ x ≤ π,

0 ≤ y ≤ π and 0 ≤ z ≤ π.

18. Use the Gauss’ Theorem to calculate the surface integral
∫∫
S

~F · ~dS for the vector field

~F (x, y, z) = (x3, y3, z3), whereS is surface of the solid bounded by the cylinderx2 + y2 = 1
and the planes z = 0 and z = 2 with outward normal.

19. Use the Gauss’ Theorem to compute the surface integral
∫∫
S

~F · ~dS, where S is the sphere

x2 + y2 + z2 = 9 and ~F (x, y, z) = (2xz2,−yx2, 3zy2).
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20. Do a surface integral to compute the volume of the region inside the general ellipsoid
x2

a2
+

y2

b2
+

z2

c2
=

1.

HINT: The general ellipsoid may be parametrized by~R(θ, φ) = (a sin φ cos θ, b sin φ sin θ, c cosφ).

21. For each of the following vector fields, compute the line integral
∫
P

~F · ~ds along the parabola

y = z = 16 − x2 from (−4, 0, 0) to (4, 0, 0). If the line integral is path independent,
you should change the path to a straight line. If not, you should apply Stokes’ Theorem to the surface
between the parabola and the line.
(a) ~F = (ex, ey, ez) (b) ~F = (yz,−xz, xy)

22. For each of the following vector fields, compute the line integral
∮
T

~F · ~ds around the closed

equilaterial triangle T from
(√

3,−1, 3
)

to
(
−
√

3,−1, 3
)

to (0, 2, 3) and back to(√
3,−1, 3

)
. If the line integral is path independent, you should change the path to the circle

x2 + y2 = 4 in the plane z = 3. If not, you should apply Stokes’ Theorem to the surface
between the triangle and the circle.

(a) ~F =
(
− y

x2 + y2
,

x

x2 + y2
,

1
z2

)
(b) ~F =

(
1

x2 + y2
,

1
x2 + y2

, 0
)

23. For each of the following vector fields, compute the surface integral
∫∫
Q

~F · ~dS over the quartic

surface z = (16 − x2)(9 − y2) + 5 above the rectangle −4 ≤ x ≤ 4 and −3 ≤ y ≤ 3.
If the surface integral is surface independent, you should change the surface to a rectangle in the plane
z = 5. If not, you should apply Stokes’ Theorem to the volume between the quartic and the rectangle.
(a) ~F = (y4, z4, x4) (b) ~F = (x4, y4, z4)

24. For each of the following vector fields, compute the surface integral
∫∫
S

~F · ~dS over the total

closed surface of the cylinderx2 + y2 ≤ 9 and −4 ≤ z ≤ 4. If the surface integral is surface
independent, you should change the surface to the spherex2 + y2 + z2 = 25. If not, you should
apply Stokes’ Theorem to the volume between the cylinder and the sphere.

(a) ~F =
(

x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)

(b) ~F =
(

x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2

)



Chapter 9

Labs

This chapter contains a collection of labs on vector calculus. These labs are designed for a lab which meets
once a week for about 1 hour. Typically the students would work in pairs. They would work on the lab in
class one week, complete the lab on their own time during the week and turn it in at the next week’s lab. A
short lab report is expected. The report should be graded on mathematics,Mapleand English presentation.

• 9.1 Orienteering1

• 9.2 Dot and Cross Products2

• 9.3 Lines, Planes, Quadric Curves and Quadric Surfaces3

• 9.4 Parametric Curves4

• 9.5 Frenet Analysis of Curves5

• 9.6 Linear and Quadratic Approximations6

• 9.7 Multivariable Max-Min Problems7

• 9.8 A Volume of Desserts8

• 9.9 Interpretation of the Divergence9

• 9.10 Interpretation of the Curl10

• 9.11 Gauss’ Law11

• 9.12 Ampere’s Law12

1Stewart Ch. 13.
2Stewart Ch. 13.
3Stewart Ch. 13.
4Stewart Ch. 14.
5Stewart Ch. 14.
6Stewart§§15.4, 15.6.
7Stewart§§15.7, 15.8.
8Stewart Ch. 16.
9Stewart§§17.5, 17.9.

10Stewart§§17.5, 17.8.
11Stewart Ch. 17.
12Stewart Ch. 17.

188
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9.1 Lab: Orienteering

Objectives: In this lab you will learn to useMaple to perform vector addition and scalar multiplication, to
convert between rectangular and polar or spherical coordinates and to plot points and dot-to-dot pictures.

You are strongly encouraged to work with a partner.

Before Lab: 13Read subsections 1.1.1 and 1.1.2 and section 1.2. Also read theMaplehelp pages onplot
and plotoptions . These are accessable by executing:

> ?plot

> ?plot,options

Maple Commands: You will need to use theMaplecommands for addition and scalar multiplication of
vectors, and the followingplot andspacecurve commands:

• Maplecanplot a list of points as follows:

> plot([[1,0], [2,3], [3,0], [0,2], [4,2]], style=point,
symbol=diamond);

Look at the help onplot,options to see how to turn off the axes or change thesymbol .
• If you leave off the optionstyle=point , Maplewill connect the dots with line segments. To connect

back to the start, you must repeat the starting point:

> plot([[1,0], [2,3], [3,0], [0,2], [4,2], [1,0]], axes=none);

What shape did you get?
• You can also plot points and dot-to-dot pictures in 3-dimensions. For example, here is a cube:

> spacecurve( {[[0,0,0], [0,1,0], [1,1,0], [1,0,0], [0,0,0], [0,0,1],
[0,1,1], [1,1,1], [1,0,1], [0,0,1]], [[0,1,0], [0,1,1]], [[1,1,0],
[1,1,1]], [[1,0,0], [1,0,1]] }, orientation=[30,60]);

Notice that several dot-to-dot pieces are put together by enclosing them in braces and separating them by
commas.

vec calc Commands: You may need to use thevec calc commandsevall (evaluate list)r2d
(convert radians to degrees),d2r (convert degrees to radians),r2p (convert rectangular to polar),p2r
(convert polar to rectangular),r2s (convert rectangular to spherical),s2r (convert spherical to rectangular).

Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: Orienteering”.
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

13Stewart Ch. 13.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Orienteering: You start at the origin and travel North-East for 26 paces. Then you travel South-South-
East for 17 paces. Finally you travel West-South-West for 22 paces. Construct a vector for each of
these travel segments. If you want to go directly back to the origin, in what direction should you travel
and how many paces will it take? Give the direction in degrees East or West of North. Plot your path.

2. Finding the North Star: Plot the big dipper and the north star as shown below:

–6

–5

–4

–3

–2

–1

0

1

–5 –4 –3 –2 –1 0 1

3. Starfleet 3D Orienteering: Galactic Coordinates are specified by taking the origin at the center of
mass of the galaxy, with the galaxy in thexy-plane, thex-axis passing through the sun, (We’re still
heliocentric!) and thez-axis specified by the right hand rule so that when you are on the positivez-axis,
the galaxy rotates counterclockwise from the positivex-axis to the positivey-axis.

You start at the galactic origin and successively make each of the following motions. Where do you
end up? Plot your path.

Each motion is specified in spherical coordinates whereρ is the distance you travel,φ is the polar angle
measured down from the positivez-axis andθ is the azimuthal angle measured counterclockwise from
the positivex-axis. Give your final position in spherical coordinates.

(a) (ρ, θ, φ) = (4 lightyears, 45◦, 30◦)

(b) (ρ, θ, φ) = (3 lightyears, 240◦, 135◦)

(c) (ρ, θ, φ) = (2 lightyears, 120◦, 45◦)
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9.2 Lab: Dot and Cross Products

Objectives: You will learn theMaplecommands for 3-dimensional analytic geometry and vectors.
You are strongly encouraged to work with a partner.

Before Lab: 14Read sections 1.1 and 1.2. Do problem 1 below by hand; you will redo it in lab usingMaple.
You are expected to turn in this hand computation before lab or else there will be a penalty on the grade.

Maple Commands: You will need to useMaple’s assignment statements and arithmetic operators and the
Maplecommandsexpand , evalf andspacecurve . See lab 9.1 for an example usingspacecurve .

vec calc Commands: dot (dot product),len (length of a vector),cross (cross product),evall
(evaluate list) andr2d (convert radians to degrees).

Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: Dot and Cross Products”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;
• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Derive the identity

(~u · ~v)2 + |~u × ~v|2 = |~u|2|~v|2

as follows: Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3).

(a) Write out (~u · ~v)2 to get 6 terms.

(b) Write out |~u × ~v|2 to get 9 terms.

(c) Add (~u · ~v)2 + |~u × ~v|2 and cancel some terms.

(d) Multiply out |~u|2|~v|2 and check that it equals the answer from part (c).

In problems 2 – 4, let ~u = (4, 1, 3) and ~v = (−1, 4, 2).

2. Find the angle between the vectors~u and~v in degrees.

3. Find the scalar and vector projections of~v along~u.

4. Find the area of the triangle with edges~u and~v.

14Stewart Ch. 13.
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5. Given the points A = (2, 6,−1), B = (−1, 4, 2), C = (2, 2, 7), and F = (0, 6, 5), find
the volume of the parallelepiped with adjacent edges

−→
AB ,

−→
AC, and

−→
AF . Then find the other four

vertices and plot the parallelepiped usingspacecurve .

6. Show that the three pointsP = (3, 1, 2), Q = (1, 1, 4) and R = (3,−1, 4) are the vertices
of an equilateral triangle by computing the three angles and the lengths of the three edges. Plot the
triangle usingspacecurve and rotate the plot so you can see it is equilateral.

9.3 Lab: Lines, Planes, Quadric Curves and Quadric Surfaces

Objectives: You will learn to useMaple to solve problems involving lines, planes, quadric curves and
quadric surfaces.

You are strongly encouraged to work with a partner.

Before Lab: 15Read sections 1.1 and 1.3.

Maple Commands: angle , solve , completesquare , implicitplot andimplicitplot3d .

vec calc Commands: MF (Make Function),dot (dot product),cross (cross product),len
(length of a vector) andevall (evaluate list).

Initialization:
• In a text region, at the top of theMapleWorksheet, type

“Lab: Lines, Planes, Quadric Curves and Quadric Surfaces”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;
• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Consider the line (x, y, z) = (−3− 3t, 4+ t, 11+ 6t) and the plane 2x− 3y + 4z = 1. Find
the angle (correct to the nearest degree) between the line and the normal to the plane and determine if
the line and plane are parallel or perpendicular or neither. If they are not parallel, find their point of
intersection.

2. Show that the planes x+ y− z = 1 and 2x− 3y +4z = 5 are neither parallel nor perpendic-
ular by finding (correct to the nearest degree) the angle between their normals. Then find parametric
equations for their line of intersection. (HINT: Letz = t and solve these three equations forx, y and
z.)

15Stewart Ch. 13.
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3. The points P = (3, 1, 2), Q = (1, 1, 4) and R = (3,−1, 4) are the vertices of an equilat-
eral triangle. (See lab 9.2.) Find the centerC of the triangle4PQR by finding the intersection of two
lines, each from a vertex to the midpoint of the opposite side.

4. Follow the directions of example 1.14 for the following quadric curves:

(a) x2 + 2y2 − 6x + 4y = 7

(b) x2 − 2y2 − 6x + 4y = 7

(c) x2 + 2y2 − 4x + 4y = −7

(d) −2y2 − 6x + 4y = 7

5. Follow the directions of example 1.15 for the following quadric surfaces:

(a) x2 + 2y2 + 9z2 − 6x + 4y = 7

(b) x2 − 2y2 + 9z2 − 6x + 4y = 7

(c) x2 − 2y2 − 6x + 4y = 7

(d) x2 − 2y2 + 9z2 − 4x + 4y = −7

(e) x2 − 2y2 + 9z2 − 4x + 4y = −2

(f) −2y2 + 9z2 − 6x + 4y = 7

(g) 2y2 + 9z2 − 6x + 4y = 7

9.4 Lab: Parametric Curves

Objectives: You will learn to useMapleto plot parametric curves, to find intersections of parametric curves
with various lines, to find slopes of parametric curves, and to find self-intersections of parametric curves.

You are strongly encouraged to work with a partner.

Before Lab: 16Read sections 1.3 and 2.1. Also read theMaple help pages on parametric plots and the
fsolve command. These are accessable by executing:

> ?plot,parametric

> ?fsolve

In particular, look at the example offsolve with two equations, two variables and two intervals.

16Stewart Ch. 14.
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Maple Commands:
• Suppose you want to plot the parametric curvex = cos(t), y = sin(t) for 0 ≤ t ≤ 2π. This can be

done in one statement using the plot command:
> plot([cos(t), sin(t), t=0..2*Pi]);
Notice the square brackets; they’re necessary. Of course, you can define thex andy coordinates beforehand:
> x0:= t-> cos(t);
> y0:= t-> sin(t);
> plot([x0(t), y0(t), t=0..2*Pi]);
Notice that we named the coordinatesx0 andy0 rather thanx andy so thatx andy would still be available
to be used in equations.

• To solve an equation, it is often best to usefsolve in conjunction with a plot. For example, to solve
the equation:2 sin(x) = x + cos(x) you should first plot the two functions:
> f:=x->2*sin(x);
> g:=x->x+cos(x);
> plot( {f(x),g(x) }, x=-5..5);
Notice there are three solutions in the intervals[−2,−1], [.5, 1.5] and[2, 3]. So you can now usefsolve
with intervals:
> fsolve(f(x)=g(x),x=-2..-1);
> fsolve(f(x)=g(x),x=.5..1.5);
> fsolve(f(x)=g(x),x=2..3);

• To solve two equation for two unknowns, usefsolve with the following syntax: For example, to solve
the equationss − 3t = 0 andst = 5, execute:
> fsolve( {s-3*t=0, s*t=5 }, {s,t }, {s=3..6,t=1..2 });

Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: Parametric Curves”
• Next type your NAMES, ID’s and SECTION.
• Execute:

> with(plots):
• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: This lab concerns the parametric curve

x = 2 sin(2πt) − 2 cos5(2πt) y = cos(2πt) − 3 sin(2πt) for 0 ≤ t ≤ 1 .

Answer the following questions. Where appropriate, you must explain your reasoning in text regions. Print
out your worksheet by clicking on FILE and PRINT.

1. HaveMapleplot the curve. Also plot the points on the curve wheret is 0, 0.1, 0.2, 0.3, 0.4, and 0.5,
and label them on your output. (Okay: you’ll have to label them later, but it must be done.) See lab 9.1
for how to plot points. Then use thedisplay command in theplots package to combine the two
plots.

2. Determine the points(x, y) where the curve crosses the linex = 1.

HINT: You’ll have to find the values oft which make thex coordinate equal to 1 by usingfsolve .
A plot of x(t) will be helpful. Then plug intox andy.
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3. Determine the points(x, y) where the curve crosses the liney =
x

2
.

HINT: You’ll have to find thet values which solvey(t) =
x(t)
2

.

4. Find the points(x, y) where the tangent line to the curve is horizontal.

HINT:
dy

dx
=

dy/dt

dx/dt
, so you’ll need to solve

dy

dt
= 0 for t.

5. Find the points(x, y) where the tangent line to the curve is vertical.

6. Find the points(x, y) where the tangent line has slope
1
3

.

HINT: It’s easier to work with the equation
dy

dt
=

1
3

dx

dt
than the equation

dy/dt

dx/dt
=

1
3

.

7. Find the points(x, y) where the curve crosses itself.

HINT: You’ll need to find two different values,t1 andt2, so thatx(t1) = x(t2) andy(t1) = y(t2).
Do this by usingfsolve on the pair of equations with ranges fort1 andt2.

8. (20% EXTRA CREDIT) At one point(x, y) where the curve crosses itself, find the angle in degrees
between the two branches of the curve.

HINT: Find the slope of each branch; find the inclination angle of each branch usingarctan ,
subtract inclinations, and then convert to degrees. To see the angles properly in your plot, you must use
the optionscaling=constrained .

9.5 Lab: Frenet Analysis of Curves

Objectives: You will learn theMaplecommands for the geometric properties of space curves.
You are strongly encouraged to work with a partner.

Before Lab: 17Read section 2.2. Also read thevec calc help page on Frenet Analysis of Curves which
is accessable by executing:
> with(vec_calc);
> ?Curve

Maple Commands: You will need to useMaple’s trigonometric and hyperbolic functions and theMaple
commandsspacecurve , D, Int , value andsimplify .

vec calc Commands: MF(make function),dot (dot product),cross (cross product),len (length
of a vector),evall (evaluate list),Cv (Curve velocity),Ca (Curve acceleration),Cj (Curve jerk),CT(Curve
unit tangent),CN(Curve unit principal normal),CB(Curve unit bonormal),Ck (Curve curvature),Ct (Curve
torsion),CL (Curve arc length),CaT (Curve tangential acceleration), andCaN(Curve normal acceleration)

17Stewart Ch. 14.
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Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: Frenet Analysis of Curves”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;
• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: Consider one of the following space curves. (Your instructor will individually
tell you which to use.)

~r(t) = ( cosh(t), sinh(t), t ) or ~r(t) = ( t cos(t), t sin(t), t )

Compute the items below withMaple. If necessary, usesimplify to clean up final expressions. Among
thevec calc commands, you mayonly use the commandsMF, dot , cross , len andevall to compute
the quantities. The mathematical definitions of the various quantities are provided to aid you in this semiau-
tomatic computation. You may then use the Curve commands from thevec calc package to check your
work in a fully automatic fashion.

Answer the following questions. Where appropriate, you must explain your reasoning in text regions.
Print out your worksheet by clicking on FILE and PRINT.

1. Define~r(t) as aMaplevector functionr usingMF.

2. Plot~r(t) for 0 ≤ t ≤ 2 usingspacecurve . Put your plot in your worksheet.

3. Compute the velocity~v(t) usingD. Check usingCv. ~v = ~r′

4. Compute the acceleration~a(t). Check usingCa. ~a = ~v′ = ~r′′

5. Compute the jerk~j(t). Check usingCj . ~j = ~a′ = ~v′′ = ~r′′′

6. Compute the speed
ds

dt
usinglen .

ds

dt
= |~v(t)|

7. Compute the arc lengthL of ~r(t) for 0 ≤ t ≤ 2 usingInt andvalue .

Check usingCL. L =
∫ 2

0

|~v(t)| dt

8. Compute the unit tangent vectorT̂ . Check usingCT. T̂ =
~v(t)
|~v(t)|

9. Compute the unit binormal vector̂B usingcross andlen .

Check usingCB. B̂ =
~v(t) × ~a(t)
|~v(t) × ~a(t)|

10. Compute the unit principal normal vectorN̂ .
Check usingCN. N̂ = B̂ × T̂

11. Compute the curvatureκ. Check usingCk. κ =
|~v(t) × ~a(t)|

|~v(t)|3
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12. Compute the torsionτ . Check usingCt . τ =
~v(t) × ~a(t) ·~j(t)
|~v(t) × ~a(t)|2

13. Compute the tangential accelerationaT .

Check usingCaT. aT = ~a · T̂ =
d2s

dt2
=

d

dt
|~v(t)|

14. Compute the normal accelerationaN .
Check usingCaN. aN = ~a · N̂ = κ(t)|~v(t)|2

9.6 Lab: Linear and Quadratic Approximations

Objectives: You will learn to useMaple to find the linear and quadratic approximations to a surface in
3-dimensional space.

You are strongly encouraged to work with a partner.

Before Lab: 18Read subsections 3.2.1, 3.2.2, 3.2.3 and 3.2.7, especially examples 3.8 and 3.14.

Maple Commands: diff , solve , fsolve , subs , simplify , evalf , implicitplot3d ,
plot3d , display andmtaylor .

vec calc Commands: MF(Make Function),GRAD(gradient) anddot or &. (dot product).

Initialization:
• In a text region, at the top of theMapleWorksheet, type

“Lab: Linear and Quadratic Approximations”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: Consider the function

F (x, y, z) = πx sin(yz) + 2πy cos(xz) + z .

and the surfaceS given by F (x, y, z) = 4π. Answer the following questions. Where appropriate, you
must explain your reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Show that the point P = (2,
1
2
, π) lies on the surfaceS. Plot the surfaceS on the region 1.5 ≤

x ≤ 2.5, 0 ≤ y ≤ 1 and 2.5 ≤ z ≤ 3.5 using implicitplot3d with the options
grid=[25,25,25], color=blue .

18Stewart§§15.4, 15.6.
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2. The equation F (x, y, z) = 4π implicitly definesz as a function ofx andy, specifically z =

f(x, y). Use implicit differentiation to find
∂f

∂x
and

∂f

∂y
and their values at (x, y) =

(2,
1
2
). See example 3.8.

3. Construct the linear approximation tof(x, y) at (x, y) = (2,
1
2
). Then use it to estimate the

value of f(2.03, 0.52).

4. Plot the plane tangent to the surfaceS at the point P = (2,
1
2
, π) over the region 1.5 ≤ x ≤

2.5 and 0 ≤ y ≤ 1 usingplot3d with the optionsview=2.5..3.5, grid=[25,25],
color=red . Thendisplay it with the surfaceS using the optionorientation=[-25,70] .

5. Recompute the equation of the tangent plane to the surfaceS at the point P = (2,
1
2
, π) by

regardingS as a level surface of the functionF (x, y, z). See example 3.14.

6. Recompute the equation of the tangent plane to the surfaceS at the point P = (2,
1
2
, π) by com-

puting the first order Taylor polynomial P1(x, y, z) for the function F (x, y, z) at (2,
1
2
, π).

See subsection 3.2.3.

7. Compute the second order Taylor polynomialP2(x, y, z) for the function F (x, y, z) at

(2,
1
2
, π). Approximate the surfaceS as the quadric P2(x, y, z) = 4π. Then plot the quadric us-

ing implicitplot3d using the optionsgrid=[25,25,25], color=green . Finally,
display the quadric with the surfaceS using the optionorientation=[-25,70] .

Notice that the quadric surface is a much better approximation than the tangent plane.

9.7 Lab: Multivariable Max-Min Problems

Objectives: You will learn theMapleandvec calc commands involved with multivariable max/min and
Lagrange multiplier problems.

You are strongly encouraged to work with a partner.

Before Lab: 19Read chapter 4. Also read thevec calc help page on Multivariable Max-Min Problems
which is accessable by executing:
> with(vec_calc);
> ?Multi_Max_Min

Maple Commands: D, equate , solve , fsolve , RootOf , allvalues/independent ,
allvalues/dependent , subs , evalf , map, op , union , implicitplot , contourplot ,
plot3d , implicitplot3d , contourplot3d , spacecurve anddisplay

19Stewart§§15.7, 15.8.
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vec calc Commands: MF(make function),GRAD(gradient),HESS(hessian), andLPMD(leading
principal minor determinants)

Initialization:
• In a text region, at the top of theMapleWorksheet, type

“Lab: Multivariable Max-Min Problems”
• Next type your NAMES, ID’s and SECTION .
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: Consider one of the following functions. (Your instructor will individually
tell you which to use.)

f(x, y) = (x2 + 4y2 − 4)2 + xy or f(x, y) = (x2 − y2)e−x2−4y2

Use it to do exercises 1 and 2 below.
Print out your worksheet by clicking on FILE and PRINT.

1. Unconstrained Max-Min Problems: Find all critical points off and classify each as a local maxima,
a local minima or a saddle point. Here are the suggested steps you should use:

(a) Define the functionf usingMF.

(b) Plot the functionf to gain a qualitative understanding of the local maxima, local minima and
saddle points. You may have to adjust your viewing rectangle.

(c) Compute the gradient off and set it equal to the zero vector.

(d) Solve the resulting system of equations to obtain critical points. If necessary, use an
allvalues( \dots,independent) to resolve anyRootOf s. This may produce extra
points which are not really critical points. So label the critical point candidates for easy referral.
CHECK your critical point candidates to determine which satisfy the vector equation~∇f = ~0.

(e) Compute the Hessian off .

(f) Analyze each critical point usingLPMDto determine if it is a local maxima, a local minima
or a saddle point. CHECK your classification of each critical point agrees with your qualitative
understanding from your plot. If necessary replot the function in the neighborhood of each critical
point.

2. Constrained Max-Min Problems: Find the absolute maximum and absolute minimum of your func-
tion f inside or on the ellipsex2 + 4y2 = 32. Here are the suggested steps you should use:

(a) Define the functionf and the constraint functiong = x2 + 4y2 usingMF.

(b) Use display to simultaneously show acontourplot of the function f and an
implicitplot of the constraint equationg = 32 to gain a qualitative understanding of the
maxima and minima on the constraint.



200 CHAPTER 9. LABS

(c) Compute the gradient off and the gradient ofg and construct the Lagrange equations~∇f = λ~∇g.
Also define the constraint equationg(x, y) = 32.

(d) Solve the resulting system of equations to obtain critical points. If necessary, use an
allvalues( \dots,independent) to resolve anyRootOf s. This may produce extra
points which are not really critical points. So label the critical point candidates for easy refer-
ral. CHECK your critical point candidates to determine which satisfy the equations~∇f = λ~∇g
andg = 32.

(e) Compute the value off at all critical points inside or on the ellipse to find the absolute maxima
and absolute minima. CHECK your extrema agree with your qualitative understanding from your
plot.

9.8 Lab: A Volume of Desserts

Objectives: You will learn to useMapleto compute integrals in two and three dimensional space, in polar,
cylindrical and spherical coordinates.

You are strongly encouraged to work with a partner.

Before Lab: 20Read sections 5.1 and 5.2.

Maple Commands: Int , value , simplify , plot andplot3d .

vec calc Commands: MF (Make Function),Muint (Display Multiple Integral),muint/step
(Compute Multiple Integral, Stepwise),p2r (polar to rectangular),r2p (rectangular to polar),c2r (cylin-
drical to rectangular),r2c (rectangular to cylindrical),s2r (spherical to rectangular) andr2s (rectangular
to spherical).

Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: A Volume of Desserts”
• Next type your NAMES, ID’s and SECTION .
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Consider the chocolate kiss given in cylindrical coordinates by0 ≤ z ≤ 1 + (1 − r)1/3 − r1/3 for
0 ≤ r ≤ 1 and0 ≤ θ ≤ 2π.

20Stewart Ch. 16.
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(a) Find the volume of the chocolate kiss.

(b) Find thez coordinate of the centroid of the chocolate kiss.
HINT: Do the integrals in cylindrical coordinates.

2. The top of a pie wedge is given in cylindrical coordinates by0 ≤ r ≤ 2, 0 ≤ θ ≤ π

4
andz = 0. The

depth of the pie is given byz = −1 +
r2

4

(a) Find the area of the top of the pie wedge.
HINT: Use polar coordinates.

(b) Find thex andy coordinates of the centroid of the top of the pie wedge. Then express the centroid
in polar coordinates.
HINT: Set up the integrals to find thex andy coordinates of the centroid, NOT ther andθ
components. Then work in polar coordinates to do the integrals. Finally convert thex andy
coordinates of the centroid to polar coordinates.

(c) Find the volume of the solid pie wedge.
HINT: Use cylindrical coordinates.

(d) Find thex, y andz coordinates of the centroid of the solid pie wedge. Then convert to cylindrical
coordinates.
HINT: You need to do 3 dimensional integrals, especially for thez component of the centroid.
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3. Consider the ice cream cone given in spherical coordinates by0 ≤ ρ ≤ 4, 0 ≤ θ ≤ 2π and0 ≤ φ ≤ π

6
.

(a) Find the volume of the ice cream cone.

(b) Find thez coordinate of the centroid of the ice cream cone. Then convert to spherical coordinates.

HINT: Work in spherical coordinates for doing the integrals while finding thez components of
the centroid.

4. The surface of an apple is given in spherical coordinates byρ = φ+
π

2
for 0 ≤ θ ≤ 2π and0 ≤ φ ≤ π.

(a) Find the volume of the apple.

(b) Find thez coordinate of the centroid of the apple. Then convert to spherical coordinates.

HINT: Work in spherical coordinates for doing the integrals while finding thez components of
the centroid.

5. (20% EXTRA CREDIT) Plot the chocolate kiss, the pie wedge, the ice cream cone and the apple.
Be sure to plot all surfaces of each.
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9.9 Lab: Interpretation of the Divergence

Objectives: You will learn an integral formula for the divergence of a vector field which provides an
interpretation of the divergence. Then you will prove it using Gauss’ Theorem and use it to compute several
divergences.

You are strongly encouraged to work with a partner.

Before Lab: 21Read subsection 6.2.6 and sections 7.2 and 8.5.

Maple Commands: D, op , value andLimit .

vec calc Commands: MF(Make Function),DIV (divergence),cross or &x (cross product),dot
or &. (dot product) andMuint (Display Multiple Integral).

Initialization:
• In a text region, at the top of theMapleWorksheet, type

“Lab: Interpretation of the Divergence”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Background: Given a 3-dimensional vector field~F = (F1, F2, F3), the integral formula for the divergence
of ~F gives the value of the functiondiv ~F at a pointP . To do this, letSρ(P ) be the sphere centered atP of
radiusρ oriented with the outward normal. Then the value ofdiv ~F atP is

(div ~F )(P ) = lim
ρ→0

3
4πρ3

∫∫
Sρ(P )

~F · ~dS .

In this formula, the integral computes the outward expansion of the vector field~F through the sphere

Sρ(P ). The integral is then divided by the volume of the sphere
4
3
πρ3. The limit thus computes the expansion

per unit volume for smaller and smaller spheres. Thus, if~F is interpreted as the velocity of a fluid, then the
expansion integral measures the amount of that fluid flowing out of the sphere. Hence(div ~F )(P ) may be
interpreted as the amount of that fluid which is “coming out” of the pointP .

Computationally, ifP = (a, b, c), then the sphere centered atP of radiusρ may be parametrized by

~R(θ, φ) = (a + ρ sinφ cos θ, b + ρ sinφ sin θ, c + ρ cosφ)

Be sure to check the direction of the normal and reverse it if necessary.

21Stewart§§17.5, 17.9.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Justify the integral formula for the divergence by using Gauss’ Theorem. You may assume thatdiv ~F
is continuous, so that its value inside a small sphere may be approximated by its value at the center of
the sphere. You should not useMapleto do this.

2. Plot each of the following vector fields for−5 ≤ x ≤ 5, −5 ≤ y ≤ 5,−5 ≤ z ≤ 5. Then compute
the divergence at the pointP = (a, b, c) using both the derivative formula (usingDIV ) and the integral
formula. Check that the answers are the same.

(a) ~F = (x2, y2, z2)

(b) ~G = (x2y, y2z, z2x)

(c) ~u = (x3y2, y3z2 − x2y3,−y2z3)

(d) ~v = (0, 0, ez)

(e) ~w = (x3y, y3z, z3x)

9.10 Lab: Interpretation of the Curl

Objectives: You will learn an integral formula for the curl of a vector field which provides an interpretation
of the curl. Then you will prove it using Stokes’ Theorem and use it to compute several curls.

You are strongly encouraged to work with a partner.

Before Lab: 22Read subsection 6.1.4 and sections 7.3 and 8.4.

Maple Commands: D, op , value , Limit andmap.

vec calc Commands: MF(Make Function),CURL(curl), dot or &. (dot product) andMuint
(Display Multiple Integral).

Initialization:
• In a text region, at the top of theMapleWorksheet, type

“Lab: Interpretation of the Curl”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

22Stewart§§17.5, 17.8.
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Background: Given a 3-dimensional vector field~F = (F1, F2, F3), its curl is also a vector field. So the
integral formula for the curl of~F gives the value at a pointP of the quantityN̂ · curl ~F for an arbitrary unit
vectorN̂ . Then the components ofcurl ~F may be found by takinĝN to be successivelŷı, ̂ andk̂. To give
the formula, letC(ρ,N̂)(P ) be the circle centered atP of radiusρ which lies in the plane throughP with

normalN̂ . Then the value of̂N · curl ~F atP is

(N̂ · curl ~F )(P ) = lim
ρ→0

1
πρ2

∮
C(ρ,N̂)(P )

~F · ~ds

where the circle is traversed counterclockwise as seen from the tip of the normalN̂ .
In this formula, the integral computes the circulation of the vector field~F around the circleC(ρ,N̂)(P ).

The integral is then divided by the area of the circleπρ2. The limit thus computes the circulation per unit
area for smaller and smaller circles. Thus, if~F is interpreted as the velocity of a fluid, then(N̂ · curl ~F )(P )
may be interpreted as the rate that the fluid circulates about the line through the pointP in the directionN̂ . If
(N̂ ·curl ~F )(P ) > 0, then the fluid circulates counterclockwise as seen from the tip ofN̂ . If (N̂ ·curl ~F )(P ) <
0, then the fluid circulates clockwise.

Also notice that(N̂ ·curl ~F )(P ) is a maximum when̂N points in the same direction as(curl ~F )(P ). Thus

(curl ~F )(P ) points along the axis of rotation atP and its magnitude
∣∣∣(\curl ~F )(P )

∣∣∣ is the rate of rotation at

P .
Computationally, ifP = (a, b, c), then the three components of(curl ~F )(P ) are given by

(curl ~F )1(P ) = lim
ρ→0

1
πρ2

∮
C1

~F · ~ds

(curl ~F )2(P ) = lim
ρ→0

1
πρ2

∮
C2

~F · ~ds

(curl ~F )3(P ) = lim
ρ→0

1
πρ2

∮
C3

~F · ~ds

where the circlesC1, C2 andC3 are parametrized by

C1(θ) = P + ρ cos(θ)̂ + ρ sin(θ)k̂ = (a, b + ρ cos(θ), c + ρ sin(θ))

C2(θ) = P + ρ cos(θ)k̂ + ρ sin(θ)̂ı = (a + ρ sin(θ), b, c + ρ cos(θ))
C3(θ) = P + ρ cos(θ)̂ı + ρ sin(θ)̂ = (a + ρ cos(θ), b + ρ sin(θ), c)

Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

1. Justify the integral formula for the curl by using Stokes’ Theorem. You may assume thatcurl ~F is
continuous, so that its value inside a small sphere may be approximated by its value at the center of the
sphere. You should not useMapleto do this.
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2. Plot each of the following vector fields for−5 ≤ x ≤ 5, −5 ≤ y ≤ 5,−5 ≤ z ≤ 5. Then compute the
curl at the pointP = (a, b, c) using both the derivative formula (usingCURL) and the integral formula.
Check that the answers are the same.

(a) ~F = (x2y, y2z, z2x)

(b) ~G = (x2 + y3 + z4, y2 + z3 + x4, z2 + x3 + y4)
(c) ~v = (3x2 cos y, z3 cos y − x3 sin y, 3z2 sin y)

9.11 Lab: Gauss’ Law

Objectives: You will learn to useMapleto compute volume integrals and surface integrals of a vector field,
to compute the divergence of a vector field and to apply Gauss’ Theorem. You will also learn about the basic
law of electrostatics: Gauss’ Law.

You are strongly encouraged to work with a partner.

Before Lab: 23Read chapters 5 and 6 and sections 7.2 and 8.5, especially example 7.3.

Maple Commands: D, op , Int , value andsimplify .

vec calc Commands: MF(Make Function),DIV (divergence),evall (evaluate list),dot or &.
(dot product) andMuint (Display Multiple Integral).

Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: Gauss’ Law”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;
• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Background: Gauss’ Law is the basic law of electrostatics and applies when the electric charge densityρc

(in units of charge/unit volume) is independent of time. (The charge is allowed to move but the net charge at

each point must remain the same.) The integral of the charge densityQ =
∫∫∫

V

ρc dV over a volume

V gives the net chargeQ inside the volumeV . Gauss’ Law relates the electric field~E to either the charge
densityρc or the net chargeQ.

Thedifferential form of Gauss’ Lawstates ~∇ · ~E = 4πρc.

Theintegral form of Gauss’ Lawstates
∫∫
S

~E · ~dS = 4πQ. HereS is any closed surface andQ is

the net charge inside the volumeV whose boundary is the surfaceS.

The differential and integral forms of Gauss’ Law are related by Gauss’ Theorem as discussed in question
3 below.

23Stewart Ch. 17.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

Consider the following 6 electric fields: (k is a constant.)

a) ~Ea = (kx(x2 + y2 + z2), ky(x2 + y2 + z2), kz(x2 + y2 + z2))

b) ~Eb = (kx
√

x2 + y2 + z2, ky
√

x2 + y2 + z2, kz
√

x2 + y2 + z2)

c) ~Ec = (kx, ky, kz)

d) ~Ed = (
kx√

x2 + y2 + z2
,

ky√
x2 + y2 + z2

,
kz√

x2 + y2 + z2
)

e) ~Ee = (
kx

x2 + y2 + z2
,

ky

x2 + y2 + z2
,

kz

x2 + y2 + z2
)

f) ~Ef = (
kx

(x2 + y2 + z2)3/2
,

ky

(x2 + y2 + z2)3/2
,

kz

(x2 + y2 + z2)3/2
)

1. For each electric field, compute the charge densityρc by using the differential form of Gauss’ Law.
Then integrate the charge density over the solid spherex2 + y2 + z2 ≤ a2 to obtain the net charge
Q inside the sphere. The integral should be done in spherical coordinates.

2. For each electric field, recompute the net chargeQ inside the sphere by using the integral form of
Gauss’ Law. The boundary of the solid sphere is the surfacex2 + y2 + z2 = a2 which may be
parametrized by ~R(θ, φ) = (a sin(φ) cos(θ), a sin(φ) sin(θ), a cos(φ)).

NOTE: In some of the output,Mapleuses the expressioncsgn(a) . The functioncsgn , called the
complex sign, is+1 if its argument is positive and is−1 if its argument is negative. Sincea is the
radius, it is positive, butMapledoes not know this. Socsgn(a) = 1 everywhere.

3. Without usingMaple, explain how the integral form of Gauss’ Law may be derived from the differential
form of Gauss’ Law and Gauss’ Theorem. You may type this in a text region or write it out by hand.

4. For one of the electric fields, the charge density is constant. Which one?

5. For one of the electric fields, the net chargeQ came out differently when using the differential and
integral forms of Gauss’ Law. Which one? Why does this not violate Gauss’ Theorem? In this case,
the physicists regard the integral form of Gauss’ Law as giving the correct answer and interpret the net
chargeQ as a point charge at the origin. Explain why this interpretation is reasonable by looking at the
charge density at points other than the origin.
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9.12 Lab: Ampere’s Law

Objectives: You will learn to useMaple to compute line and surface integrals of a vector field, to com-
pute the curl of a vector field and to apply Stokes’ Theorem. You will also learn about the basic law of
magnetostatics: Ampere’s Law.

You are strongly encouraged to work with a partner.

Before Lab: 24Read chapter 6 and sections 7.3 and 8.4, especially examples 6.7 and 7.6.

Maple Commands: D, op , Int , value andsimplify .
NOTE: In Maple, the letterI stands for

√−1. So you will need to use some other symbol for the current,
e.g. Ia, Ib, etc.

vec calc Commands: MF(Make Function),CURL(curl), evall (evaluate list),dot or &. (dot
product),cross or &x (cross product) andMuint (Display Multiple Integral).

Initialization:
• In a text region, at the top of theMapleWorksheet, type “Lab: Ampere’s Law”
• Next type your NAMES, ID’s and SECTION.
• Start thevec calc package by executing:

> with(vec_calc); vc_aliases;

• Save your file now and after each problem.
• Number each problem either in a text region or using aMaplecomment.

Background: Ampere’s Law is the basic law of magnetostatics and applies when the electric charge density
is independent of time. (The charge is allowed to move but the net charge at each point must remain the
same.) If the charge density isρc (in units of charge/unit volume) and the velocity field of the charge is~V (in
units of distance/unit time) then the current density is~J = ρc

~V (in units of charge/unit area/unit time).

The integral of the current density I =
∫∫
S

~J · ~dS over a surfaceS gives the net currentI (in units of

charge/unit time) which is passing through that surface, positive in the direction of the normal toS. Ampere’s
Law relates the magnetic field~B to either the current density~J or the currentI.

Thedifferential form of Ampere’s Lawstates ~∇× ~B = 4π ~J.

Theintegral form of Ampere’s Lawstates
∮
C

~B · ~ds = 4πI. HereC is any closed curve andI is the

net current passing through any surfaceS whose boundary is the curveC.

The differential and integral forms of Ampere’s Law are related by Stokes’ Theorem as discussed in
question 3 below.

24Stewart Ch. 17.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking on FILE and PRINT.

Consider the following 5 magnetic fields: (k is a constant.)

a) ~Ba = (−2ky(x2 + y2), 2kx(x2 + y2), 0)

b) ~Bb = (−2ky
√

x2 + y2, 2kx
√

x2 + y2, 0)

c) ~Bc = (−2ky, 2kx, 0)

d) ~Bd = (
−2ky√
x2 + y2

,
2kx√
x2 + y2

, 0)

e) ~Be = (
−2ky

x2 + y2
,

2kx

x2 + y2
, 0)

1. For each magnetic field, compute the current density~J by using the differential form of Ampere’s
Law. Then integrate the current density over the diskx2 + y2 ≤ a2 in the xy-plane to obtain
the net currentI passing through the disk. The disk may be parametrized in polar coordinates by
~R(r, θ) = (r cos(θ), r sin(θ), 0).

2. For each magnetic field, recompute the net currentI passing through the disk by using the integral form
of Ampere’s Law. The boundary of the disk is the circlex2 +y2 = a2 which may be parametrized
by ~r(θ) = (a cos(θ), a sin(θ), 0).

NOTE: In some of the output,Mapleuses the expressioncsgn(a) . The functioncsgn , called the
complex sign, is+1 if its argument is positive and is−1 if its argument is negative. Sincea is the
radius, it is positive, butMapledoes not know this. Socsgn(a) = 1 everywhere.

3. Without usingMaple, explain how the integral form of Ampere’s Law may be derived from the differ-
ential form of Ampere’s Law and Stokes’ Theorem. You may type this in a text region or write it out
by hand.

4. For one of the magnetic fields, the current density is constant. Which one?

5. For one of the magnetic fields, the net currentI came out differently when using the differential and
integral forms of Ampere’s Law. Which one? Why does this not violate Stokes’ Theorem? In this case,
the physicists regard the integral form of Ampere’s Law as giving the correct answer and interpret the
net currentI as a current moving along thez-axis. Explain why this interpretation is reasonable by
looking at the current density at points not on thez-axis.



Chapter 10

Projects

This chapter contains a collection of projects on vector calculus. They are divided into two groups. The first
group involve Multivariable Differentiation while the second group also involve Multivariable Integration.

In a one semester course, we recommend that the students be required to do two such projects, probably
one from each group. Normally the students would work in groups of four students and different groups
would work on different projects. Each group would have from two to four weeks to complete the project
and must turn in an extensive project report. The report should be graded on mathematics,Mapleand English
presentation.

Projects on Vectors and Multivariable Differentiation

• 10.1 Totaling Gravitational Forces1

• 10.2 Animate a Curve2

• 10.3 Newton’s Method in 2 Dimensions3

• 10.4 Gradient Method of Finding Extrema4

• 10.5 The Trash Dumpster5

• 10.6 Locating an Apartment6

1Stewart Chs. 12, 13.
2Stewart§§14.3, 14.4.
3Stewart§§15.3, 15.4.
4Stewart§15.6.
5Stewart§§15.7, 15.8.
6Stewart§§15.7, 15.8.
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Projects on Multivariable Integration

• 10.7p-Normed Spaceballs: The Area of a Unitp-Normed Circle7

• 10.8 The Volume Between a Surface and its Tangent Plane8

• 10.9 Hyper-Spaceballs: The Hypervolume of a Hypersphere9

• 10.10 The Center of Mass of Planet X10

• 10.11 The Skimpy Donut11

• 10.12 Steradian Measure12

10.1 Project: Totaling Gravitational Forces
13In physics, Newton’s Law of Gravity says that a point massM is attracted to a point massm by

the force ~F =
GMm

|~r|3 ~r , where G is Newton’s gravitational constant, ~r is the vector from

M to m , and |~r| is the length of ~r . More generally, a point massM is attracted to a

collection of point masses m1, m2, . . . , mk by the force ~F =
k∑

i=1

GMmi

|~ri|3 ~ri , where ~ri is the

vector from M to mi .
Suppose a point massM is located on they-axis at P = (0, Y ) for a positive number Y .

Also suppose 2n point masses, each with massm , are located on thex-axis at the points Qi =
(i∆x, 0) for a positive number ∆x and i = −n,−n + 1,−n + 2, . . . ,−1, 1, . . . , n− 2, n− 1, n .
(Note: There is no mass at the origin.)

1. Draw a picture showing the line segments fromP to each of the Qi’s when Y = 3 ,
n = 2 and ∆x = 1 . (See lab 9.1 for an example of plotting dot-to-dot pictures.)

2. Find the magnitude of the total gravitational force onM due to the 2n other masses.

3. Is the magnitude of the gravitational force onM finite if n goes to infinity? Explain mathe-
matically why or why not.

4. With n = 2 , find the values of Y which maximize and minimize the magnitude of the
gravitational force on M due to the 4 other masses.

7Stewart§16.3.
8Stewart§§15.4, 15.7, 16.3, 16.5.
9Stewart§§16.3, 16.4, 16.7, 16.8.

10Stewart§§16.5, 16.8.
11Stewart§§16.8, 17.6.
12Stewart§§17.6, 17.9.
13Stewart Chs. 12, 13.
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10.2 Project: Animate a Curve
14Write aMaple procedurewhich animates the graph of a curve~r(t) in 3 dimemsions. The inputs should
be the curve function, the range for the parameter and the number of plots. The output should be the animated
plot. At the tip of the curve add one of the following to your animation:

1. The velocity vector ~v(t) and the acceleration vector~a(t) .

2. The unit tangent vector T̂ (t) , the unit principal normal vector N̂(t) and the unit binormal
vector B̂(t) .

3. The osculating circle. This is the circle in the plane of~v(t) and ~a(t) which best fits the curve

at ~r(t) . Thus, its center is in the direction N̂(t) from ~r(t) and its radius is
1

κ(t)
where κ(t) is the curvature.

Use your procedure to animate a few curves using about 15 plots. Document your procedure to explain how
it works and how it may be used.

10.3 Project: Newton’s Method in 2 Dimensions
15The ordinary Newton’s Method uses the linear approximation to find an approximate solution to an equation
of the formf(x) = 0. Basically, if x0 is an initial approximation to the solution, then the tangent line to
y = f(x) at x = x0 intesects thex-axis at a point(x1, 0) andx1 is usually a better approximation to the
solution thanx0. So the process can be iterated usingx1 as the new initial approximation. A short derivation
shows that at each stage

xi+1 = xi − f(xi)
f ′(xi)

This may be automated inMapleby defining the function
> newt:= x -> evalf(x - f(x)/Df(x));
This assumes thatf and its derivativeDf have been defined in arrow notation. Further, it is often useful to
plot y = f(x) to get an initial approximation to the solution and to setDigits to one more than the desired
number of digits accuracy.

EXAMPLE 10.1. Solve the equationcos(x) = x to 15 digits of accuracy.
SOLUTION: We set the digits, define the function and compute its derivative:

> Digits:=16;
> f:=x -> cos(x)-x;
> Df:=D(f);
To get an initial approximation, we plot the function:
> plot(f(x),x=-Pi..Pi);
and observe the initial approximation should bex = .8 . We can now use 5 iterations of Newton’s method to
get the solution:

14Stewart§§14.3, 14.4.
15Stewart§§15.3, 15.4.
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> newt(.8);newt(%);newt(%);newt(%);newt(%);

We now turn to the 2-dimensional Newton’s Method. This uses the linear approximation to find an
approximate solution to a pair of equations of the formf(x, y) = 0 andg(x, y) = 0. Basically, if (x0, y0)
is an initial approximation to the solution, then the tangent plane toz = f(x, y) at (x, y) = (x0, y0) and the
tangent plane toz = g(x, y) at (x, y) = (x0, y0) intesect thexy-plane at a common point(x1, y1, 0) and
(x1, y1) is usually a better approximation to the solution than(x0, y0). So the process can be iterated using
(x1, y1) as the new initial approximation. A short derivation shows that at each stage

xi+1 = xi − fgy − fyg

fxgy − fygx
and yi+1 = yi − fxg − fgx

fxgy − fygx
(∗)

where the functionsf andg and their partial derivativesfx, fy, gx andgy are all evaluated at(xi, yi).

1. Derive the equations (*). You should useMaple to construct the tangent planes and to solve for the
intersection of these planes with thexy-plane.

2. Construct a singleMaple function callednewt2d which acts on an initial approximation(x, y) and
produces the next approximation.

3. (Optional) To improve your project, write aMaple procedure which will automatically control the
iterations ofnewt2d . The procedure should take as arguments, the functionsf andg, the number of
digits of accuracy desired and the maximum number of iterations to allow (to prevent an infinite loop).

4. Use yourMaplefunctionnewt2d or yourMapleprocedure to find all solutions to each of the following
pairs of equations. You will need to plot the two equations usingimplicitplot to get an initial
approximation to each solution. Give your answers to 25 digits of accuracy. (See?Digits .) You can
usefsolve to check you solutions.

(a) x + y − cosh(x) + sinh(y − 1) = 0 and x4 − y4 − 2xy = 0
(b) 2x − y = 5 and 3x + y = 7
(c) x sin(y) − y cos(x) = 0 and x4 + y4 = 256
(d) x3y − y3x + x2y2 = 5 and 2x2 + 3y2 = 18

10.4 Project: Gradient Method of Finding Extrema
16Write aMaple procedurewhich finds an approximation to a local maximum or local minimum of a given
function. The algorithm to be used by the procedure is called the gradient method (or Cauchy’s method or
the method of steepest ascent or descent) which is described below for the case of a local maximum.

The inputs to your procedure should be the function, the initial guess, the maximum number of iterations
(to prevent an infinite loop), the desired tolerance and a parameter to say whether the program should look
for a maximum or a minimum. The output should be the coordinates of the extremum which may be plugged
into the function to obtain the extreme value.

Document your procedure: Include comments in the code to explain how it works. Write a help page to
explain how it may be used.

Use your procedure to find all local extrema of each of the following functions:
16Stewart§15.6.
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1. f(x, y) = 9 − (x − 3)2 − 9(y − 2)2 (Start from the point(2, 1).)

2. f(x, y) = ((x − 1)2 + (y − 2)2 − 4)2 + 3x − 4y (See example 4.3.)

3. f(x, y) = x2 + y2 + 8 sin(x) cos(y) (There are 5 extrema.)

To help find the initial guess for each maximum or minimum, you will want to plot one or more graphs and/or
contour plots of each function.

Cauchy’s Gradient Method or the Method of Steepest Ascent Suppose you want to find a local maxi-
mum of a functionf( ~X) and you believe there is a local maximum near the initial point~P0. (You may believe
this because you drew a contour plot.) Now, you know that the gradient vector points in the local direction
of maximum increase of the function but it may not point directly at the top of the hill. So, if you move from
~P0 in the direction of the gradient off at ~P0, then the function will increase, at least initially. Hence, you
construct the line~X(t) = ~P0 + t ~∇f(~P0) and restrict the function to this line by forming the composition
g(t) = f(X(t)) = f(~P0 + t ~∇f(~P0)). Then you find the first maximum ofg(t) and call this point~P1. Now
~P1 is a local maximum ofg but it may not be a local maximum off because~∇f(~P0) only pointslocally
uphill. However,f(~P1) is bigger thanf(~P0). So you restart this process with~P1as the new initial point. As
you iterate this process, you keep moving uphill and (hopefully) get closer and closer to the local maximum.

As you write your procedure you should keep in mind the following points:

• Before you begin to turn the algorithm into a procedure or even automate it using afor/while/do
loop, be sure your algorithm and yourMaple code works step by step on one or two of the sample
functions.

• To find a maximum you move in the direction of the gradient:~∇f . To find a minimum you move in
the direction of the negative of the gradient:−~∇f .

• Along the line in the direction of the gradient, there may be several critical points. Which one do you
want? To isolate this critical point, you may use an interval in thefsolve command and/or you may
use themax or min commands to find the largest or smallest of a list of numbers.

• Your input function may be an expression or an arrow defined function and your max/min parameter
may be numerical or a string, but you must explain which in the documentation.

• Your tolerance may measure the distance moved between two successive iterations or the change in the
value of the function between two successive iterations or both. Your documentation must explain this.

• Read the help pages on?proc , ?options , ?for and?if . To debug a procedure, it is helpful to
include a line at the beginning of the procedure which says “option trace; ”.

• If you wrote your program in vector notation, the same procedure should also work for functions of 3
or more variables.
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10.5 Project: The Trash Dumpster
17You are the mathematics consultant for a company which makes trash dumpsters, you know, the big kind
you see outside a dorm or apartment complex. Go outside and find one. Try to find one which is not just a
rectangular solid and has some type of hinged lid covering part of the top. If you cannot find one with a lid,
pretend that a lid covers the front portion of the top for the full width of the dumpster. This is the kind of trash
dumpster your company currently manufactures (hereafter called the original dumpster). Draw a diagram of
the original dumpster and take its measurements. Note which edges are folded and which are welded.

Your boss has asked you to redesign the dumpster to minimize the cost, but with the following constraints:

• You must maintain the basic geometrical shape of the dumpster but you may change the lengths.

• You must maintain the volume of the dumpster to hold the same amount of trash.

• You must maintain the area of the lid so that the dumpster may be emptied in the same manner.

• You may need to restrict the ratio of some lengths to prevent the geometry from changing. You should
only do this if the minimization process causes some length to go to zero, thereby changing the geom-
etry. You must document this in your report.

• The base is made of 10 gauge steel sheet metal (.1345 in thick) which costs $0.93 per ft2.

• The sides, top and lid are made of 12 gauge steel sheet metal (.1046 in thick) which costs $0.71 per ft2.

• Welding costs $0.12 per ft.

• The hinge for the lid costs $0.20 per foot.

• Cutting and folding the sheet metal are fixed costs which are independent of length. So they do not
need to be included in the cost.

You may modify any of these restrictions to fit your geometry, but you must explain in your report.
You need to write a report presenting your suggestions which can be read by both the company presi-

dent and the technical engineers. You should include the original cost and dimensions, the final cost and
dimensions and the percent savings in the cost.

To organize your work, you should follow the following steps:

1. Draw a diagram of the dumpster. Describe it and pick variable names for each of the lengths.

2. Write formulas for the general cost and volume of the dumpster and the area of the lid.

3. Plug in your measurements to find the original cost, volume and area of the lid.

4. Write out the constraints on the volume and area.

5. Minimize the cost.

6. If some length goes to zero, go back to step 4 and add a constraint on the ratio of that length to some
other length.

7. Discuss your results.

17Stewart§§15.7, 15.8.
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10.6 Project: Locating an Apartment
18Upon moving to a new city, you want to find an apartment which is conveniently located relative to your
school, your place of work and the shopping mall. These are located at

S = (−3, 5) W = (1,−4) M = (6,−2)

respectively. If your apartment is at A = (x, y) find the location of your apartment which minimizes
f = | ~AS| + | ~AW | + | ~AM |. Here | ~AS| is the distance from your apartment to school (i.e. the length
of the vector ~AS ) and similarly for | ~AW | and | ~AM | .

In the course of solving this problem, you should answer the following questions:

1. Compute the gradient of | ~AS| and express your answer in terms of the vector~AS . In particular,
how are their directions related, how are their magnitudes related?

2. Draw a contour plot of | ~AS| and use it to further justify your answers to #1.

3. Find the point A which minimizes f .

4. Plot the three vectors ~AS , ~AW and ~AM using theplot option
scaling=constrained . (See lab 9.1 for an example of plotting dot-to-dot pictures.)

5. Give a geometric condition on the three vectors~AS , ~AW and ~AM which characterizes
the point A which minimizes f .

• Do either #6 or #7:

6. What happens if the points S, W and M are moved so that the angle∠SWM is
greater than 135◦ ?

7. Prove the geometric condition you found in #5. It may be useful to use your results from #1.

10.7 Project: p-Normed Spaceballs: The Area of a Unitp-Normed
Circle

19In this project, you will determine the area of a unitp-ball in the plane for different values of p and
look at their limiting characteristics.

Definitions:
The p-norm of a vector ~v = (x, y) in R

2 is |~v|p = p
√|x|p + |y|p instead of the standard

Euclidean 2-norm |~x|2 =
√|x|2 + |y|2 . So ap-normed circle of radius R is the set of points

(x, y) satisfying

|~v|p = R or |x|p + |y|p = Rp ,

18Stewart§§15.7, 15.8.
19Stewart§16.3.
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and ap-ball is the interior of ap-normed circle. So you need to compute the area of the region satisfying

|x|p + |y|p ≤ 1 .

(In this project, the dimension of the space is fixed and the norm varies.)

1. Usingimplicitplot or justplot with scaling=constrained , graph several unitp-circles
in the plane with p ≥ 1 . Specifically, superimpose the curves|x|p + |y|p = 1 for p =
1, 2, 3, 4, 5 . Notice they are convex.

2. Make a conjecture as to the limiting shape and area of thesep-balls as p → ∞ .

3. Usingimplicitplot or justplot with scaling=constrained , graph several unitp-circles
in the plane with 0 < p ≤ 1 . Specifically, superimpose the curves|x|p + |y|p = 1 for
p = 1, 1

2 , 1
3 , 1

4 , 1
5 . Notice they are concave for p < 1 .

4. Make a conjecture as to the limiting “shape” and “area” of thesep-balls as p → 0+ .

5. For p = 1, 2, 3, 4, 5 , compute the area of the unitp-ball

|x|p + |y|p ≤ 1 .

HINT: For each value of p , the fact that thep-ball is symmetric with respect to both thex-axis
and they-axis means that the total area is 4 times the area of the part of thep-ball in the first quadrant.
Accordingly, set up an appropriate double integral in rectangular coordinates for the area in the first
quadrant and multiply it by 4.

6. Can you obtain a general formula for the area of the unitp-ball for p ≥ 1 ?

7. Whether or not you answered #6 in the affirmative, what is the limiting value of the area of the unit
p-ball as p → ∞ ? Use Maple’sLimit andvalue commands.

8. For p = 1
2 , 1

3 , 1
4 , 1

5 , compute the area of the unitp-ball

|x|p + |y|p ≤ 1 .

9. Can you obtain a general formula for the area of the unitp-ball for 0 < p < 1 ? HINT: The
formulas in #6 and #9 are the same.

10. Whether or not you answered #9 in the affirmative, what is the limiting value of the area of the unit
p-ball as p → 0+ ?
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10.8 Project: The Volume Between a Surface and Its Tangent Plane
20In this project, you will be finding the tangent plane to a surface for which the volume between the surface
and the tangent plane is a minimum.

1. Pick a surface z = f(x, y) which is everywhere concave up or everywhere concave down such as

z = f(x, y) = x2 + 3y4 + x2y2 .

NOTE: A function f(x, y) is everywhere concave up or everywhere concave down ifD = fxxfyy−fxy
2

is everywhere positive.

2. Find its tangent plane at a general point
(
a, b, f(a, b)

)
.

3. Compute the volume between the surface and its tangent plane above the regionR which is the
square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 . Call this volume V (a, b) .

4. Find the point (a, b) for which the volume V (a, b) is a minimum. Be sure to apply the second
derivative test to verify that your critical point is a minimum.

5. Repeat steps 1-4 for two or three other functionsf(x, y) . Use interesting functions, not just
polynomials, and check the concavity.

6. What do you conjecture?

7. Prove your conjecture by repeating steps 1-4 for an undefined functionf . Before solving for (a, b)
you will need to give names to the partial derivatives off usingsubs .

8. What happens to your conjecture if you change the regionR ? Try some shapes other than a
rectangle or a circle!

10.9 Project: Hyper-Spaceballs: The Hypervolume of a Hypersphere
21In this project, you will determine the hypervolume enclosed by a hypersphere inR

n using the ordinary

Euclidean norm: |~x| =

√
n∑

k=1

(xk)2.

(In this project, the norm is fixed and the dimension of the space varies.)

1. Draw the circle x2 + y2 = 1, using a parametricplot or an implicitplot with
scaling=constrained . Compute the area enclosed by the circlex2 + y2 = R2 using a
double integral in polar coordinates. Repeat using a double integral in rectangular coordinates. Write
your answer as an arrow defined functionV2(R) where V2 means 2-dimensional volume or
area. (In Maple, you enter V2 as V[2] .)

20Stewart§§15.4, 15.7, 16.3, 16.5.
21Stewart§§16.3, 16.4, 16.7, 16.8.
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2. Draw the sphere x2 + y2 + z2 = 1 , using a parametricplot3d or an implicitplot3d
with scaling=constrained . (You may wish to experiment with various 3-D plotting options.)
Compute the volume enclosed by the spherex2 +y2 +z2 = R2 using a triple integral in spherical
coordinates. Repeat using a triple integral in rectangular coordinates. Write your answer as an arrow
defined function V3(R) where V3 means 3-dimensional volume.

• We now leave the earthly realm and journey into n-dimensional space withn > 3. Being a three-
dimensional being, you cannot visualize objects in these higher dimensional spaces. Like a pilot pass-
ing his final flight test, you must rely on your wits and your instruments – – in this case Maple. Take a
food break before taking this next step.. . . Where and what did you eat?

3. Compute the 4-dimensional hypervolume enclosed by the hyperspherex2 + y2 + z2 + w2 = R2

using a quadruple integral in rectangular coordinates inR4 . Write your answer as an arrow
defined function V4(R) where V4 means 4-dimensional volume.

4. For n = 5, 6, . . . , 10 , find then-dimensional hypervolume of then-dimensional hypersphere
n∑

k=1

x2
k = R2 in R

n . Write your answer as an arrow defined functionVn(R) where Vn

meansn-dimensional volume.

HINT: After doing the case for n = 5 , you may getvery tired of typing in all those limits of
integration! There are two ways to shorten the task: (See your instructor for help.)

(a) Try using theseq andsum commands to construct the list of limits which are needed for the
n-fold multiple integral.

(b) Alternatively, notice that the 3-dimensional ball of radiusR may be sliced into thin disks
perpendicular to thez-axis with varying radii r . Computationally, the triple integral for
V3(R) may be written as a single integral overz of V2(r) with r varying as a func-
tion of z . Now generalize this by slicing then-dimensional hypersphere of radiusR
perpendicular to thenth axis producing a collection of parallel(n−1)-dimensional hyperspheres
of varying radii r . Then express Vn(R) as an integral of V(n−1)(r) with r

varying as a function of thenth coordinate.

5. Looking at your results for the hypervolumes of then-dimensional hyperspheres, deduce two general
patterns for Vn(R) . The formulas forn even and forn odd are different.Does your “odd”
formula hold for the case n = 1 ; that is, for the length of the interval [−R, R] ?

6. Use mathematical induction to prove your two formulas forVn(R) . (Use the second hint from
#4.) This may be hard; so don’t be discouraged it you don’t get it.

HINT: You may use the following definite integrals without proof:

∫ π/2

−π/2

cos2k θ dθ =
(2k)!π

22k(k!)2

∫ π/2

−π/2

cos2k+1 θ dθ =
22k+1(k!)2

(2k + 1)!
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10.10 Project: The Center of Mass of Planet X
22As a space pioneer, you have just arrived in a new solar system and discovered a new planet, hereafter
called Planet X, which is very similar to Earth.

In order to safely orbit and land on the planet, you need to know the total mass of the planet to within
±1021 kg and the center of mass of the planet to within 1 m accuracy. That is the objective of this project.

From distant but detailed radar observations, you have determined that (i) sea level is at a radius of 6371
km from the center of Planet X and that (ii) the land surface (both above and below sea level) is given in km
as a radial function of the spherical coordinates(θ, φ) by the formula:

R = 6373− .8 cos(2.2θ) − 2.55 cos(3.64φ − 1.07) + 1.78 sin(5.46φ − 1.64) + 3.19 cos(.65φ + 8.8)

You may assume that the density of water is 1 g/cm3 or 1012 kg/km3 while the average density of the land is
5.52 g/cm3 or 5.52 × 1012 kg/km3.

Procedure:

1. Initialize your worksheet and define the spherical coordinates:
> with(vec_calc): vc_aliases:
> jacobian:=rhoˆ2*sin(phi);
> x0:=rho*sin(phi)*cos(theta);
> y0:=rho*sin(phi)*sin(theta);
> z0:=rho*cos(phi);

Then enter the values for thewater density and theland density in kg/km3 and define the
water level and theland level in km.

2. Recreate the above plot of planet X but displayed from an orientation you prefer. Usesphereplot
to draw two separate plots of the water surface in blue and the land surface in green. In each plot use
a grid with 97 lines in theθ direction and 49 lines in theφ direction. This will put one line at every
3.75◦ = π

48 rad. Thendisplay the two plots together. (Use a courser grid until you perfect your
plots.)

22Stewart§§16.5, 16.8.
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3. Compute the mass and center of mass of the solid land of Planet X (not including the water).

4. Compute the mass and center of mass of the water portion of Planet X (not including the land).

5. Compute the total mass and total center of mass of Planet X by combining those for the land and water
portions.

HINTS:

• Compute the integrals in spherical coordinates usingMuint andvalue or evalf and remember to
include the spherical Jacobian in the integrand. Then when you compute thex, y, andz coordinates of
the center of mass be sure to expressx, y, andz in spherical coordinates.

• Maple may not be able to compute the exact values of the triple integrals usingvalue and may not
even be able to compute approximate decimal values usingevalf . In that case, you should use the
midpoint rule to approximate each of the three integrals. For example, the volume of a sphere of radius
10 m can be computed from the integral

> Muint(1*jacobian,rho=0..10,theta=0..2*Pi,phi=0..Pi);

∫ π

0

∫ 2 π

0

∫ 10

0

jacobian dρ dθ dφ

Then its exact and approximate values are

> value(%); V:=evalf(%);

20 jacobian π2

V := 197.3920881 jacobian

However, an approximate value can also be obtained from

> n:=8: middlesum( subs(i=j, middlesum( subs(i=k, middlesum(
1*jacobian, rho=0..10, n)), theta=0..2*Pi, n)), phi=0..Pi, n):
V:=evalf(%);

V := 24.67401100 r + 172.7180770 (proc(F, V ) . . . end)

Be sure to increase the number of intervals until you get the desired accuracy.

• When you compute the mass and center of mass of the water, you must remember that (i) there is no
water when the land level is above sea level and (ii) when the land level is below sea level there is only
water between the land level and sea level. You can implement (ii) by taking the limits on the radial
integral to be the land level and the sea level. To implement (i), you will need to use the Heaviside
function which has the value 0 when its argument is negative and has the value 1 when its argument is
positive. See?Heaviside .
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10.11 Project: The Skimpy Donut
23You are the mathematics consultant for a donut company which makes donuts which have a thin layer of
chocolate icing covering the entire donut. One day you decide to point out that the company might cut costs
on chocolate icing if they keep the volume (and hence weight) of the donut fixed but adjust the shape of the
donut to minimize the surface area. Alternatively, they could advertize extra icing by maximizing the surface
area. You need to write a report presenting your idea which can be read by both the company president and
the technical engineers.

A donut has the shape of a torus which is specified by giving a big radiusa and a small radius b
as shown in the figure. A typical donut might havea = 1 in and b = 1

2 in.

b
a

Your job is to determine the values ofa and b which extremize the surface area while keeping
the volume fixed at the volume of the typical donut mentioned above.

1. The surface of a torus satisfies the equation

(r − a)2 + z2 = b2

in cylindrical coordinates where, of course,b ≤ a .

(a) Compute the volume V of the torus as a function of a and b .
HINT: Integrate in cylindrical coordinates.

(b) Check that the volume of the typical donut witha = 1 in and b =
1
2

in is V =
π2

2
in3 ≈ 5 in3 .

2. The surface of the torus can also be parametrized as

x = (a + b cosφ) cos θ

y = (a + b cosφ) sin θ

z = b sin φ

for
0 ≤ φ ≤ 2π

0 ≤ θ ≤ 2π

23Stewart§§16.8, 17.6.
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Here, θ represents the angle around the circle of radiusa and φ represents the angle
around the circle of radius b .

(a) Plot the donut using a 3 dimensional parametric plot.

(b) Compute the surface areaS of the torus as a function of a and b .
HINT: Do a surface integral in θ and φ.

(c) Check that the surface area of the typical donut witha = 1 in and b =
1
2

in is S =

2π2 in2 ≈ 20 in2 .

3. Keep the volume fixed at V =
π2

2
in3 and find the values of a , b and S which

minimize and maximize the surface areaS . (Apply the second derivative test to any critical point
in the in the interior and check the values at the endpoints.)

10.12 Project: Steradian Measure
24In this project, you will learn about steradian measure, which is a measure of solid angle, and use it to
measure the solid angle subtended by several shapes.

Definition: The solid angle ∠PS subtended by a smooth parametric surfaceS as seen from
a point P is the set of rays (half-lines) starting atP and passing through S . These rays
intersect the sphere of radiusR centered at P in a surface T (R) with area A(R). Then
the steradian measure of the solid angle∠PS relative to the sphere of radiusR is

|∠PS| =
A(R)
R2

.

Thus the steradian measure is the fraction of the sphere subtended times4π .
This is analogous to the radian measure of a planar angle which is the fraction of a circle subtended times

2π .

1. Show that the steradian measure of the solid angle∠PS can be computed from the following
integral over the surface S :

|∠PS| =
∫∫

S

1
r3

~r · ~dS

where ~r is the vector from P to the point on the surface S and r = |~r| .

HINT: Choose R so that S is completely enclosed in the sphere of radiusR . Then
apply Gauss’ Divergence Theorem to the solid region betweenS and T (R) using the vector

field ~F =
1
r3

~r .

2. Show that the steradian measure of the solid angle∠PS is independent of the radiusR .

HINT: Apply Gauss’ Divergence Theorem to the solid region betweenT (R1) and T (R2) .

24Stewart§§17.6, 17.9.
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3. Use the formula in problem #1 to compute the solid angle subtended by 3 or 4 surfaces. The following
are possible surfaces but you may use any surfaces of your choice. Give appropriate plots. (You can do
this problem before problems #1 and #2.)

(a) The square {y = 2,−1 ≤ x ≤ 1,−1 ≤ z ≤ 1} as seen from the origin.

(b) The ellipse {z = 2, 9x2 + 16y2 ≤ 25} as seen from the origin.

(c) The paraboloid z = x2 + y2 as seen from (0, 0,−1) .

(d) The paraboloid z = x2 + y2 as seen from (0, 0, 1) .

(e) The upper sheet of the hyperboloid of two sheetsz2 = x2 + y2 + 1 as seen from the origin.

(f) The upper sheet of the hyperboloid of two sheetsz2 = x2 + y2 +1 as seen from (0, 0, 2) .

(g) The hyperboloid of one sheetz2 = x2 + y2 − 1 as seen from the origin.

(h) The torus given in cylindrical coordinates asz2 + (r − a)2 = b2 as seen from the origin.
(First try a = 2 and b = 1 .)
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Kenneth Parker and Jared Teslow who helped convert the help files from Release 3 to Release 4.

A.2 Description of the Package

Thevec calc package is a collection ofMaplecommands designed for the study and application of vector
calculus problems.

At the time this book went to press the current version ofvec calc was version 4.3 which works with
MapleV Release 4 and Release 5. All of this book was executed in Release 5 using that version. There is
also a version 3 for Release 3, but that version is not being maintained, has slightly different command names
and has an incomplete help system. The version number of your copy is displayed whenever you start the
package. A future version of the package may be included in the share library for a future version ofMaple.
Current information about the package is available over the internet using the following URL:

• http://calclab.math.tamu.edu/maple/vec calc/

A.3 Obtaining and Installing the Files

Before using the package, you must first obtain and install three files: the package index, the package library
and package help database. The file names aremaple.ind , maple.lib and maple.hdb .
These are not to be confused with the filesmaple.ind , maple.lib and maple.hdb in the
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standardMaplelibrary. These files are exactly the same for all operating systems. (The version for Release 3
does not have or need the help database.)

The files are available by anonymous FTP. The FTP site isftp.math.tamu.edu and the direc-
tory is /pub/MapleVR5/vec calc . The files must be transferred in BINARY mode. The three
files total 352 Kbytes.

You may keep the files on a floppy disk or put them on your hard disk. Here are the recommended
locations on the hard disk:

• DOS/Windows (95, 98 and NT) and OS2:
C: \Program Files \Maple V Release 5 \local \vec calc

• UNIX/X-Windows:
/usr/local/MapleVR5/local/vec calc

• Macintosh:
Macintosh HD:Maple V Release 5:local:vec calc

You will need to create thelocal andvec calc subdirectories. If you put the files in a different directory
or leave them on a floppy disk, then the instructions below must be appropriately modified.

A.4 Using the Package

To use the commands in thevec calc package, you must first execute two or three commands.
The first command tellsMaplewhere the package library files are located. The exact form of this command
is system and installation dependent.

• For DOS/Windows (95, 98 or NT) and OS2 enter:

> libname := libname, "C:\\Program Files\\Maple V Release
5\\local\\vec_calc";

• For UNIX/X-Windows enter:

> libname := libname, "/usr/local/MapleVR5/local/vec_calc";

• For Macintosh enter:

> libname := libname, "Macintosh HD:Maple V Release 5:local:vec_calc";

In each of these commands, you must replace the path by the actual path to the library files as appropriate
for your operating system and where you installed the files. The path is then enclosed indouble quotes(”).
Also notice that a DOS directory\ must be entered as\\.
The second command reads in the package commands:

> with(vec_calc);

Finally, the third (optional) command defines many abbreviations for thevec calc commands:

> vc_aliases;

This book assumes that you have executed this optional command so that all the aliases are available.
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Below is the output you should expect from these commands.
> libname := libname, "C:\\Program Files\\Maple V Release
5\\local\\vec_calc";

libname := “C:\\ PROGRAM FILES\\MAPLE V RELEASE 5\\update”,

“C:\\PROGRAM FILES\ \MAPLE V RELEASE 5\\lib” ,

“C:\\Program Files\ \Maple V Release 5\\local\\vec calc”
> with(vec_calc);

Warning, new definition for norm

Warning, new definition for trace

Package: vec_calc Version 4.3

For all HELP, execute: ?vec_calc

To use aliases, execute: vc_aliases;

[&., &x , CURL, DIV , GRAD , HESS , JAC , JAC DET , LAP , Line int scalar ,

Line int vector , Multipleint , POT , Surface int scalar , Surface int vector ,

VEC POT , cross, curve acceleration , curve arclength, curve binormal ,
curve curvature, curve forget , curve jerk , curve normal ,
curve normal acceleration , curve tangent , curve tangential acceleration ,

curve torsion , curve velocity , cyl2rect , cyl2sph , deg2rad , dot , evall ,
leading principal minor determinants , len, line int scalar , line int vector ,

makefunction , multipleint , polar2rect , rad2deg , rect2cyl , rect2polar , rect2sph,

sph2cyl , sph2rect , ss, surface int scalar , surface int vector , vc aliases ]
> vc_aliases;

I, Point , MF , Cv , Ca , Cj , CT , CN , CB , Ck , Ct , CL, CaT , CaN , Cforget , d2r , r2d , p2r , r2p,

c2r , r2c, s2r , r2s , s2c, c2s , Muint , muint , LPMD , Lis , lis , Liv , liv , Sis , sis , Siv , siv
After starting thevec calc package, you may get help on any command by executing

> ?vec_calc
and following the hyperlinks.

A.5 Automating the Package

You may automate the startup of thevec calc package in two ways: (1) by using command line parameters,
and/or (2) by using aMaple initialization file.

A.5.1 Command Line Parameters

When you startMaple you may set several options on the command line. For details, read the help page
?maple . In particular, “The -b (library) option tells Maple that the following argument should be used as the
pathname of the directory which contains the Maple library. This initializes the Maple variablelibname .
By default,libname is initialized with the pathname” of the standard library. “More than one -b option can
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be specified. In this case,”libname is initialized to a sequence of libraries in the order they appear on the
command line and the libraries are searched in that order.

To find out the standard library(s) on your machine, executelibname; Then the command line argument
can be used to modify thelibname variable.

• For DOS/Windows and OS2: If the currentlibname is
> libname;

“C:\\PROGRAM FILES\\MAPLE V RELEASE 5\\ update”,

“C:\\PROGRAM FILES\ \MAPLE V RELEASE 5\\lib”

then you should startMapleusing

"C: \Program Files \Maple V Release 5 \BIN.WNT\wmaple.exe"

-b "C: \PROGRAM FILES\MAPLE V RELEASE 5\update"

-b "C: \PROGRAM FILES\MAPLE V RELEASE 5\lib"

-b "C: \PROGRAM FILES\MAPLE V RELEASE 5\local \vec calc"

You can put this line in a batch file in the users’ path. Or you can edit the Target Line in the Properties
or Settings window for theMaple icon to agree with this.

• For UNIX/X-Windows: If the currentlibname is
> libname;

“/usr/local/MapleVR5/lib”

then you should startMapleusing

% /usr/local/MapleVR5/bin/maple -x -b /usr/local/MapleVR5/lib

-b /usr/local/MapleVR5/local/vec calc

You can put this line in a shell script in the users’ path.

• For Macintosh: It does not appear possible to use command line arguments, since there is no command
line. (If you figure out how to do it, please tell me. P. Yasskin)

A.5.2 Maple Initialization Files

Maplecan have two initialization files (except on a Macintosh) which can contain any number ofMaplestate-
ments which will be executed at the start of every session. A system-wide initialization file (if it exists) will
be executed first. An individual user’s initialization file (if it exists) will be executed next. Any output from
these files will appear in the worksheet and then the prompt will appear. Hence it is usually “recommended
that all statements in the initialization files terminate with a full colon (:) rather than a semicolon, to prevent
any display.”

The names, locations and contents of the initialization files are system dependent.

• For DOS/Windows and OS2:

– The system-wide initialization file is calledmaple.ini and it is located in the
C: \PROGRAM FILES\MAPLE V RELEASE 5\lib directory.
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– The user’s initialization file is calledmaple.ini and it is located in the user’s Working Direc-
tory.

On Windows 3.x and NT, to set the user’s Working Directory, select theMapleapplication icon
in the Program Manager, and select ”Properties” under the ”File” menu. Modify the field called
”Working Directory”. You can make differentMaple application icons for different Working
Directories.

On Windows 95 and 98, to set the user’s Working Directory, create a shortcut for theMaple
application. Select theMapleshortcut icon, click the right mouse button and open ”Properties”.
Modify the field called ”Start In”. This will be the user’s Working Directory used when you start
Mapleusing this particular shortcut icon.

On OS2, to set the user’s Working Directory, select theMaple application icon, click the right
mouse button and open ”Settings”. Modify the field called ”Working Directory”.

– To automate thevec calc package, the initialization files should contain the three statements
> libname := libname, "C:\\Program Files\\Maple V Release
5\\local\\vec_calc":
> with(vec_calc): vc_aliases:

If the path to thevec calc package is specified on the command line (say in a batch file or in
the Properties window for theMapleicon), then thelibname statement should not be included.
Thevc aliases: statement is optional.

• For UNIX/X-Windows:

– The system-wide initialization file is called.mapleinit and it is located in the
/usr/local/MapleVR5/lib directory.

– The user’s initialization file is called.mapleinit and it is located in the user’s home directory.

– To automate thevec calc package, the initialization files should contain the three statements
> libname := libname, "/usr/local/MapleVR5/local/vec_calc":
> with(vec_calc): vc_aliases:

If the path to thevec calc package is specified on the command line (say in a system-wide shell
script), then thelibname statement should not be included. Thevc aliases: statement is
optional.

• For Macintosh:

– There is only one initialization file. This system-wide initialization file is calledMapleInit
and it is located in theMaplefolder, where theMapleapplication resides.

– To automate thevec calc package, the initialization files should contain the three statements
> libname := libname, "Macintosh HD:Maple V Release
5:local:vec\_calc":
> with(vec_calc): vc_aliases:

Thevc aliases: statement is optional.



Appendix B

Tables of Applications of Integration

This appendix provides three tables of applications of integration. The first contains applications of double
and triple integrals. The second contains applications of line and surface integrals of scalar fields. The third
contains applications of line and surface integrals of vector fields with alternate forms due to the Fundamental
Theorem of Calculus for Curves, Stokes’ Theorem and Gauss’ Theorem, when appropriate. Examples appear
throughout the text.
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Table B.1: Table of Applications of Multiple Integrals

Applicationa 2-D 3-D

differential dA = dx dy dV = dx dy dz = r dr dθ dz

= r dr dθ = J du dv = ρ2 sin(φ) dρ dθ dφ = J du dv dw

measure A =
∫∫

R

1 dA area V =
∫∫∫

R

1 dV volume

total massb M =
∫∫

R

ρ dA M =
∫∫∫

R

ρ dV

electric chargec Q =
∫∫

R

ρc dA Q =
∫∫∫

R

ρc dV

moments My =
∫∫

R

xρ dA Myz =
∫∫∫

R

xρ dV

Mx =
∫∫

R

y ρ dA Mxz =
∫∫∫

R

y ρ dV

Mxy =
∫∫∫

R

z ρ dV

center of massd (x, y), where (x, y, z), where

x =
My

M
, y =

Mx

M
x =

Myz

M
, y =

Mxz

M
, z =

Mxy

M

moments of inertiae Ix =
∫∫

R

y2 ρ dA Ix =
∫∫∫

R

(y2 + z2) ρ dV

Iy =
∫∫

R

x2 ρ dA Iy =
∫∫∫

R

(x2 + z2) ρ dV

I0 =
∫∫

R

(x2 + y2) ρ dA Iz =
∫∫∫

R

(x2 + y2) ρ dV

radii of gyration x =

√
Iy

M
, y =

√
Ix

M
N/A

aR = region of integration
bρ = mass density
cρc = charge density
dThe center of mass is also called the centroid when the density is a constant.
eNote thatI0 = Ix + Iy.
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Table B.2: Table of Applications of Line and Surface Integrals of Scalars

Applicationa,b Line Integrals Surface Integrals

scalar differential ds = |~v| dt dS = | ~N | du dv

measure L =
∫ B

A

1 ds arc length A =
∫∫

S

1 dS surface area

total massc M =
∫ B

A

ρ ds M =
∫∫

S

ρ dS

electric charged Q =
∫ B

A

ρc ds Q =
∫∫

S

ρc dS

moments Myz =
∫ B

A

xρ ds Myz =
∫∫

S

xρ dS

Mxz =
∫ B

A

y ρ ds Mxz =
∫∫

S

y ρ dS

Mxy =
∫ B

A

z ρ ds Mxy =
∫∫

S

z ρ dS

center of masse (x, y, z), where (x, y, z), where

x =
Myz

M
, y =

Mxz

M
, z =

Mxy

M
x =

Myz

M
, y =

Mxz

M
, z =

Mxy

M

moments of inertia Ix =
∫ B

A

(y2 + z2) ρ ds Ix =
∫∫

S

(y2 + z2) ρ dS

Iy =
∫ B

A

(x2 + z2) ρ ds Iy =
∫∫

S

(x2 + z2) ρ dS

Iz =
∫ B

A

(x2 + y2) ρ ds Iz =
∫∫

S

(x2 + y2) ρ dS

aA = ~r(a), B = ~r(b), where~r(t) is the curve
bS is the surface
cρ = mass density
dρc = charge density
eThe center of mass is also called the centroid when the density is a constant.
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Table B.3: Table of Applications of Line and Surface Integrals of Vectors

Line Integrals Surface Integrals

vector differential ~ds = ~v dt = T̂ ds ~dS = ~N du dv = N̂ dS

open curvea/surfaceb Work =
∫ B

A

~F · ~ds F lux =
∫∫

S

~F · ~dS

= f(B) − f(A) if ~F = ~∇f =
∮

∂S

~A · ~ds if ~F = ~∇× ~A

by Fund. Thm. of Calc. for Curves by Stokes’ Theorem

closed curvec/surfaced Circulation =
∮

~r

~F · ~ds Expansion =
∫∫

S

~F · ~dS

=
∫∫

S

~∇× ~F · ~dS =
∫∫∫

V

~∇ · ~F dV

by Stokes’ Theorem by Gauss’ Theorem

where∂S = ~r where∂V = S

aA = ~r(a), B = ~r(b), where~r(t) is the open curve
bS is the open surface
c~r is the closed curve
dS is the closed surface
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?,seehelp
curl curl, seecurl of the curl
curl grad, seecurl of the gradient
curl, seecurl
div curl, seedivergence of the curl
div, seedivergence
grad div, seegradient of the divergence
grad, seegradient
~a, seeacceleration
aN , seeacceleration: normal
aT , seeacceleration: tangential
&x, seecross product
&. , seedot product
B̂, seebinormal vector: unit
[ ] , seesquare brackets
: , seecolon
:= , seeassignment
~∇, seedel operator,seegradient
~∇× , seecurl
~∇× ~∇, seecurl of the gradient
~∇× ~∇× , seecurl of the curl
~∇~∇, seeHessian
~∇~∇ · , seegradient of the divergence
~∇ · , seedivergence
~∇ · ~∇× , seedivergence of the curl
~∇2 = ~∇ · ~∇, seeLaplacian
dS, seescalar differential of surface area
ds, seescalar differential of arc length
~dS, seevector differential of surface area
~ds, seevector differential of arc length
~j, seejerk
κ, seecurvature
N̂ , seenormal vector: unit principal
%, seepercent
; , seesemi-colon
#, seecomment
T̂ , seetangent vector: unit

τ , seetorsion
~v, seevelocity

acceleration, 31, 196, 212
normal, 37, 197
tangential, 37, 197

addcoords , 103
addition of vectors,seevector: addition
algebra of vectors,seevector: algebra
allvalues , 70, 85
Ampere’s Law, 145, 208
angle, 6, 191
angle , seeangle
animate , 67
animate curve, 212
animate3d , 154
apartment, 216
apple, 202
applications of integrals, 92, 100, 230
approximate value, 4
aquarium, 79, 88
arc length, 32, 116, 196, 232

scalar differential, 116
vector differential, 120

arc length parameter, 32
area, 92, 231

p-ball, 216
cardioid, 100
differential, 107
parallelogram, 8
scalar differential, 127
surface, 127, 232
triangle, 8, 191
vector differential, 131

area as a line integral, 125, 165
arrow notation

explicit vs.makefunction , 40
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partial derivative, 44
vs. expression notation, 45

assignment, 2
unassign, 2

assume , 136
asymptotes, 16, 17
asymptotic cone, 19

big dipper, 190
binormal vector

unit, 34, 196, 212
bipolar coordinates,seecoordinates: bipolar

c2r , 11
c2s , 11
Ca, seeacceleration
CaN, seeacceleration: normal
cardioid, 100
CaT, seeacceleration: tangential
CB, seebinormal vector: unit
center of mass, 93, 102, 118, 128, 220, 231, 232
centroid, 92, 100, 201, 231, 232
chain rule, 55

using implicit differentiation, 59
charge,seeelectric charge
chocolate kiss, 200
circle, 16

osculating, 212
circle , 140
circulation, 124, 172, 205, 233
Cj , seejerk
Ck, seecurvature
CL, seearc length
click in plot, 64
CN, seenormal vector: unit principal
colon, 5
comment, 6
\mif completesquare , 16, 19
component, 2
composition, 55

with curve, 60, 116, 120
with surface, 128, 131

concavity, 218
cone, 18, 111

4-dimensional, 111
conservative force, 160

constrained max-min problems, 69, 78, 199
contourplot , seeplot: 2D contour
contourplot3d , seeplot: 2D contour
contraction, 178
convergence, 178
convert , 47

convert( . . . , polynom ) , 52
coordinate curve, 104

on surface, 126
coordinate grid, 104

for surface, 126
coordinate tangent vector, 105

for surface, 126
coordinates

2D rectangular, 10, 189
3D rectangular, 11, 189
bipolar, 103
curvilinear, 103
cylindrical, 11, 96, 200
in plot, 64
paraboloidal, 103
polar, 10, 95, 189, 200
spherical, 11, 98, 107, 189, 200

coordplot , 104
coordplot3d , 104
coords , 103
critical points, 199

classifying, 75
finding, 70

cross , seecross product
cross (quadric), 16, 17
cross product, 8, 126, 191
CT, seetangent vector: unit
Ct , seetorsion
CURL, seecurl
curl, 144, 151, 208

interpretation, 204
curl , seecurl
curl of the gradient, 148, 151
Curl Theorem,seeStokes’ Theorem
current,seeelectric current
curvature, 36, 196, 212
curve

2D plot, 23
3D plot, 23
analysis, 29, 196
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parametric, 21, 25, 116, 193, 212
quadric, 16, 192
reparametrize, 32

curve acceleration , seeacceleration
curve binormal , seebinormal vector: unit
curve curvature , seecurvature
curve jerk , seejerk
curve length , seearc length
curve normal , seenormal vector:

unit principal
curve normal acceleration , see

acceleration: normal
curve tangent , seetangent vector: unit
curve tangential acceleration , see

acceleration: tangential
curve torsion , seetorsion
curve velocity , seevelocity
curvilinear coordinates,seecoordinates:

curvilinear
cusp, 21
Cv, seevelocity
cyl2rect , 11
cyl2sph , 11
cylinder, 18
cylinderplot , 97
cylindrical coordinates,seecoordinates:

cylindrical

D, 28, 31, 44, 105, 126
d2r , 5
decimal approximation, 4
deg2rad , 5
degrees, 5, 6
del operator, 139
density

linear, 118
surface, 128

derivative, 27
derivative along curve, 58, 60
derivative along vector, 60
dessert, 200
Diff , 27
diff , 44
differential, 49

n-volume, 107
area, 107

identities,seeidentities: differential
volume, 107

differential of arc length
scalar, 116
vector, 120

differential of surface area
scalar, 127
vector, 131

direction of a vector, 4
direction vector, 12
directional derivative, 58, 61
display , 41, 50, 63
DIV , seedivergence
diverge , seedivergence
divergence, 139, 151, 178, 206

interpretation, 203
divergence of the curl, 149, 151
Divergence Theorem,seeGauss’ Theorem
donut, 222
dot , seedot product
dot product, 4, 191

electric charge, 39, 138, 142, 206, 208, 231, 232
electric current, 138, 145, 208
electric field, 206
eliminating variables, 69, 79, 84
ellipse, 16, 17, 29, 42, 80, 82, 224
ellipsoid, 18, 47
elliptic paraboloid, 18
equate , 12, 70
estimate

using differentials, 49
evalf , 4
evall , 3
expansion, 135, 178, 203, 233
expression, 40

partial derivative, 44
expression notation

vs. arrow notation, 45

fieldplot , seeplot: 2D vector field
fieldplot3d , seeplot: 3D vector field
fluid, 124, 134, 135
flux, 134, 172, 233
4-dimensional cone, 111
4-dimensional sphere, 219
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4-dimensional volume, 111, 219
Frenet,seecurve: analysis
fsolve , 70
function

derivative along curve, 60
restriction to curve, 60, 116
restriction to surface, 128

Fundamental Theorem of Calculus, 156
Fundamental Theorem of Calculus for Curves, 157,

158, 160, 233

Gauss’ Law, 138, 142, 206
Gauss’ Theorem, 137, 174, 203, 206, 223, 233

2-Dimensional, 161
GRAD, seegradient
grad , seegradient
gradient, 46, 70, 139, 151, 216

as normal, 66
higher order, 148
in chain rule, 57
in directional derivative, 60
interpretation, 63
method, 213
plot, 63, 66

gradplot , seeplot: 2D gradient field
gradplot3d , seeplot: 3D gradient field
grain silo dome, 129
graph,seeplot
gravity, 160, 211
Green’s Theorem, 125, 161
grid , 18

helix, 29
help, 27
HESS, seeHessian
Hessian, 46, 76, 147
hessian , seeHessian
hyperbola, 16, 17, 43
hyperbolic paraboloid, 18, 20
hyperboloid of 1 sheet, 18, 224
hyperboloid of 2 sheets, 18, 19, 224
hypersphere, 218
hypervolume, 218

ice cream cone, 202
identities

differential, 150, 155
Im , 186
implicit differentiation, 50, 198

in chain rule, 59
implicitplot , seeplot: 2D implicit
implicitplot3d , seeplot: 3D implicit
independent , 70
Int , 28
integral, 27

JAC, 106
JAC DET, 106
Jacobian

curvilinear, 105
cylindrical, 96
polar, 95
spherical, 98

jerk, 31, 196

labs, 188
Lagrange multipliers, 69, 82, 84, 200, 215
LAP, seeLaplacian
Laplacian, 146

of vector, 147
laplacian , seeLaplacian
leading principal minor determinants, 76
left hand side, 17
len , 2, 32
length, 2
level curve, 41
level surface, 66
lhs , seeleft hand side
Limit , 27
limit, 27
line

2D non-parametric, 15
3D non-parametric, 15
parametric, 12, 192, 214
symmetric, 15

line integral
of a scalar, 116, 232
of a vector, 120, 208, 233

line integrals as surface integrals, 168
linear approximation, 48, 197, 212
list

vs. vector, 47
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list , 47
list of lists

vs. matrix, 47
listlist , 47
locate apartment, 216
LPMD, 76

magnetic field, 208
makefunction , seeMF
map, 27, 147
mass, 93, 102, 118, 128, 220, 231, 232
mathematical induction, 219
matrix

vs. list of lists, 47
matrix , 46, 47, 147
max-min problems, 69, 78, 199

two constraints, 84
maximum, 75, 76, 211, 213, 222
MF, 25, 29, 40, 104, 126
middlesum , 221
minimum, 75, 76, 211, 213, 215, 216, 218, 222
moment of inertia, 95, 102, 118, 128, 231, 232
moments, 92, 93, 101, 231, 232
mtaylor , seeTaylor polynomial
Muint , 89, 221
muint , 89
multiple integral, 200

applications, 231
curvilinear, 107, 108
cylindrical, 97
middlesum, 221
polar, 95, 218
rectangular, 89, 217–219
spherical, 98, 219

Multipleint , 89
multipleint , 89

n-dimensional sphere, 218
n-dimensional volume, 218
n-volume differential, 107
Newton’s Law, 211
Newton’s method, 212
non-parametric

line, seeline: non-parametric
plane,seeplane: non-parametric

nops , 53

normal acceleration,seeacceleration: normal
normal vector

to 2D line, 15
to level surface, 66
to plane, 13, 14
to surface, 126
unit principal, 34, 196, 212

north star, 190

op , 26
orientation of surface, 131
orienteering, 189
orthogonal projection, 7
osculating circle, 212

p-ball, 216
p2r , 10
parabola, 16
paraboloid

elliptic, 18, 224
hyperbolic, 18, 20

paraboloidal coordinates,seecoordinates:
paraboloidal

parallelepiped
volume, 8, 192

parallelogram
area, 8

parameter, 12, 13, 25
parametric

curve,seecurve: parametric
line, seeline: parametric
plane,seeplane: parametric
plot of curve,seeplot
plot of surface,seeplot
surface,seesurface: parametric

parametrizing constraints, 69, 80, 84
partial derivative

arrow notation, 44
expression, 44

path independence, 158, 160, 180
percent, 3
pie wedge, 201
plane

non-parametric, 14, 192
parametric, 13
tangent,seetangent plane
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Planet X, 220
plot

2D contour, 41, 63, 214, 216
2D gradient field, 63, 66
2D graph, 23, 41, 214, 217
2D implicit, 16, 23, 41, 217, 218
2D parametric, 218
2D parametric curve, 21, 23, 29, 41, 96, 193
2D vector field, 63, 140
3D gradient field, 63, 66
3D graph, 23, 41
3D implicit, 19, 23, 50, 219
3D parametric, 219
3D parametric curve, 22, 23, 29, 196
3D parametric surface, 22, 23, 97, 126, 220,

223
3D vector field, 63, 141
click in, 64
cylindrical, 97
donut, 223
dot-to-dot, 189, 211, 216
Planet X, 220
points, 189
polar, 96
spherical, 220
tangent plane, 48, 50
Taylor polynomial, 54
text, 63

plot , seeplot: 2D
plot3d , seeplot: 3D
plot:3D implicit, 197
point, 1
polar coordinates,seecoordinates: polar
polar2rect , 10
polarplot , 96
position, 25, 30, 116
POT, seescalar potential
potential

scalar,seescalar potential
vector,seevector potential

potential , seescalar potential
potential energy, 160
product rules,seeidentities: differential
projection

orthogonal,seeorthogonal projection
scalar,seescalar projection

vector,seevector projection
projects, 210

quadratic approximation, 52, 197
quadric curve,seecurve: quadric
quadric surface,seesurface: quadric

r2c , 11
r2d , 6
r2p , 10
r2s , 11
rad2deg , 6
radians, 5, 6
radii of gyration, 95, 231
Re, 186
readlib , 53
rect2cyl , 11
rect2polar , 10
rect2sph , 11
rectangular coordinates,seecoordinates:

rectangular
related line and surface integrals, 179
related surface and volume integrals, 182
reparametrize a curve, 32
restriction

to curve, 60, 116, 120
to surface, 128, 131

reversing the normal, 131
rhs , seeright hand side
right hand side, 17
RootOf , 70, 85

s2c , 11
s2r , 11
saddle point, 75, 76
scalar, 1

restriction to curve, 116
restriction to surface, 128

scalar differential
of arc length, 116
of surface area, 127

scalar function
of several variable, 40
partial derivative, 44

scalar multiplication,seevector:
scalar multiplication
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scalar potential, 151, 152, 158, 160
scalar projection, 6, 191
Second Derivative Test inR2, 75, 218
Second Derivative Test inRn, 76
semi-colon, 1, 5
sink, 178
skimpy donut, 222
solid angle, 223
solve , 70
source, 178
space, 5
spaceballs, 216
spacecurve , seeplot: 3D parametric curve
speed, 32, 196
sph2cyl , 11
sph2rect , 11
sphere, 18

n-dimensional, 218
4-dimensional, 219

sphere , 141
sphereplot , 220
spherical coordinates,seecoordinates:

spherical
spiral helix, 117
spiral ramp, 126
square brackets, 2, 26
starship, 56
steepest ascent, 213
step , 89
steradian measure, 223
Stokes’ Theorem, 167, 170, 204, 208, 233

2-Dimensional, 161
surface

3D plot, 23
normal vector, 126
orientation, 131
parametric, 22, 125
quadric, 18, 192, 198
tangent vector, 126

surface area, 127, 232
donut, 223
scalar differential, 127
vector differential, 131

surface independence, 170, 183
surface integral

of a scalar, 128, 232

of a vector, 131, 206, 208, 233
surface integrals as line integrals, 168
surface integrals as volume integrals, 176
symmetric equations for line, 15

Table B.1, 92, 100, 231
Table B.2, 118, 128, 232
Table B.3, 122, 133, 160, 172, 178, 233
tangent function, 48
tangent plane, 218

graph vs. level surface, 66
in Newton’s method, 213
plot, 48
to graph, 47, 198
to level surface, 66, 198

tangent vector, 12
curvilinear coordinate, 105
to surface, 126
unit, 34, 196, 212

tangential acceleration,seeacceleration:
tangential

taylor , 52
Taylor polynomial, 53, 148, 198

approximation, 52
contour plot, 54
order term, 52
ordinary plot, 54

textplot , 63
torsion, 36, 197
torus, 222, 224
trash dumpster, 215
triangle

area, 8, 191

unassign, 2
unconstrained max-min problems, 69, 199
unit vector, 4

value
on curve, 60, 116, 120
on surface, 128, 131

value , 32, 89
vec calc package, 225
VECPOT, seevector potential
vecpotent , seevector potential
vector, 1
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addition, 3, 189
algebra, 1
direction of, 4
direction of line, 12
normal to 2D line, 15
normal to plane, 13, 14
restriction to curve, 120
restriction to surface, 131
scalar multiplication, 3, 189
tangent to line, 12
unit, 4
vs. list, 47

vector , 47
vector differential

of arc length, 120
of surface area, 131

vector function
of one variable, 25
of several variables, 103
partial derivative, 105

vector potential, 151, 153, 170
vector projection, 7, 191
velocity, 31, 116, 196, 212

in chain rule, 57
in derivative along curve, 60

volume, 231
n-dimensional, 218
4-dimensional, 111, 219
differential, 107
parallelepiped, 8, 192
to tangent plane, 218
torus, 222

volume as a surface integral, 137, 177
volume integral, 200, 206

word problems, 78
work, 7, 122, 159, 233


