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Introduction

This is not a book on multivariable calculus. It is a lab manual on how tdMeggle V to help with multi-
variable calculus problems. It is basically written to accompany chapters 13—-17 of th€alookus, Fourth
Editionby James Stewart. However, the order of the material is organized by computational topic.

For a review of how to ustapleV to help with single variable calculus problems, see the lab manual
Single Variable CalcLabs with Maple for Stewart’s Calculus, Fourth EdibigBarrow et al.

Everything in this book refers to Release S\éple V. This book is accompanied byMaple package
calledvec _calc which can be installed on any computer runnifgpleV. Appendix A contains instructions
for obtaining and installing the package. To use the commands in the package, you must first execute three
commands: The first command teNt&aple where the package library files are located. For example, on a
machine running Windows, you would enter:
> libname := libname, "C:\\Program Files\Maple V Release
5\local\\vec_calc";
In general, you must replace the path with the actual path to the library files as appropriate for your operating
system and installation. (See Appendix A.) The second command reads in the package commands:
> with(vec_calc);
And the third command defines many abbreviations fove_calc commands:
> vc_aliases;
The output you should expect from these commands appears in Appendix A. If you desire, one or more of
these commands may be automatically executed when youMdpte. See Appendix A for details. After
starting thevec _calc package, you may get help on any command by executing
> ?vec_calc
and following the hyperlinks.

The book has two parts. The first part (chapters 1 through 8) explainvaple can help with standard
vector calculus computations. Each chapter ends with a set of short homework problems. The second part
(chapters 9 and 10) contains assignments which could be used in a computer lab setting. Chapter 9 has shorter
(one week) lab assignments, while chapter 10 has longer (multi-week) lab projects.

Chapter 1 covers the geometry Rf andR? including the algebra of vectors, the standard coordinate
systems and the description of curves and surfaces.

Chapter 2 studies vector valued functions of one variable with emphasis on the properties of curves.

Chapter 3 discusses partial derivatives of functions of several variables and applications using tangent
planes and directional derivatives.



X INTRODUCTION

Chapter 4 shows hoMaplecan automate the solution of max-min problems with several variables with-
out or with constraints. The discussion is not restricted to just two variables.

Chapter 5 explains the commands for computing multiple integrals in rectangular, polar, cylindrical,
spherical and general curvilinear coordinates. Applications include mass, center of mass and moment of
inertia.

Chapter 6 studies how to compute line integrals and surface integrals using parametric curves and sur-
faces. Applications include mass, center of mass, moment of inertia, work, circulation, flux and expansion.

Chapter 7 discusses the commands for computing the gradient, divergence, curl, Laplacian and Hessian
and how to find scalar and vector potentials.

Chapter 8 studies the major theorems of vector analysis: the Fundamental Theorem of Calculus for
Curves, Green's Theorem, Stokes’ Theorem and Gauss' Theorem. Applications include path and surface
independence, work, circulation, flux, expansion and the computation of area and volume.

Chapter 9 is a collection of labs which might be used for one lab period in the computer lab. Typically
the students would work in pairs and have one week to complete the lab assignment. A short lab report is
expected.

Chapter 10 is a collection of longer lab projects which require significant work. Typically the students
would work in groups of four and have two to four weeks to complete the project. An extensive project report
is expected.

Appendix A contains instructions for obtaining, installing and usingvli®_calc package.

Appendix B contains three tables which summarize the applications of integration which are computed
throughout the book.



Chapter 1

The Geometry of R"

1.1 Vector Algebra

Each time you start Maple and before you begin each section of this book, be sure you restart the
vec _calc package as explained in Appendix A. For example, in Windows, you would enter:

> libname := libname, "C:\\Program Files\\Maple V Release
5\local\\vec_calc™:

> with(vec_calc): vc_aliases:
Some or all of these commands may be automated as explained in Appendix A.

When you load thevec _calc package, it automatically loads tils¢udent , linalg  and plots
packages. So you do not need to do that separately.

1.1.1 Scalars Are Numbers: Points and Vectors Are Lists

1In this book, a scalar is entered irtapleas a number, while a point or a vector is entered as an ordered list

using square brackets. For example, the saalar5, the pointP = (1,3, 2) and the vecto?f = (3, —4) =
37 — 4j are entered as:
> 5; [1!312]1 [3!_4]1

5
[1, 3, 2]

[37 _4]
NOTE: Notice there are multiplMaple commands on a single line, each ending with a semi-calgn (
If you want, you can give names:
> a:=5; P:=[1,3,2]; v:=[3,-4];

a:=2>5

P:=]1,3,2]

1Stewart Ch. 13. Footnotes to Stewart refer to the b@alculus, Fourth Edition

1



2 CHAPTER 1. THE GEOMETRY OR™

v = [3, —4]
The symbot= is called an assignment. The quantity on the right is “assigned” to a memory location whose
name is given on the left. For example, the assignnienfl,3,2]; stores the poinfl, 3,2] in the
memory location name#. To display (or use) the vectat type its name.
>V

[37 _4]
To display (or use) a component@ftype its name followed by the component number in square brackets:
> Vv[2];

—4
Mapleis not restricted to 2 or 3 dimensional vectors. (We willlétdenote a 2-dimensional plane and
let R3 denote 3-dimensional spacéaplecan handle vectors with any number of components. (We will let
R™ denote n-dimensional space.) Further, the components do not need to be numbers. They can be undefined
symbols, previously defined symbols or any expression using these:
> two_D:=[1, -6]; three_D:=[7, 0, -4]; four_D:=[p, q, r, S];
> [6, a, a*x"2-18, -8, 45, wj];

two_D :=[1, —6]
three_D :=[7, 0, —4]

fOUT—D = [p7 q’ T, 8]

6,5, 5z — 18, —8, 45, w]
This last vector is an unnamed 6 dimensional vector. It contains the undefined vaxialléw and a simple
polynomial expression ir. Further, the previously defined varialsldhas been given its value of 5. If you
don’'t wanta to have its previous value, then you must first unassign it by typing
> a=a)

Then we have
> [6, a, a*x"2-18, -8, 45, wj];

6, a, ax® — 18, —8, 45, w]
wherea is undefined.
To compute the length of a vecfpuse thevec _calc commanden :
> v; length_of v:=len(v);

[37 _4]

length_of v :=5
(If you did not get this result, it is probably because you did not load/gte_calc package. Load it now,
as explained in Appendix A.)

2Stewart§13.2.



1.1. VECTOR ALGEBRA 3

This was easy and could have been done in your head, but consider:
> wW:=[37/6, -41/28]; length_of w:=len(w);

37 —41

v=l5 5

1
length_of —w = 31 V283453

1.1.2 Addition, Scalar Multiplication and Simplification

3You can add and subtract vectors and also multiply and divide a vector by a scalar by simply using the
standardt, —, * and/ signs:

> w=[1,-3,3]; vi=[3,-4,12];
w:=[1, =3, 3]

vi=[3, —4, 12]

> utv; v-u; sqrt(2)*u; vi2;
[4, =7, 15]
[2, -1, 9]
V2[1, -3, 3]

3
[5; _2a 6]

Notice that in three of these computatiaviaple performed the operation. However, whitaple fails to
perform an operation on vectors, you can foMaple to evaluate the quantity by using tlvec _calc
commancevall  which stands for evaluate list:

> evall(sgrt(2)*u);

V2, —3V2, 3V2|

Here we have evaluated?2 i in a single command. However, it is better to do this type of computation in
two steps, as follows:

> sgrt(2)*u; evall(%);
V2[1, -3, 3]
V2, =32, 3V72]
Here the percent sigfq is Maples way of referring to the result of the immediately preceding computation.

The benefit is that you can see the quantity to be computed before doing the operations. This prevents many
mistakes due to typographical errors. There will be many more examples of this preventative measure later.

SStewart§13.2.



4 CHAPTER 1. THE GEOMETRY OR™

EXAMPLE 1.1. Find the distance between the poifits= (3, -2, 1) and@ = (5, —3, 3).

SOLUTION: The vector fromP to @ is the difference between the final point and the initial pom =
Q — P. In Maplewe compute
> P:=[3,-2,1]; Q:=[5,-3,3]; PQ:=Q-P;

P:=13, -2, 1]
Q= [5a -3, 3]
PQ =12, -1, 2

The distance fron® to Q is then the length of this vector:
> distance_P_Q:=len(PQ);

distance_P_(Q := 3

—

The vectow = % is called the unit vector in the direction gfor simply the direction ofi. Throughout
v

this book, a caret) over a vector indicates that it is a unit vector.

EXAMPLE 1.2. Find the unit vector in the direction of the vectér= <%, —;l—;> Give the exact answer
and a decimal approximation.
SoLUTION: We define the vectar and compute the vectar = |—ui|:
w
> wW:=[37/6,-41/28]; wllen(w); w_hat:=evall(%); evalf(%);
. [37 —41]
e Tos
84 37 —41
—, —1] V2834
283453 [ 6 28 V283453
w_hat := | b18 V283453 S 12 V283453
T 1283453 " 283453

[.9729471067, —.2310279809]

NOTE: The command evalf(%) forcesMaple to evaluate the previous quantity as a decimal.

1.1.3 The Dot Product

4Recall that in any dimension the dot product of two vectbasdi is the sum of the products of correspond-
ing components. For example,R¥ the dot product ofi and{ is:

U -V = UiV + Ugvg + usvs .

In Maple we can use theec _calc commandlot . For example:
> w:=2,5,-1]; vi=[p,a.r];

wi=1[2,5, —1]

4Stewart§13.3.



1.1. VECTOR ALGEBRA 5
v = [p, q, 7]
> dot(u,v);

2p+5qg—r
Alternatively, you can use theec _calc operator&. :
> u &V

2p+5qg—r
Further, in any dimension if you know the angldetween two vectorg andv, then their dot product may
also be computed from:

-0 = |u||U] cos(h) .

This formula may be solved fews(6), and used for computing the angle between two vectors:

S
<L

cos(f) =

Recall that thevec _calc commanden will compute the length of a vector.

=
=

EXAMPLE 1.3.  Space, the Final Frontier: As our navigator through the solar system, you notice that the
Earth, Moon and Sun currently form a triangle with a 74ahgle at the Earth. Find the angl¢to the nearest
hundredth of a degree) of the vertex at the Sun given that the distance from the Earth to the Sun is 390 times
the distance from the Earth to the Moon. (The angles are in degrees for the primitive Earthlings.)

SOLUTION: Leta be the distance from the earth to the moon. Pick the coordinate system so that the earth
is at the origin,E = (0,0), the sunis a5 = (390a, 0) and the moon is at/ = (a cos(), asin(f)) where
6 = 74.1°. SinceMaplecomputes all trig functions using radian measure, we first convert ftd radians
by using thevec _calc commandieg2rad (or its aliasd2r ):
> theta:=d2r(74.1);

0 :=1.293288976
Next we enter the pointS, £ and M :
> S:=[390*a, 0]: E:=[0, 0]: M:=[a*cos(theta), a*sin(theta)];

M :=[.2739592184 a, .9617413096 a)

NOTE: To save space in this book, we will sometimes omit the outptMajple commands when it is
identical to the input, as fa8 andE above. This is done by using a colon)(instead of a semi-colon ()

at the end of the statement. As a student, you should print out everything by using semi-colons to be sure the
command is correct.

We then compute the vectors frofhto £ and fromS to M and the length of these vectors:

> SE:=E-S; SM:=M-S;

SE := [-390a, 0]

SM := [—389.7260408 @, .9617413096 a]
> len_SE:=len(SE); len_SM:=len(SM);

len_SE :=390a
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len_SM := 389.7272274 a

Next we computeos(f):

> cos_theta:=dot(SE,SM) / (len_SE*len_SM); #DON'T FORGET THE
PARENTHESES

cos_theta := 9999969553
NOTE: On aMapleinput line, anything following a # is a comment whiktaple ignores.
Finally, we take therccos to geto:
> theta:=arccos(cos_theta);

0 := .002467671593
Thelinalg  package also contains a commamgjle which computes this angle directly:
> angle(SE,SM); theta:=evalf(%);

arccos(.002564094757 v/152100)

0 :=.002467712117
NOTE: Thelinalg package is automatically loaded when you loadwbe _calc package.
SinceMaple computes all inverse trig functions using radian measure, this value for theta is in radians. To
convert it to degrees you can use tlee _calc commandad2deg (or its aliasr2d ):
> r2d(theta);

.1413894893
Thus, to the nearest hundredth of a degree, the andle-i§.14 degrees.

Another application of the dot product is to compute the scalar and vector projections of awafdog
a vectorv and the orthogonal projection afperpendicular t@’. These are shown in Fig. 1.1.

Y B

- \,
\,
N

orth_vu .~ v
proj_vu

Figure 1.1: Projection Operators

The scalar projection or componentwlong is computed from the formula:

compy U = =1u-7,
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=

wheret = Gk The vector projection of along# is computed from the formula:
v
Lo UU
projz i = U= (d-0)0

EXAMPLE 1.4. Forthe vectorg = —i—2j+21% andb = 3i+3j+4l%, find the scalar and vector projections
of b alongd and the projection of orthogonal tag .
SoLuTION: Define the vectors:
> a=[-1, -2, 2]: b:=[3, 3, 4]
Compute the scalar projection:
> scal_proj:=dot(b,a)/len(a);

scal_proj = =3
Compute the vector projection:
> vect_proj:=dot(b,a)/len(a)"2 * a;
. 1 2 =2
vect_proj := [5, 9’ ?]
Compute the orthogonal projection:
> orthog_proj:=b - vect_proj;
, 26 25 38
orthog_proj = [5, 9 5]

EXAMPLE 1.5. Compute the work done on a box by a horizontal force of 35 Ibs which moves the box 9 ft
up a ramp which is inclined at an angle of 15 degrees.
SoLUTION: We input the force and distance and convert thedrigle into radian measure by using the
vec _calc commandi2r :
> F:=35: d:=9: theta:=d2r(15);
1

0:=—m
The work done is the dot product of the force vector and the displacement vector. Since we know the magni-
tude of these vectors and the angle between them, we use the angle formula for the dot product:
> work:=F*d*cos(theta); evalf(%);

1 1
work ::¥ 6(1+§\/§)

304.2666353
. . 1 1 .
So the work done is 304.3 ft-Ibs. (Telling the boss the work doéi—?sx/é (1 + g\/ﬁ) ft-Ib is a good way
to get fired.)
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1.1.4 The Cross Product

The cross product can only be defined in 3 dimensions. Given two vettergu , us, u3) and
¥ = (v1,v2,v3), their cross product is defined to be the vector

ik A
UXUT=|u; us ug|= (uavs— usve)i—+ (usvy — uivs)j+ (u1v2 — ugvy)k
U1 Vo U3

= (U2U3 — U3V2, U3V1 — U1V3, U1V — uzm)

In Mapleyou can compute the cross product by usingwbe _calc commanccross :
> w=[2,5,-1]: v:i=[p,q,r]:  cross(u,v);

[br+gq, —p—27r,2q—5p]
Alternatively, you can use theec _calc operator&x:
> U &X V;

57r+q, —p—27,2q—5p)

EXAMPLE 1.6. If @ = (—2,3,4) andb = (3,0, 1), computez x b.
SOLUTION: Enter the vectors and compute the cross product.
> a=[-2, 3, 4]: b:=[3, 0, 1]: axb:=cross(a,b);

azb = [3, 14, —9]

As applications of the cross product, we have:

1. The area of a parallelogram with edgéandv is the length of their cross product:
Apara= |t x 7]
2. The area of a triangle with edgésndv is half of the length of their cross product:
1.
Ayi = 5 |7 x 9|

3. The volume of a parallelepiped with edgés’ and«w is the absolute value of their triple product:
Voara= (1@ x V) - 0|

EXAMPLE 1.7. Find the area of the triangle with vertic&s= (3,2, —5), Q@ = (0, —2, 3) and
R=(-5,-1,2).
SOLUTION: Enter the points and compute two edge vectors:
>  P:=[3,2,-5]: Q:=[0,-2,3]: R:=[-5,-1,2]:
> PQ:=Q-P; PR:=R-P;

PQ :=[-3, -4, §]

SStewart§13.4.
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PR :=[-8, =3, 7]
Now compute the area as half of the length of the cross product.
> cp:=cross(PQ,PR); area:=len(cp)/2;

cp = [—4, —43, —23]

area := ; V266

—

EXAMPLE 1.8. Find the volume of the parallelepiped with edgés= (0,0,1), b = (0,2,2) and¢ =
(3,3,3).
SOoLUTION: Enter the edge vectors, compute the triple product and its absolute value:
> a:=[0,0,1]: b:=[0,2,2]: c¢:=[3,3,3]:
> (a & b) & c; V:=abs(%);

1.2 Coordinates

Remember to restart thevec _calc package.

1.2.1 Polar Coordinates inR?

8In R?, there are two standard coordinate systems: a poihtis rectangular coordinatés, y) and polar
coordinategr, #). These coordinates are shown in Fig. 1.2.

P

X

Figure 1.2: Rectangular and Polar CoordinateR3in

6Stewart§11.4.
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Thevec _calc commandoolar2rect (or p2r ) converts from polar to rectangular coordinates. The
vec _calc commandect2polar  (orr2p ) converts from rectangular to polar coordinates. Baizh and
r2p expect a single argument which is a list of two coordinates. If the argumgarofor r2p contains
any floating point decimal numbers, the®r andr2p return decimal answers. Otherwise, they return exact
numbers or symbolic expressions.

Here are some examples:
> p2r([r.thetal]), p2r([2,Pi/6]), p2r([2.,Pi/6]);

[r cos(6), rsin(6)], [v/3, 1], [1.000000000 v/3, 1.000000000]
> r2p([x,y]), r2p([-2,0]), r2p(['2!'2])1

[v/22 + 32, arctan(y, x)], [2, 7], [2 V2, —277]
> 12p([3,-4]), r2p([3.,-4]);

4
[5, —arctan(g)]7 [5.000000000, —.9272952180]

NOTE: TheMaple commandarctan(y,x) with 2 arguments is precisely designed to produce exactly
what is needed fat:

> arctan(1,1), arctan(1,-1), arctan(-1,-1), arctan(-1,1);
1 3 3 1
T _ _
1.2.2 Cylindrical and Spherical Coordinates inR3

’In R3, there are three standard coordinate systems: a paiiats rectangular coordinates v, z), cylindri-
cal coordinate$r, 6, z) and spherical coordinatés, 6, ¢). These coordinates are shown in Fig. 1.3.

Figure 1.3: Rectangular, Cylindrical and Spherical Coordinat®s in

“Stewart§§13.1, 13.7.
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There are &ec _calc commands which convert between rectangular, cylindrical and spherical coordi-
nates:

e cyl2rect  (orc2r ) converts from cylindrical to rectangular coordinates.

rect2cyl  (orr2c ) converts from rectangular to cylindrical coordinates.

sph2rect (ors2r ) converts from spherical to rectangular coordinates.

rect2sph  (orr2s ) converts from rectangular to spherical coordinates.

sph2cyl (ors2c) converts from spherical to cylindrical coordinates.
e cyl2sph (orc2s) converts from cylindrical to spherical coordinates.

Each of these commands expect a single argument which is a list of three coordinates. If the argument
contains any floating point decimal numbers, then these commands return decimal answers. Otherwise, they
return exact numbers or symbolic expressions.

Here are some examples:

> c2r([rtheta,z]), r2c([x.y,z]);
[r cos(8), rsin(f), 2], [\/22 + y2, arctan(y, ), 2]
> s2r([rho,theta,phi]); r2s([x,y,z]);
[psin(¢) cos(), psin(¢)sin(f), pcos(¢)]

[V a2 + y? 4 22, arctan(y, ), arctan(+/x? + y2, z)]

> s2c([rho,theta,phi]), c2s([r,theta,z]);

[psin(e), 0, pcos(@)], [V r? + 22, 0, arctan(r, z)]
> c2r([2, -Pi/3,4]), r2c([3,4,12));

1, —V/3, 4], 5, arctan(%), 12]

> s2r([1,Pi/4,Pi/4]), r2s([.5,.5,1/sqrt(2)]);

111
2272
> s2c([1,Pi/4,Pi/4]), c2s([5,theta,12]);

\/5], [1.000000000, .7853981634, .7853981635]

1 1 1 5
[5 \/§a Zﬂa 5 \/ﬁ]’ [13, 97 arCtan(ﬁ)]
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1.3 Curves and Surfaces

1.3.1 Lines and Planes

Parametric Lines ®To specify a line one can give either (i) two poifitsand@ on the line or (ii) one point
P and a direction given by a vectortangent to the line. Given two points on the line, the direction for the
line can be taken as the vector between the two p@inis@ = @ — P. We want to find an equation for
the general poink on the line.

Notice that the vector fron® to X is a multiple of the vectoi’. See Fig. 1.4. Letting denote the
proportionality constant, we have

PX=tfy o X—-P=ty or X=P4+ti

These are parametric equations for a line aifcalled the parameter) says where you are on the line. The
vectorv is called a direction vector or a tangent vector for the line.

v=PQ

Figure 1.4: Parametric Line
EXAMPLE 1.9. Find parametric equations for the line through the paitits (2, —1,3) and@ = (5, 2,4).
SoLUTION: We define the points and the direction vector:
> P:=[2,-1,3]: Q:=[5,2,4]: v:i=Q-P;

v:=13, 3, 1]
We defineX = (z,y, z) as the generic point and construct the equation of the line:
> Xi=[Xy,z]:  linel:=X=evall(P+t*v);

linel := [z, y, z] = [2+3t, =1+ 3¢, 3+1]
To write this as separate equations, we useethigate command from thetudent package:
> line2:=equate(X,P+t*v);

line2 :={z=3+4+t,y=-1+3t,z=2+3t}
NOTE: Thestudent package is automatically loaded when you loaduBe _calc package.

8Stewart§13.5.



1.3. CURVES AND SURFACES 13

Parametric Planes °Similarly, to specify a plane one can give either (i) three poit) and R on the
plane or (ii) one point? and two vectors; and v tangent to the plane or (iii) one poift and one vector
N (called the normal vector) perpendicular to the plane. Given three points, the two vectors can be taken as
= @ =Q— Pandv = PR=R- P. (See Fig. 1.5 below.) Given the two vectors, the normal vector
can be taken a& = @ x #. (See Fig. 1.6 below.) We want to find an equation for the general poim the
plane.
Given a point and two tangent vectors, notice that the vector fPabm X can be written as a multiple of
the vectori plus a multiple of the vectar. See Fig. 1.5. Letting and¢ be the multiples, we have

PX =sii+td of X-—P=si+td or X=P+sitti

These are parametric equations for a plane @aaddt (called the parameters) determine where you are on
the plane.

VEPR R pX=s uktv

A

Figure 1.5: Parametric Plane

EXAMPLE 1.10. Find parametric equations for the plane through the pdits (2,-1,3), @ = (5,2,4)
andR = (—4,2,2).
SoLUTION: We define the points and the two vectors between them:
> P:=[2,-1,3]: Q:=[5,2,4]: R:=[-4,2,2]:
>  w=Q-P; v:i=R-P;

u:=[3, 3, 1]
v:=[—6, 3, —1]

We defineX = (z,y, z) as the generic point and construct the equation of the plane:
> Xi=[xy,z]:  planel:=X=evall(P+s*u+t*v);

planel =[x, y, 2| =[2+3s—6¢t, —1+3s+3t, 3+s—1
To write this as separate equations, we egeate :
> plane2:=equate(X,P+s*u+t*v);

plane2 :={x =2+3s—6t, y=—-1+3s+3t, z=3+s—t}

9Stewart§17.6.
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Non-Parametric Planes 1CAlternatively, given a point and a normal vector, notice that the vector ffom
to X is perpenduculart@v. See Fig. 1.6. Thus:

N.PX=0 o N-(X-P)=0 o N-X=N.-P

This is a (non-parametric) equation for the plane.

N=uxv -~

Figure 1.6: Non-Parametric Plane

EXAMPLE 1.11. Find the non-parametric equation for the plane through the péints (2, —1,3), Q =
(5,2,4) andR = (—4,2,2).

SoLuTION: We define the points and two vectors as above and then construct the normal vector:
> N:=cross(u,v);

N :=[-6, =3, 27]
We enter the generic poink = (x, y, z), and find the equation of the plane:
> X:=[xy,z]:  plane3:=dot(N,X) = dot(N,P);

planel .= —6x —3y+272="T2
Finally, notice that this is equivalent to the equation which is obtained by eliminating the parameters in
the parametric equations:

> solve( {plane2[1],plane2[2] HAst 1)
SN S SV SN JE
I T e
> subs(%,plane2[3]); 27*%;
L8 12
37977y

212=T2+3y+62x

10stewart§13.5.



1.3. CURVES AND SURFACES 15

Non-Parametric Lines So far we have discussed parametric lines and planes and non-parametric planes.
It remains to discuss non-parametric lines. The situation is differeR? iandR3.

In R?, the non-parametric equations for the line through a pBimtith normal vector is given by: (See
Fig. 1.7.)

i-PX=0 or ii-(X-P)=0 o #i-X=m-P

If a direction vector for the line i§ = (v, v2), the normal vector may be taken@s= (v2, —v1), since then
i-v=0.
X

Figure 1.7: Non-Parametric Line in 2D

EXAMPLE 1.12. Find the non-parametric equations for the line through the points (4,7) andB =
(-2, 3).
SoLUTION: We enter the points and find the direction vector:
>  A:=[4,7]: B:=[-2,3]: Vv:i=B-A;
v = [—6, —4]
So the normal vector is
> n=[v[2], vl

n = [—4, 6]
Then we enter the generic poitX, = (z, y), and find the equation of the line:
> X:i=[xy]:  line:=dot(n,X) = dot(n,A);

line :== —4x+6y =26

In R3, the non-parametric or symmetric equatibnfor the line through the poinP = (p, ¢, ) with
direction vectow = (a, b, c) are:

lisStewart§13.5.
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EXAMPLE 1.13. Find the symmetric equations for the line through the poits- (2,—1,3) and@ =
(5,2,4).

>

SoLUTION: We enter the points and find the direction vector:
P:=[2,-1,3]: Q:=[5,2,4]: v:i=Q-P;

v:=[3, 3, 1]

Reading off coefficients, we construct the two equations for the line:

>

line3:= {(x-P[l])/v[l] = (y-PI2DIV[2], (y-P[2)Iv[2] =

(z-P[3]VI3] ¥

1 1 1 2 1 1
l' =1 = — = —_ — —_—_ = = —
ined {3y—|—3 z 3,3x 3 3y+3}

These are the equations of two planes whose intersection is the line.

1.3.2 Quadric Curves and Quadric Surfaces

Quadric Curves '2A quadric curve is the graph of a quadratic equatiolRth The general quadratic
equation with no cross terms i&c? + By? + Cx + Dy + E = 0. By completing the squares anandy
(when possible), it may be brought to one of the following standard forms:

(x — p)22+ (y — q)22: T circle
(z ;22?) + y ;2(1) R L ellipse
(z ;QP)Q W EQQ)Q e N hyperbola
(= ;2p)2 _ W ;2(1)2 0 e cross
Yy—q=4a(x —p)2orz —p=2a(y — )% i parabola

EXAMPLE 1.14. Classify and plot the following quadric curves:

a) 4z + 9y — 162 + 18y = 11

b) 422 — 9y% — 162 — 18y = 29

For a circle, give the center and radius.

For an ellipse, give the center and semi-radii.

For a hyperbola, give the center, direction and asymptotes and add the asymptotes to the plot.
For a cross, give the intersection point and the two lines.

For a parabola, give the vertex and the direction.

SoLUTION: For each equation, we enter the equation as an expression, complete the squares using

completesquare from thestudent package and manipulate the equation into a standard form. Then
we classify the curve and plot the equation usingitmgicitplot command from th@lots package.
NOTE: Thestudent andplots packages are automatically loaded by iee _calc package.

>

a) We enter the equation and complete the squares:
eql:=4*x"2 + 9*y"2- 16*x + 18*y = 11,

eql =42 +9y> —16x+ 18y =11

12stewart Appendix C.
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> eg2:=completesquare(eql, {xy };

eq2 :=9(y+1)* =25 +4(x—-2)* =11
Mapleknows how to add two equations and how to multiply or divide an equation by a number:
>  eqg3:=eq2 + (25=25);
eq3 :=9(y+1)* +4(x—2)*=36
> eg4:=eq3/36;

1 1
eq4 ::Z(y+1)2+§(x—2)2:1

This is the standard equation for an ellipse with centé2at-1) and radii3 in the z-direction and2 in the
y-direction. Its graph is:
> implicitplot(eg4, x=-5..5, y=-5..5, scaling=constrained);

1,

b) We enter the equation, complete the squares and manipulate it into a standard form:
> eqli=4*x"2 - 9*y"2 - 16*x - 18*y = 29;
eql ==42%> —9y> — 162 — 18y = 29
> eg2:=completesquare(eql, {xy };

eq2 =9 (y+1)>—7+4(x—2)>=29
> eq3:=eq2 + (7=7);

eq3 :=—9(y+1)>+4(x—2)*=36
> eg4:=eq3/36;

1 1
eqs ::—Z(y+1)2+§(x—2)2:1

This is the standard equation for a hyperbola with centgRat1) which opens along the positive and
negativer-axis. Its asymptotes are the cross obtained by replacingahehe right hand side by@

NOTE: The commandts andrhs read off the left and right hand sides of an equation.

> asymptotes:=lhs(eq4)=0;

1 1
asymptotes := ~1 (y+1)*+ g (x—2)>=0
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> solve(asymptotes,y);
2 n 1
Ltz
3 3’
So the asymptotes age= 2 — 2z andy = — I + Za.
Finally, we plot the hyperbola and its asymptotes:

> implicitplot( {eq4,asymptotes  }, x=-5..9, y=-6..4, scaling=constrained,
grid=[49,49]);

Wl =3

2
Zr—
3

NOTE: Thegrid option specifies the number of points to use in each direction.

Quadric Surfaces A quadric surface is the graph of a quadratic equatioRin The general quadratic
equation with no cross terms.st® + By? + Cz? + Dx + Ey + Fz + G = 0. By completing the squares on

x, y andz (when possible), it may be brought to one of the following standard forms (up to the rearrangement
of z, y andz):

(=) (Y= )2+ (2 —7)% = RZ sphere
)2 N2 )2
@ — S, qu) L CQT) L ellipsoid
R N2 N2
(@ a2p) + € qu) - (= CQT) = hyperboloid of 1 sheet
N2 N2 N2
L a2p) _ qu) + (= 027*) = hyperboloid of 2 sheets
)2 N2 Y
(@ a2p) + € qu) - (= czr) =0 e cone
)2 N2
z—r= (@ a2p) + g qu) .................................................. elliptic paraboloid
RV N2
z—r= (@ a2p) — y qu) .............................................. hyperbolic paraboloid
A quadratic equation in two coordinates ............. cylinder whose cross section is the quadric curve

13stewart§13.6.
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EXAMPLE 1.15. Classify and plot the following quadric surfaces:
a) 422 —y? — 922 — 16z — 2y + 182 = 30
b) 422 — 922 — 162 + 2y — 182 = —1

e For a sphere, give the center and radius.
e For an ellipsoid, give the center and semi-radii.

e For a hyperboloid, say whether it has 1 or 2 sheets, give the center, axis and asymptotic cone and plot
the asymptotic cone.

e For a cone, give the vertex and direction.
e For a paraboloid, say whether it is elliptic or hyperbolic and give the vertex and the direction(s).

e For a cylinder, give its axis and its cross section.

SoLUTION: For each equation, we enter the equation as an expression, complete the squares using
completesquare from thestudent package and manipulate the equation into a standard form. Then
we classify the curve and plot the equation usinginmglicitplot3d command from thelots  pack-
age.

a) We enter the equation, complete the squares and manipulate it into a standard form:

> eqli=4*x"2 - y'2 - 9*2°2- 16*x - 2*y + 18*z = 30;
eql :=42% —9y?—922 - 162 —2y+ 182 =30
> eg2:=completesquare(eql, xy,z });
eq2 :=—-9(z—-1)2 =6 —-(y+1)* +4(z—2)*=30
> eg3:=eq2 + (6=6);
eq3 =9z -1 = (y+1)? +4(x —2)* =36

> eg4:=eq3/36;

1 1 1
eq4 1=—Z(Z—1)2—%@4‘1)24‘5(%—2)2:1

This is the standard equation for a hyperboloid of 2 sheets with centgr-at, 1) and axis which is parallel
to thez-axis. Its asymptotic cone is obtained by replacingitom the right hand side by@

> asymptote:=lhs(eq4)=0;

1 1 1
tote .= —=~(2—1)> = — (y+ 1)+ = (z —2)* =
asymptote 1 (z ) 36 (y+1)°+ 5 (z ) 0
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Finally, we plot the hyerboloid and the asymptotic cone.
> implicitplot3d(eq4, x=-6..10, y=-18..16, z=-6..8, grid=[15,15,15],
axes=normal, scaling=constrained, orientation=[85,85]);
> implicitplot3d(asymptote, x=-6..10, y=-18..16, z=-6..8,
grid=[15,15,15], axes=normal, scaling=constrained, orientation=[85,85]);

SRR
VANVAY' AL D :

b) Since the equation is linear in we enter the equation, solve fgiand then complete the squares:
> eqli=4*x"2 - 9*7°2 - 16*x + 2*y - 18*z = -1;
eql =42 —-922—-16x+2y—182=—1
> eg2:=y=solve(eql, y);

9 1
eq2 ::y:—2x2+522+8x+9z—5

> eg3:=completesquare(eqz2, {x,z });

9
eq3 ::y:5(2—1—1)2—1—3—2(‘%—2)2

This is the standard equation for a hyperbolic paraboloid with vertgx at —1) which opens upward in the
zy-plane and downward in they-plane. Finally, we plot the hyperbolic paraboloid:

> implicitplot3d(eq3, x=-3..7, y=-3..8, z=-6..4, grid=[15,15,15],

scaling=constrained, orientation=[35,65]);
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1.3.3 Parametric Curves and Parametric Surfaces

Parametric Curves ¥We have just seen that a line may be parametrized by giving the poéitignz)
on the line as a function of a parameteand moreover these functions are linear. More generally, we can
parametrize any curve by giving the positian y, z) as a function of not necessarily linear:

(x,y,2) =7(t) = (m(t),y(t),z(t)).

You can think oft as the time and thefw(t), y(t), z(t)) is the position of a particle at time

Of course, in 2 dimensions, there is frgcomponent.

EXAMPLE 1.16. In R?, plot the curve parametrized Bi¥t) = (¢2,¢%) to see it has a “cusp” at= 0. (A
cusp is a sharp corner.)

SoLuTION: The curver(t) may be plotted using thelot command with a parametric argument:

> plot([t'2,t'3, t=-2..2]);

Notice the cusp at the origin.

stewart§11.1, 14.1.
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EXAMPLE 1.17. In R3, plot the helixi*(f) = (6 cos(6), 6 sin(6), 9).
SOLUTION: The helix may be plotted using tlspacecurve command from thelots package:

> spacecurve([6*cos(theta), 6*sin(theta), theta], theta=0..6*Pi,
scaling=constrained, axes=normal, numpoints=73);

Parametric curves are studied in detail in sections 2.2 and 6.1.

Parametric Surfaces SWe have also seen that a plane may be parametrized by giving the pésition)
as a linear function of two parameteand:. We generalize this to a parametrization of any surface by giving
the position(z, y, z) as a function of two parametessandt not necessarily linear:

(z,y,2) = ﬁ(s,t) = (x(s,t),y(s,t),z(s,t)).
EXAMPLE 1.18. Plot the parametric surface
R(),0) = (cosh(X) cos(6), cosh(A) sin(6), sinh(X)) .

Then show it is the hyperboloic? + y? — 22 = 1.
SoLUTION: We first enter the parametrization ilttapleas a list of expressions:
> R:=[cosh(lambda)*cos(theta), cosh(lambda)*sin(theta), sinh(lambda)];

R := [cosh(\) cos(6), cosh() sin(6), sinh(\)]
Then we plot a piece of the surface using phet3d command:
> plot3d(R, lambda=-3..2, theta=0..2*Pi);

15Stewart§17.6.
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To show it is the hyperboloid, we convert the parametrization into three equationseggiate :
> egs:=equate([x,y,z], R);

eqs := {y = cosh(\) sin(d), z = sinh(A), = cosh(\) cos(8)}
and substitute into the equatief + > — 22 = 1 for the hyperboloid:
> subs(egs,x2 + y2 - 272 = 1); simplify(%);

cosh(\)? cos(6)? + cosh(M)? sin(#)? — sinh(\)? = 1

1=1
So the equation is satisfied.

Parametric surfaces are studied in detail in Section 6.2.
NoTE: Theplot command plotsurvesin R? either as the graph of a function or in parametric form,

while theimplicitplot command plotgurvesin R? in the form of an equation.
Similarly, theplot3d command plotsurfacesin R? either as the graph of a function or in paramet-
ric form, while theimplicitplot3d command plotsurfacesin R? in the form of an equation and

spacecurve plotscurvesinR3 in parametric form.

1.4 Exercises

e Dolabs: 9.1,9.2and9.3.

e Do Project: 10.1.

1. Consider the vectors
i=(2,3) b=(-1,2) &= (4,-3)
a=(0,/3,1) 7=(2-4,V3) w=(V3,1,-2)

Compute each of the following quantities:

a) | i) the unit vector in the direction af

b) || j) the angle betweed andb

C) | ] k) the angle betweeif andv

d)2ad — 3b ) the projection ofi alongv

e) V3 + 2v m) the projection ofi orthogonal to/

fya- b n) the area of the triangle with edgésndv

g)u-v 0) the area of the parallelogram with edgesndv

h) 4 x ¥ p) the volume of the parallelepiped with edggés’ andw

2. Repeat problem #1 for the vectors
a=(1.7,-21) b= (-14,3.7) ¢=(4.2,-1.3)
i@ =(4.1,5.2,3.6) ©v=(-1.9,23,72) &= (4.6,-8.3,—6.2)

3. In the Earth, Moon and Sun triangle discussed in example 1.3, find the angle at the Moon when the
angle at the Earth i84.1°. Give the angle in degrees to the nearest hundredth of a degree.
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. Hyperspace, the Final Final Frontier: As our navigator through 4-dimensional hyperspace, your current

assignmentis to find the angi€to the nearest tenth of a degree) at the veRt@f the triangleA PQ R
with vertices P = (2,-5,4,-3), @=(-3,1,0,—2) and R =(5,2,—4,1). (The angles
are in degrees for the primative Earthlings.)

. A5 kg mass slides 10 m down a frictionless plane which is inclined@t angle from the horizontal.

Find the work done on the mass by the force of gravitf’ = —mgj. Note:g = 9.8 m/se@.

. Consider the points P = (3,4,—-2), @Q =(0,-3,1) and R=(-2,1,3).

a) Find the parametric equations of the line throdandQ.

b) Find the symmetric equations of the line througlandQ.

c) Find the parametric equations of the plane throiglp and R.

d) Find the non-parametric equations of the plane thradgf) andR.

. Consider the points A = (2,3) and B = (—4,5).

a) Find the parametric equations of the line througand B.
b) Find the non-parametric equation of the line througand B.

. Find the distance from the pointR = (3,7) totheline y=4x —2.

Hint: Find two pointsP and@ on the line. Then the projection & orthogonal taP( is the vector
from R to the line which is perpendicular to the line.

. Find the distance from the pointR = (2,—-5,6) totheline (z,y,2)=(2—1t,4+ 3t,1— 5¢).

Find the distance from the pointR = (2, —5,6) tothe plane 2z + 3y — z = 5.
Hint: Find the line perpendicular to the plane which passes thraugiihen find the foot of this
perpendicular.

4 .
Where does the curve(t) = (=3t + 5, — 3’ 2% — g) intersect thez-plane?

: 4 (N
Where does the line #(t) = (=3t + 5,¢t — 3 2t — 3) intersect the plane 2z + 3y + 4z = 5?

4 7 .
Where does the curver(t) = (=3t +5,t — 3 2% — 3) intersect the plane 2z 4 3y + 4z = 5?

Plot the parametric curve 7(t) = (cos(560),sin(36)) for 0 <60 <2w. Try changing the 5 and

3 to other integers. What happens? From such a plot, how would you determine the integers? These

plots are called Lissajous figures.

Plot the parametric curve z = (2 + cos2460) cos, y = (2 + cos246)sinf, =z =sin246 for
0 <60 <2m. Togetagood plot, add the optiommpoints=500

Plot the parametric surfacexz = (2 4 cos¢)cosf, y = (2 + cos¢g)sinf, =z = sin¢g for
0<¢<2r and 0<0<2r. Whatshape isthe surface?



Chapter 2

Vector Functions of One Variable:
Analysis of Curves

2.1 Vector Functions of One Variable

Remember to restart thevec _calc package.

2.1.1 Definition

1A vector-valued function of one variaBBlés an ordered list of real valued functions. In particularRity a
vector valued function has the form

) = (f1(t), f2(t), £3(1)) -

The independent variable, in this cases called the parameter. For example, you can enter the vector valued
function#(t) = (6 cos(t), 6sin(t), t) into Maple by using thevec _calc commandmnakefunction  (or

its aliasMB):

> r:=MF(t,[6*cos(t),6*sin(t),t]);

r:= [t — 6cos(t), t — 6sin(t), t — ]
Quite often a vector valued function is interpreted as a curve, giving the position as a function of time. For
example, the vector valued functiotr), defined above, is a helix as was shown in example 1.17

However, a vector valued function can also represent many other physical quantities such as the velocity
#(t) along a curve as a function of time or the forié'(at) applied to a particle as a function of time. (See Fig.

2.1)

Further, the parameter need not represent time. For example, the standard parametrization of a circle of
radius 2 is7(6) = (2 cos(6), 2sin(f)) where the parametérmeasures the angle counterclockwise from the
positivez-axis. After entering the function,
> r=MF(theta, [2*cos(theta), 2*sin(theta)]);

1Stewart Ch. 14.
2Stewart§14.1.
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Figure 2.1: Vector-Valued Functions for a Particle Moving on a Circle

r:= [0 — 2cos(d), § — 2sin(d)]
we can plot three quarters of a circle:
> plot(Jop(r(theta)), theta=0..3*Pi/2], scaling=constrained);

NOTE: Theop command in the parametniot is needed to strip the square brackets off(¥f
Compare

> @),

[2 cos(t), 2sin(t)]
with
> op(r);

2 cos(t), 2sin(t)
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Further, if you need help on any command, just type a question n¥grkf¢llowed by the name of the
command and press enter. In this case, to get more information abag tt@mmand, enter:
> ?0p

2.1.2 Limits, Derivatives and Integrals and themap Command

3A limit, derivative or integral of a vector-valued function is computed by applying the operation to each
component of the vector valued function.

For example, the limit as — 2 of the vector valued functiofi(¢) = <

24 42— 2_ 4 2 _
lim<t t 5t+6>:<hmt hmt 5t+6>:<4,_1>

t2—4 t2-5t+6 is
t—2" t—2

t—2\t—2" t—2 t—2 t—27t=2 t—2

TheMaplecommandnapis specifically designed to apply an operation to each component of a list. The
first argument of thenapcommand is the operator and the second is the list to which the operator is applied.
Additional arguments are simply passed to the operator.

For example, to compute the above limit, we enter the vector valued function:
> = MF(, [(t°2-4)/(t-2), (1"2-5*t+6)/(t-2)]);

t2—4 t2—5t+6
e U e R
and thermapthelLimit command onto the function:
> map(Limit, f(t), t=2); value(%);

]

. t?—4 . t?—5t+6
[lim , lim
t—2 1 — 2 t—>2 t—2
[47 _1]
Similarly, the derivative of the curvé(t) = (tcos(t),tsin(t),t) is computed bymapping the Diff
command onto the curve:
>  r=MF(t, [t*cos(t), t*sin(t), t]);

]

r:= [t — tcos(t), t — tsin(t), t — {]
> map(Diff, r(t), t); v_expr:=value(%);

[2 t cos(t), 9 tsin(t), g t]

ot ot t
v_expr := [cos(t) — tsin(t), sin(t) + ¢ cos(t), 1]
As will be seen in the next section, this vector may be interpreted as the tangent vector to the curve (or its
velocity). Its value at = g may be obtained usingubs :
> subs(t=Pi/2,v_expr); simplify(%);

1 1 1 1 1 1
[COS(§ ) — 3 7rsin(§ ), sin(§ ) + 3 7rcos(§ ), 1]

SStewart§14.2.
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1
[—5 ™, 1, 1]

Alternatively, you can convert the vector of expressignsxpr into a vector of arrow defined functions
usingMFE
> V:=MF(t,v_expr);
v:= [t — cos(t) — tsin(t), t — sin(t) + t cos(t), 1]
and simply evaluate a;fz
> v(Pi/2);

1
[_571—7 ]-a 1]

Turning to integrals, given the vector valued function,
> fi=ft, 172, °3];

=1t 3, 17
its indefinite integral is computed byapping thelnt command onto the function:

> map(Int,ft); value(%);
[/tdt, /tht, /t3dt]
1 1 1

—t3 -3, !
] o ) [2 "3 4 _]
and its definite integral from= 2 to ¢ = 3 is computed similarly:

> map(Int,f,t=2..3); value(%);
3 3 3
[/tdt,/tht,/t3dt]
2 2 2

5 19 65
N
Notice that the commandsmit , Diff andIint actonan expression. So they must be mapped onto a
vector of expressions.
However, when doing derivatives, we often IB#® differentiate an arrow defined function. Conveniently,
theD command is automatically mapped. So to differentiate the curve

> r:i=MF(t,[t*cos(t),t*sin(t),t]);

r:= [t — tcos(t), t — tsin(t), t — {]
we simply execute
> v:i=D(n);
v = [t — cos(t) — tsin(t), t — sin(t) + tcos(t), 1]
Then the value at = g is
> v(Pi/2);

m, 1, 1]
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and the expression form of this derivative is
> v(tb);

[cos(t) — tsin(t), sin(t) + t cos(t), 1]
In many ways, this is simpler than usiiff

2.2 Frenet Analysis of Curves

“Thevec _calc package has many commands which simplify the computations in the analysis of a curve.
In discussing these quantities, we first cover the details of the computation and then giee ticalc
shortcut. You should never use these shortcuts until you fully understand how the quantities are computed.
Rather, you should work out the computations and then check withetbecalc command.

In studying the properties of a curve, we will repeatedly refer to two examples, ®fesind one irR3.

2 2
¢ InR? we will consider the eIIipsé;% + % = 1 which may be parametrized by

x = 4 cos(¢) y = 3sin(¢p) .

It should be noted that the parametedoes not measure angles like the angular coordithafepolar
coordinates. Nevertheless it does start at zero on the posiards, it does increase as you move

counterclockwise around the ellipse and it does increas;tra by you pass through each quadrant.

¢ InR3 we will consider the helix parametrized by
x = 6 cos(t) y = 6sin(t) z=t.

Notice thatz andy are expressed in terms of polar coordinates on a circle of radius 6 traversed coun-
terclockwise in time and increases with time.

Curves can also be constructed in higher dimensions, but they are harder to visualize. Further some of the
quantities computed below are only definedih(those which depend on the cross product).

2.2.1 Position and Plot

5To input a curve intdVlaple, we use thevec _calc commandmakefunction  (or its aliasMP which
makes a list of arrow defined functions. To plot a two dimensional curve, we ugpdathe command with a
parametric argument. To plot a three dimensional curve, we uspteecurve command.

EXAMPLE 2.1. Plot the ellipse™(¢) = (4 cos(¢), 3sin(¢)).
SoLUTION: For the ellipse, we enter the parametrization
> r:=MF(phi, [4*cos(phi), 3*sin(phi)]);

r:=[¢p — 4cos(¢), ¢ — 3sin(¢@)]

4Stewart§14.1 — 14.4.
SStewart§14.1.
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The point
> r(phi);

[4 cos(¢), 3sin(¢)]

is called the position vector on the ellipse. To plot the ellipse, we uspltite command:
NOTE: Again, theop command is needed to strip the square brackets affdfi)

> plot([op(r(phi)), phi=0..2*Pi], scaling=constrained);

EXAMPLE 2.2. Plot the helixR(t) = (6 cos(t), 6 sin(t), t).
SoLUTION: For the helix, we enter the curve:

>  R:=MF(t, [6*cos(t), 6*sin(t), t]);
R:=[t — 6cos(t), t — 6sin(t), t — ]
Its position vector is
> R(t);
[6 cos(t), 6sin(t), t]

and we plot the helix by using trgpacecurve command:
NOTE: Thespacecurve command does not need tbp command, in fact it is prohibited.

> spacecurve(R(t), t=0..6*Pi, scaling=constrained, axes=normal,
numpoints=73);
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2.2.2 Velocity, Acceleration and Jerk

5When the parameter along a curve is interpreted as the time, the derivative of the position is the velocity, the
derivative of the velocity is the acceleration and the derivative of the acceleration is the jerk. Even when the
parameter is not the time, the words velocity, acceleration and jerk may still be used for the first, second and
third derivatives of the position.

If the position vector has been defined using MiEcommand, then the derivatives may be computed
usingD. Thevec _calc package also has the commarmdsve _velocity , curve _acceleration
andcurve _jerk to compute these directly from the position without needing to compute them in order.
The aliases ar€v, CaandCj .

EXAMPLE 2.3. Find the velocity, acceleration and jerk of the ellipse of example 2.1.
SOLUTION: The position was entered in example 2.1. So the velocity, acceleration and jerk are:
> v:i=D(r); a:=D(v); j:=D(a);

v:=[¢ — —4sin(¢), ¢ — 3cos(¢)]
a:=[¢p — —4cos(d), ¢ — —3sin(¢)]

j = [¢ — 4sin(¢), ¢ — —3cos(9)]
These may be checked usi@g, CaandCj :
> vi=Cv(r); a:=Ca(r); j:=Cj(r);

v:=[¢p — —4sin(d), ¢ — 3cos(d)]
a:=[¢p — —4cos(d), ¢ — —3sin(¢)]
j = [¢ — 4sin(¢), ¢ — —3cos(9)]

6Stewart§14.2, 14.4.
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EXAMPLE 2.4. Find the velocity, acceleration and jerk of the helix of example 2.2.
SOLUTION: The position was entered in example 2.2. So the velocity, acceleration and jerk are

> V:=D(R); A:=D(V); J:=D(A);
V:=[t — —65sin(t), t — 6cos(t), 1]
A:=[t - —6cos(t), t — —65sin(t), 0]

J = [t — 6sin(t), t — —6cos(t), 0]
(Notice that we are using the capital lett&sV, A andJ for the helix, solely to distinguish these quantities
from the corresponding quantities for the ellipsg

2.2.3 Speed, Arc Length and Arc Length Parameter

"The length of the velocity is called the speed and may be computed usitentheommand . The definite
integral of the speed is the arc length and the arc length with a variable final point defines the arc length
parametes at the final point. Sometimes the arc length parameter is used to reparametrize the curve.

Thevec _calc package has a commagdrve _length (or CL) which will compute the arc length
integral for the curve as a function of the two endpoints. You can then plug in the endpoints and compute the
value .

EXAMPLE 2.5. For the helix of example 2.2, find the speed and arc length around one cycle. Then find the

arc length parameter and reparametrize the helix in terms of the arc length parameter, if possible.
SoLuUTION: Using the velocity computed in the previous example, the speed is

> len(V(t)); SPEED:=simplify(%);

V/1 + 365sin(t)2 + 36 cos(t)?

SPEED := /37
and the arc length around one cycle is
> Int(SPEED, t=0..2*Pi); value(%);
27
V37 dt
0
237w

The arc length parametetis
> Int(SPEED, t=0..T); arcparam:= value(%);

T
/ V3T dt
0

arcparam = V37T

“Stewart§14.3.
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whereT is the time at the final point. We can reparametrize the curve in terms of an arc length parameter
by solving the equatios = arcparam for 7" and plugging into the curvB(t):
> solve(s = arcparam,T); R(%);

1
ﬁs V37
1 1 1
[6 cos(ﬁ sV 37), 6Sin(§ sV 37), 378 V37]

We can check some of these results usihg
> L:=CL(R); L(0,2*Pi); value(%);

L::(a,b)ﬁ/b\/ﬁdt

27
/ V3T7dt
0

2V37w
> L(0,T); value(%);

T
/ V37 dt
0

V31T

EXAMPLE 2.6. For the ellipse of example 2.1, find the speed and arc length once around. Then find the arc
length parameter and reparametrize the ellipse in terms of the arc length parameter, if possible.

SoLUTION: Using the velocity computed in a previous example, we compute the speed and the arc length
once around:
> len(v(phi)); speed:=simplify(%);

V/165sin(¢)2 + 9 cos(¢)2

speed := /—T cos(¢)? + 16
> Int(speed, phi=0..2*Pi); value(%);

2m
v/ —Tcos(¢)?2 4+ 16d¢

0

1
16 EllipticE( V7)
Notice that thevalue command gave the answer in terms of the elligiidunction. This is not very

informative. So we use thevalf command to get a numerical approximation:
> evalf(%);

22.10349216
Using thevec _calc commandCL, we check:
> L:=CL(r); L(0,2*Pi);

b
L:=(a,b) — / v/ —Tcos(¢)? + 16 d¢
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27
V —Tcos(¢)? +16d¢

0
To find the arc length parameter, we need to compute the integral
> L(0,T); s = value(%);

/ v/ —=Tcos(¢)? 4+ 16d¢

A v/sin(T')2 EllipticE(cos(T), % \/7) — EllipticE(% V) sin(T)
T sin(T)

Notice that for the ellipse, the arc length parametisran extremely complicated function’df So it may not
be useful to reparametrize the curve explicitly. However, if necessary, we can always work with it implicitly
or numerically.

2.2.4 Unit Tangent, Unit Principal Normal, Unit Binormal
8The unit tangent vectdF along a curve?(t) is the unit vector in the direction of the velocity

T:

=

>

Thevec _calc command isurve _tangent (orCT).

The unit (principal) normal vectaN along a curver(t) is the unit vector perpendicular to the velocity
in the plane of the velocity and the acceleratiban the same side of the velocity as the acceleration. You
compute it by finding the projection afperpendicular t&’ and then dividing by its length:

=

Thevec _calc command isurve _normal (orCN.
In R3, you can also compute the unit binormal vectbwhich is a unit vector perpendicular ©dand N
and given byB = 7' x N. Equivalently,3 is the unit vector perpendicular tbanda and given by

ST

X

<

B=
X

<

This latter formula is the easiest way to compBtdecause you don’t need to first compie Further, NV
can then be computed It* from the formula

Sl

N=BxT

which is obtained froni3 = 7" x N by cyclically permuting the three unit vectors. Tvex _calc command
iscurve _binormal (or CB).

8Stewart§14.3.
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EXAMPLE 2.7. Find the unit tangent and unit normal vectors of the ellipse of example 2.1.
NOTE: Since the ellipse i8-dimensional, there is no binormal.

SoLUTION: Using the velocity and acceleration computed in previous examples, we have
> t_hat:=evall(v(phi)/speed);

sm(qb) 3 cos(¢)
V—Tcos(¢)2 +16 /—Tcos(¢)? + 16
> perp_proj:=evall( a(phi)-dot(a(phl),t_hat)*t_hat ): simplify(%);
cos(¢) sin(¢)
136 7cos(¢)? — 16’ 1 7cos(¢)? — 16]
> evall( perp_proj/len(perp_proj) ): n_hat:=simplify(%);

t_hat := [—4

]

cos(o) 4 sin(¢)

%% %%

%1 := Tcos(¢)* — 16
and we check with theec _calc commands:
> CT(r); CN(n);

n_hat := |3

sin(¢) 63 cos(¢)

[QS — —4 )
—7cos(¢)? + 16 —T7cos(¢)? + 16

]

SlIl

cos(¢ 64
1/ 21 A/ 21
7cos —16 (Tcos(e 6) 7cos —16 (7cos(e 6)

EXAMPLE 2.8. Find the unit tangent, unit normal and unit binormal vectors of the helix of example 2.2.
SoLUTION: Using the velocity and acceleration computed in previous examples, we have
> V(©)len(V(t): T:=evall(simplify(%));

6 . 6 1
T := [_ﬁ V3Tsin(t), 37 V37 cos(t), 3 V37
> VxA:=simplify(cross(V(t),A(t)));

VA := [6sin(t), —6 cos(t), 36]
> VxAllen(VxA): B:=evall(simplify(%));

1 . 1 6
B := [ﬁ V37sin(t), ~37 V37 cos(t), 37 V37]
> N:=cross(B,T);

N = [—cos(t), —sin(t), 0]



36 CHAPTER 2. VECTOR FUNCTIONS OF ONE VARIABLE: ANALYSIS OF CURVES

and we check with theec _calc commands:
> CT(R); CN(R); CB(R);

1
[t — —% V3T sin(t), ¢ — % VBT cos(t), t = 5= VI

[t — —cos(t), t — —sin(t), 0]

[t — % V3Tsin(t), t — —% V3T cos(t), t — % V37

In R* and higher dimensions, there are generalizatios &f and B but they cannot be computed using
the cross product. Rather they are computed from the velocity and successively higher derivatives of the
curve by applying the Gramm-Schmidt procedure. But that is a topic for a course in linear algebra.

2.2.5 Curvature and Torsion

9The curvature: along a curve?(t) measures the rate at which the direction of the curve is changing and may
be computed from any of the formulas:

dT
ds

1

G

| =

Since the last formula involves a cross product, it can only be usRd.ifhevec _calc command is
curve _curvature (or Ck).

1%The torsionr along a curve’(t) measures the rate at which the plane of the curve is changing and may
be computed from either of the formulas:

Since the definition involves, the torsion is only defined i&3. Thevec _calc command is
curve _torsion (orCt).

EXAMPLE 2.9. Find the curvature of the ellipse of example 2.1.
NOTE: Since the ellipse i8-dimensional, there is no torsion.

SoLUTION: Using the acceleration and unit normal from previous examples, we compute
> kappa:=dot(a(phi),n_hat)/speed"2;

1
K:=—12

_W)?_Mj (7 cos(¢)? — 16) (—7 cos(¢)? + 16)

9Stewart§14.3.
10stewart§14.3 Exercises.
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EXAMPLE 2.10. Find the curvature and torsion of the helix of example 2.2.
SOLUTION: Using quantities from previous examples, we compute
> Kappa:=simplify(len(VxA)/SPEED"3);

6
K = 37
> Tau:=simplify(dot(VxA,J(t))/len(VxA)"2);
T := i
37
and we check with theec _calc commands:
> Ck(R); Ct(R);
6
37
1
37

2.2.6 Tangential and Normal Components of Acceleration

1sijnce the acceleratiaflies in the plane of the vectof§ and N, we can write it as

SinceT’ anqN are perpendicular unit vectors, we can identify the coefficientsinda v, as the components
of @ alongT and N. These are also called the tangential and normal accelerations. They may be computed
from the formulas

d|v]

ar=a-T=-—" and aN=5-N=K|ﬁ|2
dt
Thevec _calc commands arecurve _tangential _acceleration (orCaT) and
curve _normal _acceleration (or CaN.

EXAMPLE 2.11. Find the tangential and normal accelerations for the ellipse of example 2.1.
SOLUTION: Using the speed and curvature of the ellipse found in previous examples, we compute
> a_T:=diff(speed,phi);

cos(8) sin(9)
—T7cos(¢)? + 16

a T =

> a_N:=kappa*speed™2;

a_N = —12
1

T cos(d)2 =16 (7 cos(¢)? — 16)

lstewart§14.4.
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and we check with theec _calc command:
> CaT(r); CaN(n);

cos() sin(9)
—T7cos(¢)? + 16
1

¢ — —12

1

T eon0) — 16 (7 cos(¢)? — 16)

EXAMPLE 2.12. Find the tangential and normal accelerations for the helix of example 2.2.

SOLUTION: Using the acceleration, unit tangent and unit normal vectors of the helix found in previous
examples, we compute (using a different method)
> A_T:=dot(A(t),T);

> A_N:=dot(A(t),N);

2.3 Exercises

e DolLabs: 9.4and9.5.

e Do Project: 10.2.
NOTE: You should only use thgec _calc curve  commandsCv, Ca, Cj, CT, CB CN Ck, Ct, CaT,
CaNandCL) to check your work. Be sure mplify  your answers.
. : : . t3
1. Consider the 3-dimensional parametrized curv&t) = (tcos(t), ¢ sin(t), E):
(a) Enter the curve intMapleusingMF,
(b) Plotthe curve for 0 <t < 27.

(c) Forgeneraltimes, compute the velocity, acceleration, jerk, speed, unit tanget vector, unit binormal
vector, unit normal vector, curvature, torsion, tangential acceleration and normal acceleration.

(d) Compute the length of the curve for0 < ¢ < 2.
(e) Find the time when the curvature is a maximum.

2. Spiral Curve: Consider the 2-dimensional parametrized curig) = (¢ cos(t), ¢ sin(t)):
(a) Enter the curve intMapleusingMFE
o . . 3
(b) Plot the curve for 0 < t < 67 to see that it is a spiral. Then plot it for—g <

3 . . .
t < °T with the options filled=true, axes=none, color=red to make a
Valentine’s card.



2.3. EXERCISES 39

(c) For general times, compute the velocity, acceleration, jerk, speed, unit tanget vector, unit normal
vector, curvature, tangential acceleration and normal acceleration.

(d) Compute the length of the spiral for0 < ¢ <27 andfor 27 <t < 4nr.
(e) Find the time when the curvature is a maximum.
(f) Find the time when the normal acceleration is a minimum.

3. The Astroid: Consider the 2-dimensional parametrized curvét) = (cos®(t), sin®(t)):

(a) Enter the curve intMapleusingMF
(b) Plotthe curvefor 0 <t <27 tosee thatitis star shaped. Thisis why it is called an astroid.

(c) For general times, compute the velocity, acceleration, jerk, speed, unit tanget vector, unit normal
vector, curvature, tangential acceleration and normal acceleration.

(d) Compute the length of the astroid for0 < t < 2.

4. Find parametric equations for the line tangent to the curvt) = (2t, cos (3t),sin(—5t)) at the
point (7,0, —1).

5. Find the tangent line to the curvei(t) = (cos(—6t), 4t,sin(2t)) at the point (0,7, 1).
6. Find the tangent line to the curver(t) = (sin(—3t), cos(4t),4t) atthe point (—1,1,—2m).

7. The electric force on a point chargedue to a point charg€ is F = —]if]—gQF wherer is the
vector fromgto Q and r = |7|. A small piece of a wire of length ds = |#|dt and linear
charge density. may be approximated as a point chargelQ = pcd_:S. Calculate the electric
force on a point charge @fcoulombs located at the origin due to a charge distribution along the helix
#(t) = (cos(t),sin(t),t) for 0 < ¢ < m with a linear charge density of p.(z,y,2) = z
coulombs/cm.
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Partial Derivatives

3.1 Scalar Functions of Several Variables

3.1.1 Definition

A scalar-valued function of several varialfés a real valued function of variables. Typical examples
might be the temperature on a metal plate or the density of a solid. For example, the temperature of the air

near a candle might be given by the scalar function of 3 variaflés,y, z) = 300e~" %" ~=*. You may
enter this function intdapleeither as an expression
> T:=300%exp(-x"2-y"2-z"2);

T := 300" v~
or as an arrow-defined function either explicitly by typing:
> T:=(x,y,z) -> 300*exp(-x"2-y"2-z"2);

T :=(z,y, z) — 300 e
or by using thevec _calc commandnakefunction  orits aliasME
>  T:=MF([x,y,z], 300*exp(-X"2-y"2-2"2));
T := (z,y, z) — 300~ ¥ =)
What is the difference between these two arrow definitions? None as defined above. However, suppose you

have already defined an expressionhich gives the distance from the origin:
> rEsqri(x"2+y"2+z72);

ri= /2?4 y? + 22
and you want to defin@ in terms ofr. If you use the explicit arrow definition,
> T:=(x,y,z) -> 300*exp(-r2);

T:=(x,y, 2) — 300"

1Stewart Ch. 15.
2Stewart§15.1.

40
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thenMapledoes not evaluate. Worse still, Maple may give thewrong answeif you evaluater:
> T(x,y,2), T(1,2,3);

300 e(-7* =¥’ =2") 300 e(~2"~v*~=")
However if you useMF, thenMapleevaluates immediately:
> T:=MF([x,y,z], 300*exp(-r'2));

T = (z,y, z) — 300e~=" v~

and evaluates correctly:
> T(x,y,2), T(1,2,3);

300 -7’ ==") 300 ¢(~14)

3.1.2 Plots

To visualize a function of 2 variables, you can plot its graph usingtbi8d command. Alternatively, you
can look at its level curves using either of two commargdstourplot or contourplot3d , from the
plots package (which is autoloaded kgc _calc ): .

The commandontourplot3d is faster tharrontourplot since it uses the machine’s floating point
processing. It is entirely equivalent to tht3d command with the optiostyle=contour in that it
produces the 3 dimensional graph of the function but draws the contour lines on the surface. To see the plot
from directly above, you should add the optiorentation=[-90,0] which gives the location of your
eye using the spherical coordinatés¢). Thus[—90, 0] means that you are looking down on the plot from
the positivez-axis with thex- andy-axes in their usual positions.

The problem witkcontourplot3d is that you cannot superimpose an ordinary 2 dimensional plot onto
the contour plot. On the other handntourplot is slower but it produces a true 2 dimensional plot of the
contour lines. You can then use tthisplay command from the@lots package to superimpose the graph
of a function produced usinglot or a parametric curve produced usipigt or the graph of an equation
produced usingmplicitplot

EXAMPLE 3.1. Plot the graphs and contour plots of the functions

flay) =V(@=22+12+/(x+2)2+ 42

and

9(z,y) = (@ =22 + 2 = V(2 +2)2 + 12

Then discuss the shape of the contours and the local maxima and minima of the functions. Noffde that
the sum of the distances frofm, y) to the pointg2, 0) and(—2, 0), while g is the difference.
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SoLUTION: We enter the functiorf and draw its graph and its contour plot:
> f=MF(x,y], sart( (x-2)°2 + y"2 ) + sqgrt( (x+2)2 + y2 ) );

fi=(z,y) = Va2 —do+44+y2+ Va2 + 4z + 4+ 2

> plot3d( f(x,y), x=-4..4, y = -3..3, axes=framed,
orientation=[60,75]);

Y
N, g
o

(/
i

§ Wl
6] \ \\\“ ‘A')Aliﬁ/////
. \“Q\\W”z,;.;';::zj;/

0' 7 7/
\we..,',.,:,:/,,;;/

e

> contourplot3d( f(x,y), x=-4..4, y = -3..3, axes=framed,
scaling=constrained, orientation=[-90,0]);

Notice that the line segment between the po(rt8, 0) and(2,0) is the level set off with value 4 and the
other level sets are ellipses with foci@t2,0) and(2,0). (This is the definition of an ellipse.) Thus the
minimum occurs along the line segment betwéeefi, 0) and(2, 0).

N

[y
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Next we enter the function and draw its graph and its contour plot:
> g=ME(Ixyl sart( (x-2)°2 + y2 ) - sqrt( (x+2)°2 + y2 ) );

g =(z,y) > Va2 —drx+4+92— /a2 +4x+4+92
> plot3d( g(x,y), x=-5..5, y = -5..5, axes=boxed, orientation=[60,75]);

—_

> contourplot3d( g(x,y), x=-5..5, y = -5..5, axes=boxed,
orientation=[-90,0]);

r—4

This time they-axis is the level set of with value 0, the part of the-axis withx > 2 is the level set with
value—4 and the part of the-axis withz < —2 is the level set with value 4. The remaining level sets are
half-hyperbolas with foci af2,0) and(—2,0). (This is the definition of a hyperbola.) Thus the minimum
occurs along the part of the-axis withz > 2 and the maximum occurs along the part of thexis with

r < —2.
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3.1.3 Partial Derivatives

3Given a function of several variables, defined as an expression, its partial derivatives may be computed using
diff . For example, iff is a function of(x, y, t), then? would be computed usingiff(f,y) . Higher
Y

3

derivatives may also be computed usdiff but with additional arguments. For exam o would be
computed usingliff(f,y,y,t) . The results from these commands are expressions.

Given a function of several variables, defined in arrow notation, its partial derivatives may be computed
usingDwith an index which is the number of the variable. For examplgjsfa function of(z, y, t), then?
would be computed using[2](f) . Higher derivatives may also be computed udinigut with additional
indices. For exampleg)Tf& would be computed using[2,2,3](f) . The results from these commands

are arrow-defined functions.

EXAMPLE 3.2. Enter the function

f(z,y,0,0) = xsin(¢p) cos(d) — ysin(¢) sin(f) + zy cos(p)

_0
dy0200¢

SoLUTION: We enter the function as an expression anddi§e to compute the derivatives:
> f := x*sin(phi)*cos(theta) - y*sin(phi)*sin(theta) + Xx*y*cos(phi);

f = xsin(¢) cos(f) — ysin(¢) sin(f) + x y cos(¢)
> f _theta := diff(f,theta);

. .0 .
as an expression, compute the denvat»g%sand and evaluate them at a poifat, b, ¢, p).

f-theta :== —zsin(¢) sin(f) — y sin(¢) cos(6)
> f_yphiphitheta := diff(f, y, phi, phi, theta);

f -yphiphitheta := sin(¢) cos()
Finally, we evaluate afa, b, t, p).

> subs( {x=a, y=b, theta=t, phi=p 1o
asin(p) cos(t) — bsin(p) sin(t) + a b cos(p)
> subs( {x=a, y=b, theta=t, phi=p }, f_theta);
—asin(p) sin(t) — bsin(p) cos(t)
> subs( {x=a, y=b, theta=t, phi=p }, f_yphiphitheta);
sin(p) cos(t)

Notice, the definition and derivatives of expressions were easy, but the evaluatjoris atp) were tedious.

SStewart§15.3.
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EXAMPLE 3.3. Use arrow notation to enter the functions

flay) = V(@ =22 43>+ (z+2)2 +4?

and

g(@,y) = V(e =22 + 52 = /(2 +2)% + 42
0%g 0%

of
o andL = 2 + a— evaluated at a poir{uz, b).

SoLUTION: The functions may be entered either by epr|C|tIy typing the arrow or by usingethecalc
commandnakefunction

> fi= (xyy) > sgrt( (x-2)°2 + y2 ) + sqgri( (x+2)2 + y'2 );

fo=(z,y) = V(&—22+y2+/(z+2)2 +y2
> g:=MFE(Ix,y], sqrt( (x-2)2 + y'2 ) - sqrt( (x+2)2 + y'2 ) ):;

Then compute the quantiti€s = gi

g =(z,y) > Va2 —drx+4+92— /a2 +4x+4+92
We then compute the required quantities and evaludieg, a}:
> C:= D[1](9) - D[2](f); C(a,b);

C = ((z, y) 1 2z -4 1 2x+4
= R — — J—
2 /22 —dax+4+y? 222 +da+4+y2
y y
N AN
1 2a—4 1 2a+4 b b

2VZ —da+4+02 2V tda+d+02 JVi®—datd+2 JViltdat+dtb?
> L= D[1,1](g) + D[2,2](9); L(a,b);

1 (22 —4)2 1 1 (22 +4)?
L=,y — - — + =
4 (22 —dz+4+y?) (3/2) Va2 —dr4+4+y2 4 (@2 Hdr 449262
1 y? 1
_\/$2+4$+4+y2)+((x’y)—)_(fﬂz—4$+4+y (3/2) \/:c? Az +4+y2
Y B 1
(z2 +4x+4+y2)B2 a2 Thr 1412
1 (2a—4)2 +2 1 1 (2a+4)?
4 (a2 —4a+4+02)6D o2 “ha 4+ 02 4 (a®+4a+4+02)G/?2)
1 b2 b2

—9 — _
Va?+da+4+07 (e —da+4402)6/2) N (a2 +4a+4+b2)B/2)
Notice, the arrow definition was slightly more complicated than the expression definition, but the derivatives
were no more complicated and the evaluation@ab, ¢, p) were much easier.
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3.1.4 Gradient and Hessian

4The vector of first partial derivatives of a functigris called the gradient of. The matrix of second partial
derivatives off is called its Hessian.

If f is defined as an expression, then the commamndd andhessian from thelinalg  package
(autoloaded bwec _calc ) will compute the gradient and hessian ff For these commands you must
specify the variables and the result is a vector or matrix.

If fis defined in arrow notation, then the comma@RADandHESSfrom thevec _calc package will
compute the gradient and hessiaryofor these commands the result is a list or a list of lists. To convert the
list of lists into a matrix, you may use teatrix command from théinalg package.

EXAMPLE 3.4. Enter the functionf(z,y,2) = z3y*z° as an expression and compute the gradient and
hessian.

SoLUTION: We enter the function and compute the gradient and hessian:
> f = X3 *y4 * 75

> delf := grad(f, [x,y,z]);
delf := [32?y* 2%, 42% 3 25, 523 y* 24
> Hf := hessian(f, [x,y,z]);
6rytz® 12229325 1522y
Hf := | 122293 2° 12239225 202343 2%

15 22 y4 2t 2023 y3 24 2028 y4 23

EXAMPLE 3.5. Enter the functionf(z,y, z) = 23y*2° in arrow notation and compute the gradient and
hessian.

SoLUTION: We enter the function and compute the gradient and hessian:
> f = MF(x\y,z], X3 * y4 * z°5);

fi= (@, g, 2) - 2yt
> delf := GRAD(f);

3,3.5 3424]

delf :=[(z, y, 2) — 322yt 2P, (x,y, 2) — 423220 (x,y, 2) = 52y

> Hf := HESS(®);

Hf = ([(z, y, 2) = 62y 2°, (z, y, 2) = 12277 2°, (2, y, 2) — 1527 y* 2%,

[(z,y, 2) = 1227y 2°, (2, y, 2) = 122° 2 20, (2, y, z) — 202 y° 27,
2. 4 4
z

[(z,y, 2) = 1527 y* 2, (2, y, 2) = 202° 4> 27, (2, y, 2) — 2027 y* 27

4Stewart§15.3, 15.6, 15.7.
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To display the Hessian as a matrix, we need to usertaigix command. But thenatrix command
cannot take arrow-defined functions as arguments; i.e. the comnnaautix (Hf) produces an error mes-
sage. So we need to first evaluate the Hessian at a point:
> matrix(Hf(a,b,c));

6abic® 1242035 15a% bt -|
124203 c® 12a3b%2c¢® 20a3 b3t

15a?b* ¢t 200303 ¢t 2043 b P

NOTE: In this book we enter a matrix as a list of lists. For example, the mafrix G g g) is entered
as
>  M:=[[2,4,6][1,3,5]];
M:={[2,4, 6], [1, 3, 5]]
Notice that each inner list is a row of the matrix. However, also noticellaaie does not display this list of

lists as an array. To get a nicer display, you can use either of the commands:
> convert(M,matrix), matrix(M);

2 4 6 2 4 6

1 35| |13 5
The reason for theonvert command is thalaple has two internal forms for vectors and matrices. In
one form the types are calldi$t  andlistlist . In the other form they argector and matrix
The latter have nicer displays, but in this book we will use lists and lists of lists because they are easier
to type. To convert between the types one usasvert( ..., vector) or vector( ... ) and
convert( ..., matrix) or matrix( ... ) In one direction andtonvert( .., list) and
convert( ..., listlist) in the other direction.

3.2 Applications

3.2.1 Tangent Plane to a Graph
SGiven a functionf(z, %), the equation of the plane tangent to the graph f(x,y) at the point where
(z,y) = (a,b) Is:
2 = fran(®,y) = f(a,b) + fa(a,b)(z — a) + fy(a,b)(y — b).
2 2
EXAMPLE 3.6. Find the equation of the plane tangent to the ellipsoig¢ /4 — % — % at the point

(4,3). Then plot the upper half of the ellipsoid and the tangent plane.
SOLUTION: Enter the function and compute the partial derivatives:
> fi=MF([x,y], sqrt(4 - x"2/8 - y2/9) );

1
fi=(z,y) — o /576 — 18 22 — 16 42

SStewart§15.4.
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> fx:=D[1](P);

X
fr = (z,y) — 2\ /576 1842 — 1642
> fy:=D[2](F);

3 /576 — 1822 — 1642
Define the function for the tangent plane:
> ftan:=MF([x,y], f(4,3) + x(4,3) * (x-4) + fy(4,3) * (y-3) );

ftan = (m,y)%%@—i@(x—@—%@(y—i&)

So the tangent plane is:
>z = simplify(ftan(x,y));

1 1
z=4- 3%~ 3 Y
Finally, plot the ellipsoid and the tangent plane:
> plot3d(  {f(x)y), ftan(x,y) }, x=-sqrt(32)..sqrt(32), y=-6..6,
axes=normal, orientation=[-45,85]);

3.2.2 Differentials and the Linear Approximation

8For points near the point of tangency, the tangent plane is close to the graph of a function. Hence, the function
fran(z,y) = f(a,b) + fo(a,b)(z — a) + fy(a,b)(y — b) which defines the tangent planeas- fian(z, y)

is called the linear approximation to the functigrat (a,b) and may be used to approximate the function

z = f(x,y) near the point of tangendy, b).

6Stewart§15.4.
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If the point moves from(a, b) to (z,y) = (a + Az, b + Ay), then the differentials of the independent
coordinatesy andy, are simply the changes in the coordinates:

dr = Ax and dy = Ay.
For the dependent coordinate the change is:
Az = f(z,y) — f(a,b) = fla+ Az, b+ Ay) — f(a,b),
while the differential is the change in the linear approximation:

dz = ftan(xvy) - ftan(avb) = ftan(a + Ava"’_ Ay) - f(aab)
= fr(aa b)A(L’ + fy(aa b)Ay = fz(av b) dx + fy(aa b) dy

The linear approximation says that for points ngam), the tangent functiorf,., (z, y) is close to the
function f(z, y), and also that the differentidk is close to the changz.

EXAMPLE 3.7. A cylindrical can has radius = 4 cm, heighth = 10 cm and is made from aluminum
which is .02 cm thick. Use differentials to estimate the volume of aluminum need to make the can. Include
the sides, top and bottom.

SOLUTION: The volume of a cylinder is
> V:=(r,h) -> Pi*r2*h;

Vi=(r,h) = nr?h
To find the volume of the aluminum, we compare the volume inside the can to the volume including the metal.
By the linear approximation, the change in the volume is approximately the differential of the volume. Thus,

ov ov

The partial derivatives are
> Vri= D[1)(V);

Vr:=(r, h) = 2nrh
> Vh:= D[2](V);

Vh:=(r, h) — 712
The change in the radius is the thickness of the aluminum:
> dri= .02
The change in the height is twice the thickness of the aluminum since there is a top and a bottom:
> dh:= .04:
Thus the volume of aluminum is approximately the differential of the volume:
> dV:= Vr(4,10) * dr + Vh(4,10) * dh;

dV :=2.24~x




50 CHAPTER 3. PARTIAL DERIVATIVES

EXAMPLE 3.8. Consider the surface iR> given by the equation

F(x,y,z) _ ZlO +x2y228 -I—(E4Zﬁ +y4z4 +x2y222 -I—(EQ 4 2y2 =8

(a) Verify that the poinf1, 1, 1) is on the surface.
Notice that this equation implicitly definesas a function of andy in the neighborhood of the poift, 1, 1).
So we can writer = f(z,y) wheref(1,1) = 1.

(b) Use implicit differentiation to computgi(l, 1) and%(l, 1).

<L Y

(c) Find the equation of the plane tangent the graph f (z,y) at(1,1).

(d) Use the linear approximation {{z, y) at (z,y) = (1, 1) to estimatef (1.03, .98).

(e) Useimplicitplot3d to plot the surfacé’(z, y, z) = 8. Useplot3d to plot the tangent plane at
(1,1,1). Then usalisplay  to put the two plots together.

SOLUTION: (a) We define the functiof'”:
> F = MF(x,y,z], 2710 + X'2*y"2*z2°8 + X'4*2°6 + y 4*z2°4 + X' 2*y"2*7"2
+ X2 + 2%°2);

Fi=(2,y,2) — 20 +22y? 28 2425 4yt 2 422 g% 2% 4 2% + 292

and evaluate &tl, 1, 1) to check that'(1,1,1) = 8:
> F(1,1,1);

8
(b) We substitute = f(x,y) into F' to obtain the equation which implicitly defings
> eq:= Fxy,f(xy) = 8;
eq = f(z, y)'" + 2 y* f(z, y)® + 2 f(z, y)° + y* f(, y)* + 2° y* f(z, y)* +2° + 247 =8
Then we differentiate with respect i solve forg and substitutéz, y, z) = (1,1,1).

ox
> diff(eq,x);

0 0
10f(z, y)* (5, £, v) + 2xy* f(z, y)® + 82y’ f(z, y)” (55 (@ v+ 42% f(z, y)"
0 0
+ 6.134 f(l‘, y)5 (% f(.l?, y)) + 4y4 f(.l?, y)3 (% f(],‘, y)) + 2$y2 f(.l?, y)2

0
+ 222 y? f(x, y)(%f(x, y)+2x=0

> fxsol:= solve(%, diff(f(x,y),x));
z (y* f(z, y)® + 227 f(z, v)S + v f(z, y)> + 1)

f(z, y) (5f(z, y)® + 422 y* f(z, y)° + 32t f(z, y)* + 2y* f(z, y)* + 22 y?)
> fxi= MF([x,y,z], subs(f(x,y)=z, fxsol ) );

frsol == —

r(y? 28+ 22225 92224+ 1)
2(528 +4x2y? 26 +3a% 24+ 2y 22 + 22 y?)

fx = (J") y) Z) -
> fx0:= fx(1,1,1);

-1
0 = —
fz 3
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Likewise fory:

> diff(eq,y);
106z, 4)° (2 £z, 9) + 202y, 1)° + 8225 K, 1) (“= f(a, 1)) + 65 Kz, )° (2 K(x, 1)
b 8y b b b ay b b 8y b
0 0
+ 4y f(z, y)' + 4y  f(z, y)? (a—y f(z, y)) +22% y(z, y)* + 227y £(z, y) (a—y f(z, y))
+4y=0
> fysol:= solve(%, diff(f(x,y),y));
Fysol = — y (22 f(x, y)® + 2% f(z, 9)* + 2 f(z, y)* + 2)
PO T e, y) (5, y)® + 4a? g2 £z, 9)° + 32t K(z, 9)* + 2y H(z, y)® + 2 4P)
> fy:= MF([xy,z], subs(f(x,y)=z, fysol ) );
5 ( ) y(a? 28 +29y2 24 + 22224 2)
= — —
y Yz 2(528 +4x22y?2 206 +3a% 24+ 2y* 22 + 22 y?)
> fy0:= fy(1,1,1);
2

(c) We define the tangent function using the fact thdt 1) = 1:

> ftan:= MF([x,y], 1 + X0 * (x-1) + fy0 * (y-1) );
26 1 2
ftan = (z, y)—>1—5—§m 5Y
Then the tangent plane is:
> z = ftan(x,y);
26 1 2

z = x
15 3 5
(d) The linear approximation tf is just the tangent function. So we evaluate ita03, .98):
> ftan(1.03,.98);

.9980000000
If you are curious, you can compare this result from the linear approximation with the result frésultlee
command:
> fsolve(F(1.03,.98,2)=8,2);

—.9977857069, .9977857069
Pretty close.
(e) We plot of the equatiof’'(z, y, z) = 8 and save it as plotF:
> plotF:= implicitplot3d( F(x,y,z)=8, x=0..2, y=0..2, z=0..2):
Then we plot the tangent plare= fi..(x, y) and save it as plotFtan:
> plotFtan:= plot3d( ftan(x,y), x=0..2, y=0..2, color=gray):
Finally, we display the two plots together:

> display( {plotF, plotFtan }, orientation=[30,105], scaling=constrained,
axes=normal);
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AT N
SRUFORNR)
SR

3.2.3 Taylor Polynomial Approximations

For a function of one variablgx), the linear approximation may be improved by using the quadratic approx-
imation or a higher order Taylor polynomial approximation. In generalptheorder Taylor approximation
to f(z) atx =alis

" a (n) a
fule) = f(@) + P @@ —a) + T a2 s LD g
A Taylor polynomial may be computed using thkaples taylor and convert( ..., polynom)

commands. For example, th&'®rder Taylor polynomial fotn(z) atz = 2 is
> t5:=taylor(In(x),x=2,6);

t5:zln(2)+%(ﬂc—2)—%(x—2)2+2—14(x—2)3—61—4(33—2)4+1—;30(33—2)54-0((33—2)6)

> convert(t5,polynom);

1 1 , 1 | .1 5
111(2)+§x—1—§(x—2) +ﬂ(x—2) —a(x—Q) +ﬁ($_2)
NOTE: The last parameter tiaylor is the integer one greater than the order of the Taylor polynomial. In
fact, this parameter is the order of the error term, show@@$). Theconvert command strips off the
order term.
Similarly, for a function of several variableg(z1, zo, ... ,zx), the linear approximation may be im-
proved by using the quadratic approximation or a higher order Taylor polynomial approximation. In general,

then'! order Taylor approximation tg(zy, 2, ... ,zx) at(z1, xa, ... ,zx) = (a1, az, ... ,ax)is

1@ = 1@ + 3 - @i — 0+ 53D faf (@)(z: — a5)(; — a)

1 k k onf
++—'Z Z m(a)(xu — i) (2, —as,)
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UsingMaple a multi-variable Taylor polynomial may be computed usingrtitaylor command.

NoTE: Normally, themtaylor command must be loaded using tfeadlib  command. However, the
mtaylor command is automatically loaded by thec _calc package.

For example, the'S order Taylor polynomial for/z2 + 42 at(z, y) = (4,3) is
> t3:=mtaylor(sqrt(x"2 +y"2), [x=4,y=3], 2);

43 9 12 8 18
19 = et Syt (=) — == (2 —4) (= 3) + —— (y—3)? — —— (2 —4)3
A A R M T i AU R T ik Mty v S )
69 4 24
— (y-3)(z -4+ —@w -3 (r—4) — —(y—3)3
+6250(y ) (@ )+3125(y )" (x —4) 3125(y )

NoOTE: The mtaylor command does not produce an order term. So you do not neecbtivert
command.

CAUTION: According to the help page, the last parametentaylor  should be one greater than the order

of the polynomial. However, in practic®laple is inconsistent and you need to use trial and error. For this
function, the last parameter needs to be one less than the order of the polynomial as shown here. However, for
the function in the next example, the last parameter needs to be one more than the order of the polynomial.

EXAMPLE 3.9. Find the Taylor polynomials fof (z, y) = sin(x) cos(y) about(z,y) = (0,0) of orders 3,
11 and 19. Then display the ordinary plots and contour plots for the original function and each of the Taylor
polynomials.

SOLUTION: Enter the function:
> f:i=sin(x)*cos(y);
f :=sin(z) cos(y)
Then compute the Taylor polynomials: (The output is so long that we will only display the first polynomial.)
> f3:=mtaylor(f,[x=0,y=0],4);

1 1 .
3 =x——y?cr— -2
f TSy 6x

> fll:=mtaylor(f,[x=0,y=0],12):

> f19:=mtaylor(f,[x=0,y=0],20):
The commancops will count the number of terms in a sum. In particular,

> nops(f3), nops(fll), nops(f19);
3,21, 55

So f3 has 3 termsf;; has 21 terms angl 9 has 55 terms.
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Next, compute the ordinary plots of the function and of the Taylor polynomials:

[15,30],

-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation

> plot3d(f, x

view=-2..2);

[15,30],

-2*Pi..2*Pi, orientation

=-2*Pi..2*Pi, y=

> plot3d(f3, x

view=-2..2);

[15,30],

-2*Pi..2*Pi, orientation

=-2*Pi.. 2*Pi, y=

> plot3d(f11, x

view=-2..2);

[15,30],

-2*Pi..2*Pi, orientation

=-2*Pi.. 2*Pi, y=

> plot3d(f19, x

view=-2..2);

Finally, compute the contour plots of the function and of the Taylor polynomials:

[-90,0],

-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=

> contourplot3d(f, x

view=-2..2);
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)0)0)0)C

> contourplot3d(f3, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);
> contourplot3d(f11, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);
> contourplot3d(f19, x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, orientation=[-90,0],
view=-2..2);

Notice that the Taylor polynomials become better approximations to the function as the number of terms
increases.

3.2.4 Chainrule

’Suppose: is a function ofz andy, i.e. z = z(z,y), while 2 andy are functions ot, i.e.2 = x(¢) and
y = y(t). Thenz may also be regarded as a function ¢firough the composition = z(z(t), y(t)) and its
derivative may be compute by using the chain rule:

% %w),y(t»i—f + 2—;@@%@(”)%

“Stewart§15.5.
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Similarly, if z is a function ofr andy, while x andy are functions of andt then the chain rule formulas are:

0z 0z oxr 0z dy
95 = %(33(8,75)#(5775))% + a—y(x(s,t),y(s,t))&
and 0z 0z Jx 0z dy
o = 5. @t u(s D) 5 + a—y(m(s,t)vy(s,t))a

These formulas may be generalized to larger numbers of variables.

EXAMPLE 3.10. A starship is travelling through a high temperature plasma field. Its shields are capable of
withstanding very high temperatures but can only adjust to these temperatures at a rate no grezite€than
per second. Assume that the temperature distribution in the plasma is the Gaussian distribution

T — 12500°C e (& +v°+2%)/10000

and the starship is travelling along the parabolic curve 2> — 100, z = 0 as a function of time according
to

arcsinh(t) arcsinh(t)"2
2 ’ 4

(x,y,z) = F(t) = ( - ]-OOaO)

where all distances are given in light-seconds and time is given in seconds. Plot the absolute value of the
expected rate of change of temperature to ensure that it is never great2staper second.
SoLUTION: We enter the temperature function and the parametrized curve:

> T:=MF([x,y,z], 12500*exp(-(x"2+y"2+2"2)/10000) );
T.— (a: y, z) — 12500 e(—1/10000x2—1/10000y2—1/10000 22)

> ri=MF(t,[arcsinh(t)/2,arcsinh(t)"2/4-100,0]);

1 1
ri=[t— 5 arcsinh(t), t — 1 arcsinh(t)? — 100, 0]
We will find the derivative in three ways.

Method 1 We form the compositioff’ (7(t)):
> Tri=MF(t, T(op(r(t)) );

Tr =t — 12500 6(71/40000arcsinh(t)Qfl/IOOOO(1/4 arcsinh(t)2—100)2)

NOTE: Theop command is needed to strip the square brackets afftpf .
Then we take the derivative:

> DTr:=D(Tr);

1
1 arcsinh(t) 1 (Z arcsinh(t)? — 100) arcsinh(t)
20000 T2 10000 e

—1,/40000 arcsinh(t)%—1,/10000 (1/4 arcsinh(t)2—100)2)

DTr .=t — 12500

el
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Method 2 The chain rule says

ar or, .dx oT _ . dy 0T _ . dz
So we compute the partial derivativesiofand thet derivatives ofr, y andz and plug into the chain rule:
> Tx:=D[1(T); Ty:=D[2](T); Tz:=D[3](T);

Tz = (2, y, 2) — 7?x6(71/100001271/1000011271/100002:2)
N Y ) 2

5 2 2 2
Ty — _ 92 . (=1/10000 x2—1/10000 y*—1,/10000 22)
Y= (x, ¥y, z) — Y

Tz = (z, y, 2) — _§Z6(71/1000090271/10000y271/1000022)
N Y ) 2

> Dx:=D(r[1]); Dy:=D(r[2]); Dz:=D(r[3]);

> DTr=MF(t, Tx(op(r())*Dx(t) + Ty(op(r(t)))*Dy(t) +
Tz(op(r(t)))*Dz(t) );

5 arcsinh(t) e(—1/40000 arcsinh(¢)2—1/10000 (1/4 arcsinh(¢)%—100)?)
DTr:=t— —<
8 V1+t2
5 (1 arcsinh(t)2 —100) £(—1/40000 arcsinh(#)?—1/10000 (1/4 arcsinh(t)®~100)?) arcsinh(t)
4 V1412
Method 3 Notice that the chain rule formula may written as the dot product

dlr =
= = V() - ()

of the gradieni'T" of the temperatur& evaluated on the curvt) and the velocityi(t) of the curver(t).
So we compute the gradientdfand the velocity of* and take the dot product:
> delT:=GRAD(T);

5 2 2 2
delT = v (—=1/10000 2“—1/10000 y=—1/10000 z*)
€ [(.13, Y, Z) - 2 zre )

(z,y, z) — —gye(_l/loooox2—1/10000y2—1/1000022),

(z,y, z) — —g » ¢(—1/10000 2% ~1/10000 y*~1/10000 22)]

> v:i=D(n);
S 1 1 1 arcsinh(t) 0]
= -5 y U= 5 —F/—»
2 V1412 2 i+
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>  DTr:=MF(t, dot( delT(op(r(t))), v(t) ) );

b . 5 arcsinh(t) (20050 arcsinh(t)2—1/160000 arcsinh(t)*—1) (—398 + arcsinh(t)Q)
ri=t— ——
16 VI+12

Now that we have computed the rate of change of the temperature, we can plot the absolute value of
this rate and the horizontal line at 25, to be sure that the temperature is never changing fa2&tGhaer

second.

> plot ( {abs(DTr(t)),25 }, t=-10..10);

-10 -8 -6 2 4,6 8 10
So our recommendation to the starship captafi€isange course or put on the breaks!”

The first method was the fastest, but it can only be used if you have explicit formulas for the outer
function, herel'(x, y, z), and the inner functions, hefét) = (z(t), y(t), z(¢)). This will not be the case in
the next example. The second and third methods are essentially the same computation but the third method
is independent of the dimension of space and so is faster when there are more intermediate variables. The
third method will be generalized to the derivative along a curve and the directional derivative in the next

subsection.

EXAMPLE 3.11. In example 3.8, we saw that the surface given by the equation

F(a:,y,z):210+x2y2z8+x426+y4z4+x2y2z2+x2+2y2=8

definesz as a function ofr andy in the neighborhood of the poiriti,1,1). So we were able to write
z = f(z,y) wheref(1,1) = 1. Thenwe compute%i(l, 1) and?(l, 1).
€L Y
We now transform to polar (or cylindrical) coordinates using the equations

x = rcos(d) y = rsin(6).
Then the poin{z, y) = (1,1) has polar coordinatgs, 6) = (v/2, %) and the same surfadé(z,y, z) = 8

definesz as a function of- and@ in the neighborhood of the poiiit, 0, z) = (V2, %, 1). So we can also
Y
) = 1.

write z = g(r, 0) whereg(v/2, 1
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. T dg T
Use the chain rule to compu%q:(\/i Z) and%(\/i, Z).

SoLUTION: In example 3.8, we entered the functibhused implicit differentiation to comput%i—c and
? and evaluated them &t, y) = (1, 1). The results were
Y
> fx0, fyO;
-1 2
3’5
We now enter the polar coordinate formulas,
> X0:=MF([r,theta], r*cos(theta)); y0:=MF([r,theta], r*sin(theta));
z0 := (r, ) — rcos(f)
y0 := (r, ) — rsin(h)
compute their partial derivatives and evaluate thefa:ag) = (1, 1) which corresponds tr, §) = (v/2, %):
> xr:=D[1](x0); xr0:=xr(sqrt(2),Pi/4);

ar == (r, ) — cos(0)

xrl = % V2
> xtheta:=D[2](x0); xthetaO:=xtheta(sqrt(2),Pi/4);
atheta := (r, §) — —rsin(0)

zthetal = —1
> yr:=D[1](y0); yrO:=yr(sqrt(2),Pi/4);

yr == (r, ) — sin(0)

1
yr0 = B V2
> ytheta:=D[2](y0); ythetaO:=ytheta(sqrt(2),Pi/4);
ytheta := (r, ) — r cos(6)

ythetal =1
Then the chain rule says

Wva D=L nerwa )+ e nwa )

and

e =tan e+ S nva ]
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NOTE: The partial derivatives af, x andy are evaluated 4#/2, %) sinceg, x andy are functions of and
6 while the partial derivatives of are evaluated &1, 1) sincef is a function ofc andy.

So we compute: The partial derivati\gg(\/ﬁ, %) is:

> gr0 = fx0 * xr0 + fyO * yrO; '

11
0 :=——V2
gr 30\/_

and the partial derivativ%%(\/?, %) is:
> gtheta0 := fxO * xthetaO + fyO * ythetaO;

thetal = —
gtheta R

3.2.5 Derivatives along a Curve and Directional Derivatives

8]n example 3.10, we computed the time derivative of the temperature as felt by a starship as it moved through
a plasma field along a specified curve.

In general, if a point moves through space along a specified ¢ltye- (m(t), y(t), z(t)) and a function
f(z,y,z) is defined throughout space, then the compositi¢fi(t)) = f(z(t),y(t),z(t)) is called the
restriction of the functiory to the curver(t) or the value of the functiolf along the curve’(t). Then the
derivative of the composition

df _ df(7(t)) _ df (x(t), y(1), 2(1))

dt —  dt dt

is called the derivative of along the curve(t). By the chain rule, this may be written as

i

de Of
dt — Oz a Ty

dt Oy

dy | OF

() (F(t) 2 + S (7)== V() - 5(t)

In the last step, the derivative ¢falong the curve(t) has been written as the dot product of the grad%ﬁt
evaluated on the curvét) and the velocityi(¢) of the curve. It is important to remember that the derivative
along a curve can be computed either by using the chain rule or by using its definition as the derivative of the
composition.

More generally, iff is a function defined throughout space afid a vector located at a poifi then the
derivative of f along the vector at the pointr is defined to be

Viaf =7 V(i)
So, the derivative of along a curve®(t) is the same as the derivative phlong its velocity vectot(t):

df e
& — ) V() = Vaf

8Stewart§15.6.
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And conversely, the derivative ¢gfalong the vectot at the point? is the same as the derivative pfalong
any curver(t) which passes througiiand has velocity there.

Further, as a special caseifs a unit vector, then the derivative ¢falong the vectofi, namelyﬁﬁ fiis
also called the directional derivative 6fn the direction:. In particular, ifd' is any vector, then the directional

derivative off in the direction ofthe vectorv is ﬁ@f wheret = % is the unit vector in the direction af.
EXAMPLE 3.12. Consider the functiorf = 223>2*. Compute each of the following:

(a) The gradient of at a general point and at the poiﬁt: (2,4,8).

(b) The derivative off along the vectof = (1,4, 12) at the pointP = (2,4,8). (Notice that you do not
need to know anything about a curve to compute this derivative.)

(c) The directional derivative of in the direction of the vectar = (1,4, 12) at the pointl'3 = (2,4,8).

(d) The derivative off along the curve’ = (t,t2,¢3) at timet = 2. Compute this in two ways.

(e) The derivative off along the curve? = (27,472, 8T3) at timeT = 1. Comparing the curvegand
R, what can you say about their paths, their speeds and their velocities and the derivafiedsngf the two
curves?

(f) The derivative off along the lineX = (24 u, 4+ 4u, 8+ 12u) at timeu = 0. Comparing the curves
7andX, what can you say about their paths, their speeds and their velocities at th?p@ir@t, 4,8) and
the derivatives of along the two curves at the poift= (2, 4, 8)?

SoLuTION: We first enter the function:
> fi=MF([x,y,z], X"2*y"3*z"4);

f = (J), Y, Z) - $2y3 2t

(a) We compute the gradient and evaluate iPat (2,4,8):

> delf:=GRAD(f);
> delfP:=delf(2,4,8);
delfP := [1048576, 786432, 524288]

(b) The derivative off along the vectos = (1,4,12) atP = (2,4,8)is Vyf = 7- Vf(P):

> v:i=[1,4,12]: vdelfP:=v &. delfP;
vdelfP := 10485760

(c) The unit vector in the direction afis

> vhat:=evall( v/len(v) );

1 4 12
= [— V161, — /161, — /161
vhat = [157 V161, 757 V161, {57 V161]

So the directional derivative of in the direction of the vectar at the pointZ3 =(2,4,8)is:
> fvhat:= vhat & delfP;

104
fohat = % V161
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(d) We enter the curvi(t), differentiate the compositiofi(7(t)) and evaluate at= 2:
> = MF(@, [t, t°2, t°3));

o=t —t, t—t3 t— 3
> Dfr:= diff( f( op(r(t)) ), t);
Dfr =20
> subs(t=2, Dfr);
10485760

Alternatively, we compute the veloci(t) and the dot produat() - V f(7(t)) and evaluate at= 2:
> v:i=D(n);

vi=[l,t— 2t,t — 3t?
> vdelfr:= v(t) & delf( op(r(t)) );

vdelfr := 20t'°
> subs(t=2, vdelfr);

10485760
NOTE: This is the same answer as in (b) sin¢2) = (1,4,12) andr(2) = (2,4, 8).
(e) We enter the curv&(T) and compute the velocity:
>  Ri= MF(T, [2*T, 4*T"2, 8*T"3));

R:=[T—2T, T - 4T T — 877
>  V:=D(R);

Vi=[2,T—8T,T— 24T?
Then we compute the dot produétT’) - V f(R(T)) and evaluate & = 1:
> VdelfR:= V(T) & delf( op(R(T)) );

VdelfR := 20971520 T*°
> subs(T=1, VdelfR);

20971520
The curves™(t) and E(T) follow the same path but they are parametrized differently. The parameters are
related byt = 2T sinceR(T') = #(2T'). Hence the velocities are related by

. dR(T) dF(2T) _dF
T = = = 2—
VT = =7 dT dt

= 20(27).

Hence the speed fdt(T') is twice the speed faf(t) and the derivative of alongR(T) is twice the derivative
alongr(t).

(f) This time we enter the curvﬁ’(u) and compute the position and velocity at time- 0:
> Xi= MF(u, [2 + u, 4 + 4*u, 8 + 12*u));

X=u—-24u,u—4+4u, u—8+124]
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> X(0);
[2, 4, 8]
> v:=D(X);
v:=[1, 4, 12]
> v(0);
[1, 4, 12]

So the derivative along the curve is:
> vdelfX:= v(0) & delf( op(X(0)) );

vdelfX := 10485760
The two curves (¢) andX (u) are not the same but they both pass through the (§2jrt 8) and have velocity
(1,4, 12) there. In other words, the two curves are tangent at this point and have the same speed there. Hence,
the derivative along the curve must be the same.

3.2.6 Interpretation of the Gradient
9The gradient of a functiorf satisfies 4 properties:

1. ﬁf points in the direction of maximum increase of the functfon

2. ‘ﬁf‘ is the rate of increase ¢f (or slope off) in the direction of maximum increase.

3. ﬁf is perpendicular to each level set of the functjon
4, Qualitatively,‘ﬁf‘ is inversely proportional to the spacing between the level sets.

We can uséapleto graphically illustrate these properties. The level sets of a function of 2 variables may
be plotted by using theontourplot command in thelots package. A 2-dimensional vector field such
as the gradient of a function may be plotted by usingdfibieplot command in theplots package. A
3-dimensional vector field may be plotted by using fie¢dplot3d command in th@lots  package.

EXAMPLE 3.13. Consider the function

foy) = (x—2)2+ (y—4)? I01)6)2 — 24z — 32y + 20

Draw the contour plot off usingcontourplot . Label the contours by (i) clicking in the plot on each

contour to find ther andy coordinates, (ii) evaluating at the point and (iii) usingextplot  to plot the

contour values. Compute the gradientfodind plot it usindieldplot . Then display them all in the same

plot usingdisplay . Finally discuss the four properties of the gradient in the context of this plot.
SOLUTION: We enter the function:

> fi=MF(x,y], (( (x-2)°2 + (y-4)"2 -16 )2 - 24*x - 32*y + 20)/100);

8 1

L i o 2 _ 2 2_2 = -
fr=y) = 55 (@=27+(y=4)" -16)" - o — ooy + ¢

9Stewart§15.6.
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We draw the contour plot and save the plot for future use:

> cp:=contourplot(f(x,y), x=-4..8, y=-2..10, scaling=constrained,
contours=[-3,-2,-1,0,1,2,3,4,5]): cp;

-2
Unfortunately,Maple does not label the contours with the function values. So we must do it by hand. We
click in the plot on each of the 10 contours, read off the coordinates and evaluate the function at that point:
> f(2.6,8), f(2.6,6.8), f(2.6,6), f(2.3,5.21), f(2,3.8);
> f(-1.7,2), f(-2.6,2), f(-3.4,3), f(-3.83,4), f(-3.83,6);

—2.982704000, —1.991600000, —.9891040000, .0676402680, 1.051216000

—.0034390000, 1.023056000, 2.061056000, 3.075205232, 4.034317232
Then we useextplot to label each contour ardisplay  the text with the plot:
> tp:=textplot( {[2.6,8,-31, [2.6,6.8,"-2], [2.6,6,-11,
[2.3,5.21,'01, [2,3.8,'11, [-1.7,2,'0], [-2.6,2,'11, [-3.4,3,2,
[-3.83,4,'3, [-3.83,6,41 }, font=[TIMES,BOLD,14]):
> display( {cp,tp }, scaling=constrained);

g =——

Now we compute the gradient:
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> delf:=GRAD(f):

1 6 12 14 1 2 8 16
delf = 3 22 . = 2. 2.2 % -
elf =2, y) = gpa” = gpa g m e b YT oyt - pry gy,
oo Lppy A 41636 0 1, 12,
L a4 s 4 6 36 24 1 5 12
LY gt YT ot T ot T ot T o5 Y T 95 T a5 Y T o5 Y

and plot it, again saving the plot:

> fp:=fieldplot(delf(x,y), x=-3..7, y=-1..9, scaling=constrained,
grid=[10,10], arrows=thick): fp;
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Finally, we display the level sets and the gradient field in the same plot:
> display( {cp,tp,fp }, scaling=constrained);

Observe the gradient vectors are perpendicular to the level curves and point toward increasing values of the
function, as required by properties 1 and 3. And the gradient vectors are longer where the contours are closer
together, as predicted by properties 2 and 4. Relaple rescales the vectors so they will fit into the plot

but maintains their relative sizes. So it is not possible to observe the actual lengths of the gradient vectors.
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NOTE: You may also plot the gradient of a function directly by using ghadplot  or gradplot3d
commands from thelots  package.

3.2.7 Tangent Plane to a Level Surface

19Recall that the plane through a poifitwith normal vectorV is given by the equatio®’ - X = N - P. To
find the equation of the plane tangent to a level surfage y, z) = C of a functionF" at a pointP = (a, b, ¢)
we simply take the normal vector to be the gradienFadt P; i.e. N = VF(a,b, c).

EXAMPLE 3.14. In example 3.8, we found the tangent plane to the surface
F(w,y,z) _ 210 +x2y228 -I—:C4ZG +y4z4 +x2y222 +:C2 4 2y2 =8

at the point(1, 1, 1) by using implicit differentiation. We now rederive it using the gradient.
SoLuTION: We define the functiod’, the pointP = (1,1, 1) and the generic poiiX = (z,y, 2):
> F = MF(xy,z], 2710 + X2 * y2 * 278 + X4 * 276 + y4 * 774 + X2
*y2 %772 + X2 + 2*Y°2);
F .= (m, v, z)—>zw+x2y228+x4z6+y4z4+x2y2z2+x2+2y2
> P:E[1,1,1]: X=X,z
Then we compute the gradient and evaluat®at
> delF:=GRAD(F);

delF = [(z,y, 2) — 229?28 +4232° 4+ 20 9y? 2% + 21,
(z,y, 2) =222y 28 +49y° 2" + 222y 2% + 4y,
(z, 9y, 2) = 1027 + 822y 2" + 621 2° + 49 2% + 22292 2]
> N:=delF(op(P));
N = [10, 12, 30]
Finally we construct the equation of the tangent plane:
> N & X =N2& P;

10z 4+ 12y + 302 =52
Notice how much easier this was than the computation in example 3.8.

CAUTION: At the beginning and end of this chaptér we discussed the tangent plane to a surface in two
different contexts. Students often confuse these two situations.

In subsection 3.2.1, we discussed the tangent plane to the grapf(z, y) of a function of2 variables
In that case the tangent plane(atb, f(a,b)) is the linear approximation:

z = ftan(xay) = f(aab) +fz(avb)(x_a) +fy(avb)(y - b)

In subsection 3.2.7, we discussed the tangent plane to the level skifacg =) = C of a function of3
variables. In that case the tangent plangrat (a, b, ¢) is

N.-X=N.P

10stewart§§13.5, 15.6.
1istewart§§15.4, 15.6.



3.3. EXERCISES 67

where the normal vector is the gradientat
N =VF(a,b,c).

If you are given a surface as a graph= f(x,y) , then you can also treat it as the level surface
F(z,y,z) = z — f(z,y) = 0. The reverse is not always possible. In the exercises, you will be asked
to find the tangent plane to several graphs by both methods.

3.3 Exercises
e Do lLab: 9.6.

e Do Projects: 10.4 and 10.3.

1. Plot the graph and the contour plot of the functiorf (z,y) = y + /22 + (y — 2)2.  Discuss the
shape of the contours and any local maxima and minima of the function. Noticg thdhe sum of
the distances frort, y) to the point(0, 2) and the liney = 0.

2

Yy _
oz =0

o))

2
. - - . 1
2. Checkthatthe function y = 4(x—ct)?—(z—ct)® satisfies the wave equatlon@——2

0r? ¢
Make a movie of the wave (far= 2) by using the command
> animate(4*(x-2*t)"2 - (x-2*t)"3, x=-10..10, t=-5..5, view=-5..15,
frames=50);
Then click in the plot and click on theLAY ARROW on the button bar. Repeat for the functions:
2 2
y=cos(xz+ct), y=exp(x—ct), and y=e @t 4 g (@tet)”

3. Compute the gradient of f(z,y) = —z* +4xy —2y*>+1 atageneral pointand ét,y) = (2,3).
4. Compute the Hessian of f(x,y) = —az* 4+ 4zy —2y>+1 atageneral pointand ét, y) = (2, 3).

5. Find an equation of the tangent plane to the graph= z? + 2%  at the point(z,y, 2) = (1,1, 3).
Plot the function and its tangent plane.

6. Find an equation of the tangent plane to the graph= f(z,y) = xy atthe poinfx,y) = (2, 3).
Plot the function and its tangent plane.

7. Compute the total differentiakw for the function w = z%y®> whenz = 3,y = 2, dz = .04, and
dy = .2.

8. The length, width and height of a box are measuredto be=2+.03cm, W =3+.02cm and
H =44+ .01cm. Then the volume of the boxisV = 24+ AV. Use differentials to estimate
the errorAV in the computation of the volume.

t y=rs’e”’, and z=r?ssint, find the value

9. If w=a'y+1y%2% where z=rse
of @ whenr = 2,s =1andt = T Find the derivative both by forming the composition of the

S
functions and by using the chain rule.
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11.

12.

13.

14.

15.

16.

CHAPTER 3. PARTIAL DERIVATIVES

Compute the derivative of the temperature funciigm, y, z) = z + 22 + y* along the helix*(t) =
(cos(t),sin(t),t) att = % Find the answer in two ways: (a) by forming the composition, and (b) by
finding the derivative along the velocity.

Compute the directional derivative ofw = z%y®  at(z,y) = (4, —1) in the direction of theunit
vectord which points in the same direction as the veator (4, 3).

Find the equation of the tangent plane to the surfagéy®z+22°—y2* =1 atthe poin{z,y, z) =
(1,1,1) by regarding it as the level set of a function.

2 2 2
Find the equation of the tangent plane to the eIIipso% + §_6 + Zz =1 atthe point(z,y, z) =

(4,3,1) by regarding it as the level set of a function. Compare your results to example 3.6.

Find the equation of the tangent plane to the level surfagdxz, y, z) = z — 2? —2y?> =0 at the
point(z,y, z) = (1,1, 3). The answer should be the same as for exercise 5.

Find the equation of the tangent plane to the level surfaé&x,y,2) = z — xzy = 0 at the point
(z,y,2) = (2,3,6). The answer should be the same as for exercise 6.

Find the equation of the tangent plane to the level surfagéx,y,z) = z — f(z,y) = 0 atthe
point (z,y,z) = (a,b, f(a,b)). Compare the result to the equation of the tangent plane to the
graph z = f(z,y) atthepoint (z,y) = (a,b).



Chapter 4

Max-Min Problems

1There are two types of max-min problems that we will discuss:

1. Unconstrained Max-Min Problems’® Here you want to find all the critical poiniof a functionf ()
and classify each as a local mainnum, a local minimum or a saddle point. The critical points are the
pointsZ where the gradient is zer®, f (Z) = 0. They are classified by applying the Second Derivative
Test.

2. Constrained Max-Min Problems® Here you want to find the locatiahand valuef () of the absolute
maximum or absolute minimum of a functignwhere the points are constrained to lie on a level set of
a functiong. There are three methods of solving a constrained max-min problem:

(@) Eliminating a Variable* You can solve the constraiptz) = C for one variable, substitute into
the functionf and reduce the problem to an unconstrained problem with one less variable.

(b) Parametrizing the Constraint You can parametrize the constrajiit) = C, substitute into the
function f and reduce the problem to an unconstrained problem with one less variable.

(c) Lagrange Multipliers® You can solve the equati(ﬁ?if = >ﬁg along with the constraint(z) =

C, for the critical pointse and the Lagrange multipliex.

We will also consider an example with two constraints. The discussion in this chaptenigliatiensional,
although the examples are primarily 2- and 3-dimensional.

1Stewart Ch. 15.
2Stewart§15.7.
3Stewart§§15.7, 15.8.
4Stewart§15.7.
5Stewart§15.8.
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4.1 Unconstrained Max-Min Problems

4.1.1 Finding Critical Points

5To find the critical points of a functiorf (), you need to solve the equati(ﬁﬁf =0, whereﬁf is the
gradient off.

To compute the gradient, you can use GiRADcommand from therec _calc package. This assumes
that f is arrow-defined as produced by tMFcommand. To set the gradient equal to zero, you can use
the equate command from thestudent package (autoloaded by thec _calc package). To solve
the equations, you can try usisglve to get exact solutions, dsolve to get decimal approximations.

If Maple returns answers involving one or moR®otOf ’s, you can obtain all of the roots by using the
allvalues  command probably with theedependent  option. Be sure to check that the values returned
are really solutions sincallvalues/independent is likely to produce extraneous roots. This is done
by evaluatingﬁf at each answer. It may also be useful to look at a graph or a contour pfdtpfto
determine the variable ranges for fiselve  command and to verify that you have all the solutions.

EXAMPLE 4.1. Find the location and value of all critical points of the function
flx,y) =30y +y° — 32 = 3y* + 2.

SoLuUTION: We first input the function and draw an ordinary plot and a contour plot:
> fi=MF([x,y], 3*X"2*y + y'3 - 3*X2 - 3*y2 + 2);

fo=(z,y) =32y +y* —32" —3y° +2

> plot3d(f(x,y), x=-3..3, y=-2..4, view=-10..10, axes=normal,
orientation=[-15,75]);

KSR
—2/2% N

A ,’V =
,

A

il

> contourplot3d(f(x,y), x=-3..3, y=-2..4, axes=normal, contours=[-6,
-4, -2, -3/2, -1, -1/2,°0, 1/2, 1,73/2, 2, 4, 6], grid=[49,49],
orientation=[-90,0]);

6Stewart§15.7.
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The first plot shows there are probably one local maximum and one local minimum. The second plot locates
the local maximum nedp, 0) and the local minimum ne&o, 2). It also shows there are probably two saddle
points neaf1,1) and —1, 1).

To verify our predictions, we take the gradientfoédnd equate it to zero:
> delf:=GRAD(f);

delf := [(z,y) = 6xy — 6z, (z,y) — 32> +3y> — 6]
> egs:= equate(delf(x,y), [0,0]);

eqs :={6zy—62=0,32>+3y> -6y =0}
We now solve the equations for the critical points:
> sol:=solve(egs, {xy ;

sol 1= {Zzovy:()}, {:E:O’yZQ}v {x:]-vy:]-}v {xzf]-?y:]-}
There are four solutions, as we expected. The function values are:
> fl:=subs(sol[1], f(x,y)); f2:=subs(sol[2], f(X,y));
> f3:=subs(sol[3], f(x,y)); f4:=subs(sol[4], f(x,y));

f1:=2
f2:=—=2

f3:=0

f4:=0

We suspect the local maximum 2sat (0, 0), the local minimum is-2 at (0, 2) and there are two saddle
points, but that will be demonstrated in example 4.4.
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We next have athree dimensional example where the solutions are given in termRobtlé function.

EXAMPLE 4.2. Find the location and value of all critical points of the function

(_x_2 _ v _)
F(x,y,2)=(x+y+ze\ 2 & 18/
SoLuTION: We first input the function. Since we cannot plot a function of 3 variables, we immediately
take the gradient and display each component:
> F=MF([x,y,z], (x+y+z)*exp(-x"2/2-y"2/8-z"2/18));

Fi= (2,9, 2) — (¢ +y+z)el /20 -1/8y"-1/182%)
> delF:=GRAD(F): delF[1]; delF[2]; delF[3];

(z,y, z) — 6(71/21271/811271/18272) _ 2 6(71/2#71/8;,271/18,22) . xe(71/21271/8y271/1822) y

2 2 2
_ 1'6(71/21 —1/8y“—1/18 =z )Z

—1/22%-1/8y%*—1/182%) _ ixe(

(x, Y, z) — el —1/22%-1/8y*—1/18 2%) y

(—1/22%-1/8y>—1/18 22)

- iyz e(—1/22°~1/8y>~1/182%) _ 1 z

1Y°

L r2eroysyro1as2?) L 1t 1ysy? o118

(1’, Y, Z) §£L'€
_ % y6(71/2x2*1/8 y271/1822) . — 1 22 e(*1/212*1/8y271/18z2)

Before equating the gradient to zero, we first simplify it a little bit. First notice that the exponential factor
> ex:=exp(-x"2/2-y"2/8-z"2/18);
or i— 6(71/21271/8y271/18z2)
can be factored out of each term of the gradient. Since this quantity is always positive, we can divide each
equation by this factor and not affect the validity of the equation. The resulting equations are:
> eqa:= simplify( equate( delF(x,y,z)/ex, [0,0,0] ) );

{1—2? 0,11 L S 0,12 = L 0}
eqa ;=1 —x"—xy—zrz= —=TY— =Yy —-yz= —-TzZ—-Yyz— 2" =
q y gy gy g -3 9% 3

We now solve the equations for the critical points:

> sols:=solve(eqa, {xy.z 1)

1
sols := {y = 2RootOf(7 _Z% — 2), z = gRootOf(7_Z2 —-2),x= 3 RootOf(7_2% — 2)}

There is only one solution, but it involvesRotOf ’s with the same argumerit,_Z2? — 2. This means that

. . 2 2 . . .
eachRootOf is to be replaced by elth% or —\/;. Unfortunately, at this point, there is no way to know

whether theRootOf ’s are “dependent” or “independent.” If they are dependent, then all dRU®WOf ’s

are to be replaced together once by the positive root and once by the negative root producing 2 solutions.
(These may be found usiralvalues(sols, dependent .) If they are independent, then each of the
RootOf s is to be replaced separately once by the positive root and once by the negative root producing

8 solutions. (These may be found usiallyalues(sols, independent .) At this time there is no

way to know which is the case. So to be safe, we need to assume they are independent and check whether
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each “potential solutions” is really a solution by substituting it into the gradient. This is time consuming. So
instead, we will re-solve the equations but one at a time.
We first solve the first equation farand substitute into the second and third equations:

> z0:=solve(eqa[l],z); egb:=simplify( subs(z=z0, {eqa[2],eqa[3] )
. 2
[t e ) )
xz
o y—dx 11397 +4xy—16
eqb .= { ; —O,9 " =0}

Then we solve the first of these fgrand substitute into the second which we then solve:for
> y0:=solve(eqgb[1],y); eqc:=subs(y=y0,eqb[2]);

y0 =4z

L 242216
eqc i = — ————— =
=T 2

> x0:=solve(eqc,x);

1 1
z0 = ﬁ V 14, _ﬁ V 14
So there are two solutions, which we obtain by substituting back:

> Pl:=subs(z=z0,y=y0,x=x0[1],[X,y,z]);
P2:=subs(z=z0,y=y0,x=x0[2],[x,Y,Z]);

1 2 9
P1i= [ VId SV 5V
1 2 9
P2 :=[-— 14, -2 V14, - = V14
2= g Vi 7 VI v

NOTE: Thesubs commands work because the substitutions are made in the order they are listed.
Finally the function values are:
> Fli=F(op(P1)); F2:=F(op(P2));

F1 =142

F2 = —/14¢1/2
NOTE: Again we useop to strip off square brackets.
So we expect thalP; is a local maximum and is a local minimum. We will check this in example 4.5.

In the previous two examples, we found the exact values of the critical points usisgitlee command.
In the next example, the critical points cannot be found exactly. So we will useotiteurplot and
fsolve commands to find decimal approximations to the critical points.

EXAMPLE 4.3. Find the location and value of all critical points of the function

g(z,y) = (@ = 1)> + (y —2)> — 4)” + 32 — 4.
SOLUTION: We first input the function:
> gi=MF(X,y], ((x-1)2+(y-2)"2-4)"2 + 3*x - 4*y );

gi=(z,9) = (z -1+ (y—27 -4 +3z -4y
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Next we want to plot the function. Notice that for largeandy, the function behaves qualitatively like
(z =1+ (y— 2)2)2. So the level curves behave qualitatively like circles centeréd,&). So we need
a region centered &t , 2). Some experimentation shows that good ranges:fgrandz are—2 < z < 4,
—1 <y <5and-15 < z < 20. Using these ranges, we draw an ordinary plot and a contour plot:
> plot3d(g(x,y), x=-2..4, y=-1..5, view=-15..20, style=wireframe,
axes=boxed, orientation=[-120,75]);

207 A
» \ \‘M""v‘wrv‘«r;!!
0 \\\M‘u “,“{Z’l"‘",,l:é"i@"‘
51 \ \\“ \“ \"W//’ 7
] \\\ A\\'/ Y
~15-

> contourplot3d(g(x,y), x=-2..4, y=-1..5, view=-15..20, axes=normal,

orientation=[-90,0], grid=[49,49]);
— 3 4

>

4

From these plots, we expect that there is a local minimum fxedr, 3.5), a local maximum nea(l, 2) and
a saddle neaf2, .5).

To get better approximations for these critical points, we compute the gradient and equate it to zero:
> delg:=GRAD(g);
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delg == [(z, y) = 42> — 1222 + 120 — 1+ 4y*x —4y? — 16y + 16y,
(z,y) = 4a?y — 82> —8xy+ 162+ 36y — 12+ 49> — 2447
> egs:=equate( delg(x,y), [0,0]);

eqs = {423 — 1222 + 120 — 1 +4y°z — 49> — 162y + 16y = 0,
4oy -8z —8xy+16x+36y—12+4¢° — 249> =0}
If we solve these just usingolve
> soll:=fsolve(egs, {xy });

soll := {y = .5438070899, x = 2.092144683}
we only get one solution. So we ufselve  with ranges to find the other two:
> sol2:=fsolve(egs, {xy }, {x=0..2,y=1..3 H;

sol2 := {x = 1.192449828, y = 1.743400230}
> sol3:=fsolve(egs, {xy } {x=-1..0,y=3..5 H;

sol3 := {x = —.2845945104, y = 3.712792680}
The function values are:

> gl:=subs(soll, g(x,y)); g2:=subs(sol2, g(x,y)); g3:=subs(sol3,
g(x.y));

g1 :=4.572793069
g2 = 11.79128991

g3 = —15.36408298

We suspect the local minimum is15.36 at (—.28,3.71), the local maximum i41.79 at (1.19,1.74) and
there is a saddle &2.09, .54) but that will be demonstrated in exercise 2.

4.1.2 Classifying Critical Points by the Second Derivative Test

"To classify a critical point of a functiofi, you need to apply the Second Derivative TestRrwe have:
The Second Derivative Test inR?. If (x,y) is a critical point of a functiorf in R?, then
1. (z,y) is alocal minimum iff,.(z, y) fyy (2, y) — faoy(z, y)? > 0andf,.(z,y) > 0.
2. (z,y) is alocal maximum iff. (z, y) fyy (@, ¥) — fay(z, y)? > 0andf,.(z,y) < 0.

3. (,y) is a saddle point if .. (,y) fyy(z,y) — fuy(z,y)? < 0.

4. In all other cases, the Second Derivative Test FAILS; i.e. the test cannot determine whether the critical
pointis a local minimum, a local maximum or a saddle point.

“Stewart§15.7.



76 CHAPTER 4. MAX-MIN PROBLEMS

This may be generalized ®™. To do this, you first compute the Hessian matrix which is the matrix of
second partial derivatives gf

forwr  foizs o0 foim,
Hess(F) = (fou,) — fx?xl fx?xg fx%xn
[ U
Next you compute the leading principal minor determinants of the Hessian matrix. These are the determinants
of the submatrices in the top left corner of sidzesg 1, 2 x 2,3 x 3, etc:

fmlml A fmlzk
D), = det :
fmkml tee fmkzk

In particular,

D, = frr ) Dy = fxxfyy - 374 and

D3 = frrfyyfzz + fﬁcyfyzfzx + faczfyxfzy - fxxfyzfzy - f(CZflllleﬂf - fﬁcyfyxfzz

Finally, you evaluate the leading principal minor determinants at each critical goemd classify the point
as follows:

The Second Derivative Test inR™. If & is a critical point of a functiory in R™, then
1. Zis alocal minimum if the determinani3, () are all positive.

2. Zis alocal maximum if the determinani¥, (¥) alternate signs starting with negative;
i.e.(—1)"Dy(%) > 0fork =1,... ,n.

3. Zis a saddle point iD,,(Z) # 0 and #1 and #2 above fail.

4. In all other cases, the Second Derivative Test FAILS; i.e. the test cannot determine whether the critical
pointis a local minimum or a local maximum.

To compute the Hessian, you can usel#SScommand from therec _calc package. This assumes
that f is arrow-defined as produced by thE-=command. ThédESScommand produces a matrix of arrow-
defined functions. To display this matrix as an array of expressions, you should evaluate the Hessian at a
general point and apply theatrix command. To compute the leading principal minor determinants, you
can use the commandeading _principal _minor _determinants from thevec _calc package
or its aliasLPMD This command expects its argument to be a matrix of expressions. So you must first
evaluate the Hessian at a general point or at a critical point.

EXAMPLE 4.4. Classify the critical points of the functiof(x, y) = 322y + y® — 322 — 3y® + 2.
SOLUTION: In example 4.1, we entered the function iaple, found four critical points and found the

function values. To classify them, we first compute and display the Hessian:

> HfE=HESS(f); matrix(Hf(x,y));

Hf = [[(z, y) = 6y —6, (z,y) = 6], [(v,y) =6z, (z,y) = 6y — 6]
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6y —6 6x
6x 6y —6

Then we compute the leading principal minor determinants. For a general point we have:

> LPMD(Hf(x,y)):

Leading Principal Minor Determinants:
D;=6y—6

Dy = 3642 — 72y + 36 — 36 22
For the first critical point0, 0), we have
> LPMD(Hf(0,0)):

Leading Principal Minor Determinants:
Dy =-6

D, = 36

SinceD: is positive andD; is negative(0, 0) is a local maximum.
For the second critical poiri0, 2), we have
> LPMD(Hf(0,2)):

Leading Principal Minor Determinants:
D; =6

Dy =36

SinceD, and D are both positive(0, 2) is a local minimum.
For the third and fourth critical pointd, 1) and(—1, 1), we have

> LPMD(Hf(1,1)):

Leading Principal Minor Determinants:

D=0
Dy = —-36
> LPMD(Hf(-1,1)):
Leading Principal Minor Determinants:
D=0

77
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At both critical points,Ds, is negative. So botfi, 1) and(—1, 1) are saddle points.
These results agree with our expectations from the plots in example 4.1. In particular, notice the shape of
the contours near the saddle poifitsl) and(—1, 1) so that you will recognize them next time.

w2 y2 22
EXAMPLE 4.5. Classify the critical points of the functioR(z, y, ) = (z +y + z)e( 28 18) .
SoLUTION: In example 4.2, we entered the function ilaple found two critical points and found the
function values. To classify them, we first compute the Hessian:
> HF:=HESS(F):
Then we compute the leading principal mTor determinants at each critical point.

1 9
V14T V147 V14

For the first critical pointP; = (
> LPMD(HF(op(P1))):

), we have

Leading Principal Minor Determinants:

__5 VIde(-1/2)
19
Dy = i (e (= 1/2))
7
D3 = _5‘/ (e (= 1/2))3
1 .
SinceD; is negative D, is positive andDs is negative P, = ( %) is a local maximum.

1 4 9
Vi Vi Vi)

=

ﬁ‘
W
2

@D Hk

For the second critical poid®, = (—
> LPMD(HF(op(P2))):

e

Leading Principal Minor Determinants:

1
D, = 22 Tde-1/2)

14
19
Dy = i (e (= 1/2))
7
D3 =5 V14 (e-1/2)3

1 4

9
JV1a' 14 V14

SinceD;, D, and D5 are all positive P, = (—

) is a local minimum.

4.2 Constrained Max-Min Problems

8Most word problems are constrained max-min problems. The formost thing to remember wheklagiag
to solve a word problem is th&aple will not solve the whole problem on its own. It takes a human being
to read the problem and turn the words into equations. You must identify the function to optimize and any

8Stewart§§15.7, 15.8.
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constraint equations. Then you must choose the method of solution. Basically you should decide how you
would solve the problem by hand and do the same steps Mzapie

One further rule of operation: If you plan to usey, z ort as variables in an equation, never assign a
value to these variables.

4.2.1 Eliminating a Variable

90One method of solving a constrained max-min problem is the “Eliminate a Variable” method. To use this
method, you solve the constraint for one of the variables and substitute for that variable in the function you
are extremizing. In this way, you reduce the number of variables by one. Finally, you solve the reduced
unconstrained problem for the remaining variables and plug back into the constraint to find the eliminated
variable.

EXAMPLE 4.6. You wish to construct an aquarium to hold 18,000af water, with a marble base, a glass
front, an aluminum back and aluminum left and right sides. There is no top. The marble costs $.£5 per in
the glass costs $.10 perirand the aluminum costs $.05 pefinVhat are the dimensions which minimize
the cost? (Let be the length of the tank from left to right,be the width from front to back, andbe the
height from top to bottom.)

SOLUTION: The volume isV = xyz, which we enter as
> Vi=(xy,z2) -> x*y*z;

Vi=(z,y,z2)—zyz
Then the constraint equation is
> constr:=V(x,y,z) = 18000;

constr := xy z = 18000
To find the cost, we make a table of each surface, the area of the surface and the cost per unit area:
Surface:|| bottom | front | back | left | right
Area: Xy XZ Xz |yz| yz
Cost: .15 .10 | .05 | .05| .05

We then multiply the cost per unit area by the area and add them up. So the total cost is
>  Ci=(xy,z) -> .15*%*y + .10*x*z + .05*(x*z + 2*y*z),

C:=(z,y,2)— .15zy+.15x2+ .10y =z
We now get to the first method of minimizing the cost: We solve the constraint for one variable and
substitute into the cost.
> z0:=solve(constr,z);

20 = 18000i
Ty
>  C2:=MF([x,y], C(x,y,z0));

1 1
02 = (z,y) — 15zy+ 2700.005 +1800.00 —

9Stewart§15.7.
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NoOTE: When we solve foz, we save the result im0 notz so thatz can still be used in other equations.
We can now minimiz&s:
> delC:=GRAD(C2);

2 —12000. 2 — 18000.
delC = [(z, y) — .1500000000 WT (z, y) — 1500000000 WT]
> egs:=equate(delC(x,y),[0,0]);
2 — 12000. 2 — 18000.
egs = {-1500000000 “——=——" = 0, 1500000000 WT — 0}

> sol:=solve(egs, {xy

sol :=={y =30., z =20.},
{y = —15.00000000 — 25.98076211 I, = = —10.00000000 — 17.32050808 I },
{z = —10.00000000 + 17.32050808 I, y = —15.00000000 + 25.98076211 I}
Only the first solution is real. So we substitute it back into the constraint solved for
> subs(sol[1],z0);

30.00000001
So the dimensions are= 20, y = 30 andz = 30.
If you do not want to have decimals in your answer, then you should enter your cost function as:
> C:=(Xy,2)-> 15/100*x*y + 10/100*x*z + 5/100*(x*z + 2*y*z):

4.2.2 Parametrizing the Constraint

Another method of solving a constrained max-min problem is the “Parametrize the Constraint” method. To
use this method, you parametrize the constraint set and substitute into the function to be extremized. In this
way, you reduce the number of variables by one. Finally, you solve the reduced unconstrained problem for
the parameters and plug back into the parametrization of the constraint to get the point.

NOTE: You should only use this method if it is easy to parametrize the constraint.

2 2
EXAMPLE 4.7. Find the pointz, y) on the eIIipsef—6 + % = 1 which is closest to the poirt, 3).
SoOLUTION: In this problem the quantity you need to minimize is the distance from the pgij to

the general pointz,y) on the ellipse. This distance is= +/(z —4)2 + (y — 3)2 . If the distance is a
minimum, then the square of the distance is also a minimum, and vice versa. So the function we will actually
minimize is
> fi=(xy) > (x-4)2 + (y-3)'2;

f=(2,y) = (@47 +(y-3)°

The point(z, y) is constrained to lie on the ellipse. So the constraint function is
> gi=(X,y)->X"2/16 + y°2/9;

L 1 2 1 2
g-—(fc,y)—>16x +tg5¥
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and the constraint equation is
> constr:=g(x,y)=1;

1
constr 1= 16 2+ -yt=1
To solve this by the method of Eliminating a Variable, you would solve the constraint for one variabje, say
JJZ
=43/1 - —
Y 16

and substitute into the distance squared function:

fi= (x—4)2+(3\/1—f—;—3)2 and f = (x—4)2+(—3\/1—£f—;—3)2.

You would then find the minima of these two functionsaof Since these are ugly functions, you would
probably not choose to solve the problem by this method, (althdlggble could handle it.) Further, for
some constraints, it is not possible to solve for one variable. So you must use another method. So we turn to
the method of Parametrizing the Constraint.
The ellipse may be parametrizedaas- 4 cos(¢) andy = 3sin(¢) for 0 < ¢ < 27.
NOTE: As pointed out in example 2.1, the parametetoes not measure angle like the polar coordifiate
This parametrization may be entered iMapleas
> X0:= 4*cos(phi): y0:= 3*sin(phi):
NOTE: We store these af) andyO0, rather than ag andy, so thatx andy can still be used in equations.
We then restrict the functiofi to the ellipse as a function of the parameter
> f0:=MF( phi, f(x0,y0) );

f0 := ¢ — (4cos(¢) — 4)* + (3sin(¢) — 3)
We plot the function to find the number of minima and where they are.
> plot(fO(phi), phi=0..2*Pi);
70%
eo—f
50—?
40—%
30%
20—?

10

o 1 2 5. 4 5 6
So there is one minimum near= .7 . To improve the value, we first compute the derivative:
> Df:=D(f0);

Df := ¢ — —8(4cos(¢p) — 4)sin(¢) + 6 (3sin(¢) — 3) cos(o)
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Then we set the derivative equal to zero antle :
> phisol:=solve(Df(phi)=0, phi);
%%13+%%12—1—76)
%1 := RootOf(49 _Z* + 126 7> + 288 7% — 126 Z — 81)
Notice that the exact solution is rather complicated. So wéstrive
> phisol:=fsolve(Df(phi)=0, phi=0..2);

2
phisol := arctan(%]1, £ %1 +

phisol := .7014935109
which is the minimum in the plot. Finally theandy coordinates at the minimum are:
> xsol:=evalf(subs(phi=phisol,x0));

zsol := 3.055516754
> ysol:=evalf(subs(phi=phisol,y0));

ysol := 1.936077806

4.2.3 Lagrange Multipliers

0The final method of solving a constrained max-min problem is the method of Lagrange Multipliers. This
method is based on the fact that the extremum of a fungtiai along a constraing(z) = C will occur at a
pointX where a level set of is tangent to the constraint set which is itself a level set.dince their level

sets are tangent, their normals (i.e. their gradients) are proport}amad:, )ﬁg. So to use this method, you
solve the equation‘?f = )ﬁg along with the constraint = C for the original variable§ and the Lagrange
multiplier A\. Thus the number of variables is increased by one.

EXAMPLE 4.8. Re-solve the problem of minimizing the distance from a point to an ellipse in example 4.7
using the method of Lagrange Multipliers. Also simultaneously plot: (i) the contour plot of the distance
squared function, (ii) the parametric plot of the constraint ellipse and (iii) the implicit plot of the level set of
the distance squared function which passes through the minimizing point. Discuss the relationship between
these three pieces of the plot.

SOLUTION: Once again the square of the distance is
> fi=(xy) > (x-4)°2 + (y-3)°2:
the constraint function is
> gi=(X,y)->X"2/16 + y°2/9:
and the constraint equation is
> constr:=g(x,y)=1:
We compute the gradient gfandg and construct the 2 equatioﬁg” = )ﬁg:
> delf:=GRAD(f); delg:=GRAD(qg);

delf :=[(z, y) — 22 —38, (z, y) — 2y — 6]

1 2
delg i= [(w, y) = 5 o, (@) — 5y

10stewart§15.8.
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> egs:=op( equate(delf(x,y), lambda * delg(x,y)) );

1 2
1—2 —8——)\ 2 —6——)\
eqs T 5% 2Y 5 Y

Then we solve these equations and the constraint,fgrand \:
> sol:=fsolve( {egs,constr }, {xylambda }, {x=0.4, y=0..3 1;

sol := {\ = —4.945720530, = = 3.055516754, y = 1.936077806}
as found in example 4.7. So the valuefadit the minimum is
> fsol:=subs(sol,f(x,y));

fsol :==2.023979037

We now turn to the plots. Recall that the parametrization of the ellipse is
> X0:= 4*cos(phi): y0:= 3*sin(phi):
So the plot of the ellipse is
> ellipse:=plot([x0,y0, phi=0..2*Pi]):
The contour plot off and the level curve of with valuefsol = 2.024 are
> fplot:=contourplot(f, -6.2..8.2, -4..6, color=black):
> fsolplot:=implicitplot(f(x,y)=fsol, x=0..6, y=0..6, thickness=2,

color=gray):
Now we display them together:
> display( {ellipse,fplot,fsolplot }, view=[-6.2..8.2,-4..6],

scaling=constrained);

\

Notice that the level curves gfare concentric circles centered(dt 3). Further, the level curve gf through

the minimum point,(3.056, 1.936), is that contour off which is tangent to the constraint curve (i.e. the
ellipse) at the minimum point. You can also identify the maximum point as the other point of tangency
between the ellipse and a level curve.
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4.2.4 Two or More Constraints

n the previous examples there was one constraint relating the variables. In the following example there are
two constraints. We will solve it by using Lagrange multipliers but either of the other two methods would
also work.

In general, given a functiofi(¥) of n variablesz, suppose you want to find the locatigrand valuef ()
of the absolute maximum or absolute minimum of a functfowhere the pointg’ are required to satisfy a
set ofk constraint equationg;(¥) = C; fori = 1...k. Once again, there are three methods of solving the
problem:

Eliminating k Variables If you can solve thé constraintgy; () = C; for k variables, you can substitute
them into the functiorf and reduce the problem to an unconstrained problem-ink variables. Once you
solve the reduced problem, you can plug back into the constraints to find the remairsrigbles.

Parametrizing the Intersection of the Constraints If you can parametrize the intersection of theon-
straintsg; (Z) = C; (usingn — k parameters), you can substitute into the functfcand reduce the problem
to an unconstrained problem in the— k& parameters. Once you solve the reduced problem, you can plug
back into the parametrization to find theoriginal variables.
NOTE: This method may be the most difficult because you will need to parametrize the intersectioh of the
constraints in the dimensional space.

k
Lagrange Multipliers  To use this method, you solve thzeequations@f = Z /\ﬁgi along with thek

=1
constraintgy; () = C;, for then components of the critical poinisand thek Lagrange multipliers\;. Thus
there aren + k equations im + k variables.

EXAMPLE 4.9. Find a point

p1 = (z1,y1,21) onthesphere (z —7)%+ (y —14)* 4 (2 — 21)? = 270
and a point

Po = (72,702,22) onthe sphere (z —21)% + (y — 28)% + (2 — 28)% = 449

such that the dot produgt - p; is a minimum. Also find the poinig, andp; such that the dot produgt - ps
is a maximum.

SoLUTION: We first enter the two points and define an abbreviation for the list of all 6 variables:
> pl:=[x1,y1,z1]: p2:=[x2,y2,22]: ps:=op(pl),op(p2);

ps:=uxl,yl, 21, 22, y2, 22
NOTE: Theop command strips off the brackets.
We then define the constraint functions and constraint equations:
>  gl:=MF([ps], (x1-7)"2 + (y1-14)2 + (z1-21)"2);

gl = (z1, yl, 21, 22, y2, 22) — (vl —7)* 4+ (y1 — 14)* + (21 — 21)?

lstewart§15.8.
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> constrl:=g1(ps)=270;
constrl = (z1 —7)% + (y1 —14)% + (21 — 21)? = 270
> g2:=MF([ps], (x2-21)"2 + (y2-28)2 + (z2-28)"2);
92 = (z1, y1, 21, 12, y2, 22) — (22 — 21)® + (y2 — 28)% + (22 — 28)*
> constr2:=g2(ps)=449;

constr? := (22 — 21)* + (y2 — 28)% + (22 — 28)% = 449

Notice that even though each constraint only depends on 3 coordinates, we still define it as a function of all
six variables to facilitate the later computation of the gradients.

The function to extremize is:
> fi=MF([ps],dot(p1,p2));

fi=(xl, yl, 21, 22, y2, 22) — xl 22 + yl y2 + 21 22

We now compute the 3 gradients and construct the 6 equdﬁgﬂns Aﬁgl + ;ﬁgg:
> delf:=GRAD(f)(ps); delgl:=GRAD(gl)(ps); delg2:=GRAD(g2)(ps);

delf = [22, y2, 22, z1, y1, 21|
delgl = 221 — 14, 2y1 — 28,221 — 42, 0, 0, 0]

delg2 :=10,0,0, 222 — 42, 2y2 — 56, 2 22 — 56]
> egs:=op(equate(delf,lambda*delgl+mu*delg2));

eqs :=y2 = A2yl —28), 22 = A(221 —42), 22 = A (2x1 — 14), 21 = (222 — 56),
yl = p(2y2 —56), o1 = u (222 — 42)

We now solve the 6 equatiorsgs, together with the 2 constraint equationenstrl  andconstr2
for the 8 variablesyy, y1, 21, 2, ya, 22, A, 14!

> sol:=solve(  {egs, constrl, constr2 }, {ps, lambda, mu }):
The two solutions are not shown because the second is very long. The firstis
> sl:=sol[1];

s1:={21 =32,22=44,y2 =40, p =1, yl =24, A\ =2, 22 =28, x1 = 14}
The second solution involvesRootOf . So we separate them by using #itvalues ~ command:

> sol2:=allvalues(sol[2]);
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sol2 := {x1 = 1.06279579, 22 = 23.2272158, 22 = 46.8902969, 21 = 9.01417861,

y2 = 37.33789149, y1 = 4.45590823, u = 238592835, A = —1.956073542}, {

xl = —4.82250223, 2 = 26.5485453, 22 = 7.8713490, 21 = 17.49475933,

y2 = 24.38737583, y1 = 3.13990196, pn = —.4345735669, A = —1.122797222}, {

w = —.1890686530 — .09493321464 I, A = —.6467101426 — .2419106886 I,

xl = 4.91306767 + 5.131113132 I, 2 = 5.18182285 — 5.62698333 I,

22 = 19.11617428 + 10.54012400 1, 21 = 5.36052164 — 2.298873825 I,

y2 = 11.79192798 — .285537069 I, y1 = 6.07466279 + 3.185340986 I}, {

xl = 4.91306767 — 5.131113132 I, 2 = 5.18182285 + 5.62698333 I,

22 = 19.11617428 — 10.54012400 I, z1 = 5.36052164 + 2.298873825 1,

y2 = 11.79192798 + .285537069 I, yI = 6.07466279 — 3.185340986 I,

u = —.1890686530 + .09493321464 I, A = —.6467101426 + .2419106886 I}, {

xl = 15.87975234, 2 = 12.95438492, 22 = 12.88519289, 21 = 29.83232378,

y2 = 15.51758507, y1 = 24.63673139, u = —.9868575722, A = 7294339061}
Inspecting these, we see th&! 2ind 4" of these solutions involve imaginary numbers. So the remaining
critical points are:
> s2:=sol2[1];

s2 = {z1 = 1.06279579, 22 = 23.2272158, 22 = 46.8902969, z1 = 9.01417861,

y2 = 37.33789149, y1 = 4.45590823, 1 = 238592835, A = —1.956073542}
> s3:=s0l2[2];

s3 = {xl = —4.82250223, 22 = 26.5485453, 22 = 7.8713490, 21 = 17.49475933,
y2 = 24.38737583, y1 = 3.13990196, yu = —.4345735669, A = —1.122797222}
> s4:=sol2[5];

s4 = {xl = 15.87975234, 22 = 12.95438492, 22 = 12.88519289, z1 = 29.83232378,
y2 = 15.51758507, y1 = 24.63673139, u = —.9868575722, A = .7294339061}
You can check that each of these satisfy the Lagrange equations and the constraints by using commands like:
> subs(sl,[egs,constrl,constr2)]);

[40 = 40, 44 = 44, 28 = 28, 32 = 32, 24 = 24, 14 = 14, 270 = 270, 449 = 449
Finally, we substitute the critical points into the function:

> subs(s1,f(ps));
2760
> subs(s2,f(ps));
613.7375165
> subs(s3,f(ps));
86.25090667
> subs(s4,f(ps));

972.4102457
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We see that the minimum is 88 where the points are:
> 'pl’ = subs(s3, pl), 'p2' = subs(s3, p2);

pl = [—4.82250223, 3.13990196, 17.49475933],
p2 = [26.5485453, 24.38737583, 7.8713490)
and the maximum is a1l where the points are:
> 'pl’ = subs(sl, pl), 'p2’ = subs(sl, p2);

pl = [14, 24, 32], p2 = [28, 40, 44]

4.3 Exercises

e DolLab: 9.7.
e Do Projects: 10.5,10.4 and 10.6.

1. Find the location and value of each critical point of the function
f(z,y) = 32y +v* — 32 —3y* +2. Then classify each critical point as a local maximum, a local
minimum or a saddle point. Verify your conclusions with appropriate plots.

2. The three critical points of the functiong(z,y) = ((z — 1)* + (y — 2)> —4)®> + 3z — 4y  were
found in example 4.3. Now classify each critical point as a local maximum, a local minimum or a
saddle point.

3. Find the location and value of each critical point of the functiém,y) = —z* + 4xy — 2y + 1.
Then classify each critical point as a local maximum, a local minimum or a saddle point. Verify your
conclusions with appropriate plots. (See exercises 3.3 and 3.4.)

4. Find the location and value of each critical point of the functigm, y) = —z* + 6xy — 2y + 1.
Then classify each critical point as a local maximum, a local minimum or a saddle point. Verify your
conclusions with appropriate plots.

5. Find the location and value of each critical point of the function
glx,y) = (—14+ 2> +9° — 22 + 6y)e(‘”+y>. Then classify each critical point as a local maximum,
a local minimum or a saddle point. Verify your conclusions with appropriate plots.

6. Find the location and value of each critical point of the function
p(z,y) = (z—1)*+(y—2)* —4)? + 3z —4y. (Usefsolve .) Use appropriate plots to locate the
ranges for solving. Then classify each critical point as a local maximum, a local minimum or a saddle
point.

7. Find the location and value of each critical point of the function
q(z,y) = (x —2)* + (y — 3)* — 9)* + 322 — 493, (Usesolve andallvalues .) Then classify
each critical point as a local maximum, a local minimum or a saddle point. Verify your conclusions
with appropriate plots.

8. Find the extrema of the function f(z,y, z) = z + 2z + yz — 22 — y* — 2°.
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10.
11.

12.

13.
14.
15.
16.

17.
18.

19.

20.
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. Re-solve example 4.7 by Eliminating a Variable.

Re-solve example 4.6 by Parametrizing the Constraint.
Re-solve example 4.6 using Lagrange Multipliers.
2 2 2

Find the pointz, y, z) on the ellipsoid §—5 + y_ + “_ —1 whichis closest to the poirit, 4, 3).

Use the method of Parametrizing the ConstraimdTlt The ellipsoid may be parametrized by
x = 5sin(¢) cos(d), y = 4sin(¢) sin(6), z = 3cos(¢) .
Parametrized surfaces were introduced in section 1.3 and will be studied in detail in section 6.2.
Repeat exercise 12 but use the method of Lagrange multipliers.
Re-solve example 4.9 by Eliminating Two Variables.
Re-solve example 4.9 by Parametrizing the Two Constraints.

Find a point

—

p1 = (z1,y1) ontheellipse

(x4 (-5 _
16 T

and a point
(x+$2+(y+®2_
6

such that the distance fropi to p> is a minimum. Also find the pointg; andp; such that this distance
is a maximum. Use the method of Lagrange multipliers.

1

P2 = (z2,y2) onthe ellipse

Repeat exercise 16 but Parametrize the Two Constraints.

Repeat exercise 16 but Eliminate Two Variables. Plot the two ellipses to determine which half of each

ellipse to use when finding the minimum and separately when finding the maximum.

Find a point
) ) —4 2 _ 2 _ 2
p1 = (x1,y1,21) onthe ellipsoid (@ 16 ) + y 255) + (2 366) =1
and a point
o 3)? 4)2 5)2
pa = (x2,y2,22) onthe ellipsoid (xg ) + y 41r6 ) + (= ;5 ) =1

such that the distance fropi to p> is a minimum. Also find the pointg; andp; such that this distance
is a maximum. Use whichever method you prefer.

Find the maximum and minimum values of the functiorf(z,y,2) = yz + zy  subject to the
constraints zy =1 and y?=1- 22



Chapter 5

Multiple Integrals

5.1 Multiple Integrals in Rectangular Coordinates

5.1.1 Computation

6 4 2
To display a multiple integralsuch as/ / / z*y322 dx dy dz, you can use theec _calc command
5 3 1

Multipleint (or its aliasMuint ):
> Muint(X"4*y"3*z"2, x=1..2, y=3..4, z=5..6);

6 4 2
/ / / zty3 22 dx dy dz
5 J3 J1

Then to compute its value, you ugelue :
> value(%);

98735
12
If you wish to bypass the display, you may use thex _calc commandmultipleint (or its alias
muint ):
> muint(X"4*y"3*z"2, x=1..2, y=3..4, z=5..6);

98735
12
However, we recommend displaying the integral first, because you can check you have properly entered the
integral. The only time you should useuint is in the middle of a procedure where there is no human to
check the input.
Finally, if you wish to compute an integral and also see the intermediate steps in its computation, then
you should usenuint with the extra parameterstep ”. This is useful for students checking their hand

computations. For example:

1Stewart Ch. 16.
2Stewart§§16.1, 16.2, 16.3.

89
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> muint(xX"4*y"3*z"2, x=1..2, y=3..4, z=5..6, step):

6 4 (2
/ / / zty3 22 dx dy dz
5 J3 J1

r=2
// [ x‘r’y?’zﬂ dydz
r=1
4
31
// =2 22dydz
6 y=d
1
:/ [3— y422} dz
5 |20
y=3

2 2
EXAMPLE 5.1. Use a multiple integral to find the area of the general eII%?e% ?;—2 =1

SOLUTION: Enter the equation intblapleand solve for y:
> ellipse:= x"2/a”2 + y2/b’2 = 1;
2 2
ellipse := — + b_2 =1
> ys:=solve(ellipse,y);
s i V=22 +a%b V=2 +a%b

T a T a
Then display and evaluate the integral:
> assume(a>0); Muint(1, y=ys[2]..ys[1], x=-a..a); value(%);

V=22 +a2b
a4 1dydz
/_a/_\/—xQ—i—aQb
a

bam
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Without the commandssume(a>0) , Maplewould not know that is real and positive and so could not
compute the integral. If you see tildes ( ) following ths (not shown above), you may turn them off by
clicking on the G>TIONSmMenu and setting the #sUMED VARIABLES t0 NO ANNOTATION.

It is also sometimes useful to plot the region of integration. But for that you need to pick specific values
for a andb, saya = 4 andb = 3.

> edges:=subs(a=4,b=3, {ys });

edges = {—Z v —a2 + 16, % V—a2 4+ 16}

> plot(edges, x=-4..4, scaling=constrained);

Of course, multiple integrals may be computed in any dimension:

EXAMPLE 5.2. Find the 4-dimensional volume of the 4-dimensional balk y? + 22 + w? = R2.
SoLuUTION: Display the integral and find its value:
> assume(R>0, sqgrt(R"2-x"2)>0, sqrt(R"2-x"2-y"2)>0);

> Muint(1, w=-sqrt(R"2-x"2-y"2-z2"2)..sqrt(R"2-x"2-y"2-z"2),
z=-sqrt(R"2-x"2-y"2)..sqrt(R"2-x"2-y"2),
y=-sqrt(R"2-x"2)..sqrt(R"2-x"2), x=-R..R);

> value(%);
VRZ—z2 \/szmzfy \/R27m27y2722
/ / / / 1dwdzdy dx
VRZ_z2 \/RQ,w‘z,yfz ,\/R‘z,wfz,y‘zfzfz
1
5 7T2 R4
Once again, without the assumptioMapleis unable to do the integrals.
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5.1.2 Applications

3Table B.1 in Appendix B, shows the standard applications of 2- and 3-dimensional integrals. The examples
below demonstrate how to compute some of them. Other examples appear throughout the rest of this chapter
and in the exercises in section 5.4.
EXAMPLE 5.3. Find the area and centroid of the region betwges sin(z) andy = cos(z) between
x =0andz = 7/4.

SOLUTION: The area is
> Muint(1, y=sin(x)..cos(x), x=0..Pi/4); area:=value(%);

1/4m pcos(z)
/ / 1dydx
sm(m)
area == V2 —1

The moments about the andz-axes are
> Muint(x, y=sin(x)..cos(x), x=0..Pi/4); My:=value(%);

1/4m pcos(x)
/ / xdy dx
%m(;r)
\/577 -1

1
> Muint(y, y=sin(x)..cos(x), x=0..Pi/4); Mx::value(%);

1/4m pcos(z)
/ / ydy dx
sm(m)

4
And thez- andy-components of the centroid are
> xbar:=My/area; evalf(%);
1
Z \/577' -1
zhar := =———
V2 -1
2673035003
> ybar:=Mx/area; evalf(%);
b 1 1
ar = — ———
Y 1v2-1
.6035533913

We can see from a plot that the location of the centroid is reasonable:

> region:=plot( {sin(x),cos(x) }, x=0..Pi/4):

> centroid:=plot([[xbar,ybar]], x=0..Pi/4, style=POINT, symbol=CIRCLE):
> display( {region,centroid }, scaling=constrained);

3Stewart§§16.5, 16.7.
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1 ,

0.8

0.4

0.2

0" 01 02 03 ox‘4 05 0.6 0.7

EXAMPLE 5.4. Findthe mass and center of mass of the solid region in the first octant between the paraboloid
z = 22 4+ y? and the plane = 4 if the density is given by = 1 + = + 2.

SOLUTION: The mass is
> Muint(1+x+z, z=x"2+y"2..4, y=0..sqrt(4-x"2), x=0..2); mass:=value(%);

2 I—2Z 4
/ / / 1+zx+2zdzdydx
0o Jo x24y?

64
mass := ? T+ E
To check that we have the correct region of integration, we can plot it:
> plot3d( {x"2+y"2,4 }, x=0..2, y=0..sqrt(4-x"2), axes=normal,
orientation=[30,75]);

=
LT77 7/
L)
L7777

Then the moments about the-, zz- andxy-planes are
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> Muint(x*(1+x+z), z=x"2+y"2..4, y=0..sqrt(4-x"2), x=0..2);
Myz:=value(%);

> Muint(y*(1+x+z), z=x"2+y"2..4, y=0..sqrt(4-x"2), x=0..2);

Mxz:=value(%);
2 iI—aZ 4
// / y(l+2x+2)dzdyde
0o Jo z2+4y?

2008
Mz = 0
2 905

> Muint(z*(1+x+2z), z=x"2+y"2..4, y=0..sqrt(4-x"2), x=0..2);

Mxy:=value(%);
2 I—2Z 4
// / z(14+ 2+ 2)dzdydx
0 Jo z2+4y?

64 256
M.I'y = ? T+ W
And thez-, y- andz-components of the center of mass are
> xbar:=Myz/mass; evalf(%);

end of HIDE

576
— 3 35
zhar := 29 . %
3 15
7561224458
> ybar:=Mxz/mass; evalf(%);

2008 1

7003772406
> zbar:=Mxy/mass; evalf(%);

64 256
=3 21
zbar := 59 N 61
e
3 15
2.900973533
Examine the plot and see that the center of mass is inside the volume.

MULTIPLE INTEGRALS
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EXAMPLE 5.5. Find the mass and radii of gyration of the area between the parabsla? and the line
y = 4 if the density is given by = 2 + = + y.

SOLUTION: The mass is
> Muint(2+x+y, y=x"2..4, x=-2..2); mass:=value(%);

2 4
/ /2+x+ydydx
—2Jz2

704
mass ‘= —

15
The moments of inertia about thye andz-axes are
> Muint(X"2*(2+x+y), y=x"2..4, x=-2..2); ly:=value(%);

2 4
//x2(2+x+y)dydx
—2 m2
4352
Iy = 2352
105

> Muint(y"2*(2+x+y), y=x"2..4, x=-2..2); Ix:=value(%);

2 4
//y2(2+az+y)dyd$
J—2Jz2
23552
[ = 23902

63
And thex- andy-radii of gyration are

> xbarbar:=sqrt(ly/mass); evalf(%);

zbarbar == % v 1309

.9397429876
> ybarbar:=sqgrt(Ix/mass); evalf(%);

4
ybarbar := 231 V26565
2.822298349

5.2 Multiple Integrals in Standard Curvilinear Coordinates

5.2.1 Polar Coordinates

4The polar coordinate syste(p, #) was discussed in section 1.2.1 and shown in figure 1.2. In polar coor-
dinates, the Jacobian isand the area differential i8BA = r dr df. So the double integral can be written

as
4/f(x,y)dA—4/f(7‘,0)7‘d7"d0.

4Stewart§16.4.
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EXAMPLE 5.6. Plotthe cardioid- = 1 — sin(#) and compute the area.

SoLUTION: We first input the formula for the curve:
> r0:=1 - sin(theta):
Notice that we do not name the cunveso that we can still use that name for the variable in equations. Then,
any of the following commands will plot the polar curve. (We only show the output from the first.) The first
is the parametric form of thelot command:
> plot([rO*cos(theta), rO*sin(theta), theta=0..2*Pi] );

The second form is a plot command with an option which says that the coordinates are polar:
> plot(r0, theta=0..2*Pi, coords=polar):

And the third form is a specially designed commadarplot  in theplots package:

> polarplot(r0, theta=0..2*Pi):

The areais
27 p1—sin(0)
A://ldA:/ / 1rdrdf
0 0

and so may be computed from
> Muint(r, r=0..r0, theta=0..2*Pi); value(%);

27 pl—sin(0)
/ / rdrdf
0 0
3

=T
2
NoOTE: Don’t forget to include the Jacobianin the integrand.

5.2.2 Cylindrical Coordinates

5The cylindrical coordinate systefp, 6, z) was discussed in section 1.2.2 and shown in figure 1.3. In cylin-
drical coordinates, the Jacobian factorrignd the volume differential idA = rdrdf dz. So the triple

5Stewart§16.8.
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///f(“”y’z)dvz///f(r,e,z)rdrdedz.

EXAMPLE 5.7. Plot the region between the paraboloids 22 + y? andz = 32 — 2 + y2 but outside the
cylinderz? + y? = 4. Then compute the volume.

SOLUTION: Rewriting the boundaries of the region in cylindrical coordinates, we find that the paraboloids
arez = r? andz = 32 — 2 while the cylinder isr> = 4 or r = 2. Before we can plot or integrate over
this region, we must first understand the ranges for the coordinates. Since the paraboloids completely circle
the z-axis, we havé < § < 27. Thez coordinate is limited by the paraboloids. So it remains to find-the
range. This starts at= 2 and goes to the circle where the paraboloids intersect. Equating the paraboloids,
we haver? =32 —r2 orr = 4.

The top and bottom paraboloids may be plotted using either of two commands. (We only show the
output from the first.) The firstisplot3d with a parametric argument and an option specifying cylindrical
coordinates:
> plot3d( {[r, theta, r2], [r, theta, 32-r"2] }, r=2..4, theta=0..2*Pi,
coords=cylindrical );

integral can be written as

The second is theylinderplot command from th@lots package again with a parametric argument:
> topbot:=cylinderplot( {[r, theta, r"2], [r, theta, 32-r"2] }, r=2..4,
theta=0..2*Pi ):

The central cylinder may also be plotted in two ways, first as a paranpéati®d in cylindrical coordi-
nates:
> plot3d([2, theta, Zz], theta=0..2*Pi, z=4..28, coords=cylindrical );
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and second as@ylinderplot : (This is not a parametric plot because the default is that the function being
plotted gives- as a function of) andz.)

> inside:=cylinderplot(2, theta=0..2*Pi, z=4..28 ):
The top, bottom and inside surfaces may be put together usirdishiey command:
> display( {topbot,inside }, orientation=[45,45] );

The volume is

21 4 p32—1°2
V:///ldV:/ / / 1rdzdrdf
0 2 r2

and so may be computed from
> Muint(r, z=r"2..32-r"2, r=2..4, theta=0..2*Pi); value(%);

27 pd p32—72
/ / / rdzdrdf
0 2 Jr2

144 7
NOTE: You must remember to include the Jacobian the integrand.

5.2.3 Spherical Coordinates

5The spherical coordinate systém 6, ¢) was discussed in section 1.2.2 and shown in figure 1.3. In spherical
coordinates, the Jacobian factopissin(¢) and the volume differential i§V = p? sin(¢) dp df dé. So the
triple integral can be written as

///f(x’y’z)d‘/:///f(p,9,¢)p2sin(¢)dpd9d¢,
R R

EXAMPLE 5.8. One cell of the spherical coordinate system is shown in figure 5.1. The coordinate ranges
arep; < p < pa, 01 <6 <6xandp; < ¢ < ho.

6Stewart§16.8.
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P2 4

b2

g1 92

Figure 5.1: A Spherical Coordinate Cell

. . 0, +6 .
The “coordinate center” of the cell is &b, 6o, ¢o) = P1 —;pQ, ! ; 2, a2l ;qb and the “coordi-
nate dimensions” of the cell atkp = py — p1, A0 = 05 — 61 andA¢p = ¢2 — ¢;1. In terms of these, show

that the volume of the spherical cell is

2
AV = {(PO)2 + (Alg) ] sin(go) Ap Af 2sin (%) ,
. . AV . o . _ L
Then compute the limit lim ——— to “derive” the spherical Jacobiah= (pg)? sin(¢o).

(Ap,A0,A4)=(0,0,0) ApAGAP
SoLUTION: The volume integral is

¢2 b2 pp2
V:///ldV: / / 1 p?sin(¢) dp df de
$1 JO1 Ip1

NOTE: Remember to include the Jacobijarsin(¢) in the integrand.
It may be computed from

> Muint( rho™2*sin(phi), rho=rhol..rho2, theta=thetal..theta2,
phi=phil..phi2 ); Delta_V:=value(%);

¢2 02 pp2
/ / / p? sin(p) dp df do
o1 Jo1 Jp1

Delta_V := —cos(¢2) (% p23 — %plS) (02 — 01) + cos(41) (% p23 — %plg) (02 —01)

To simplify this we first change variables to the average values and the widths. The equations are

> egs:=[rhol=rho0-Drho/2, rho2=rho0+Drho/2, thetal=thetaO-Dtheta/2,
theta2=thetaO+Dtheta/2, phil=phiO-Dphi/2, phi2=phi0+Dphi/2];
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1 1 1 1
eqs := [pl = p0 — 3 Drho, p2 = p0 + 3 Drho, 61 = 60 — 3 Dtheta, 02 = 60 + 3 Dtheta,

1 1
¢1 = ¢0 — - Dphi, 62 = $0 + 5 Dphi]

After some experimentation, it is found that the best simplification is obtained from
> Delta_V2:=factor( expand( subs( egs, Delta V )));

1 1
Delta_V2 := 6 Drho Dtheta sin(¢0) sin(§ Dphi) (12 p0? 4 Drho®)

Finally we compute the limit;

> Limit(Limit(Limit(Delta_V2/(Drho*Dtheta*Dphi), Dphi=0), Dtheta=0),
Drho=0); value(%);

1
| sin(¢0) sin(= Dphi) (12 p0* + Drho®)
lim lim lim - 2 -
Drho—0 Dtheta—0 Dphi—0 6 Dphi

sin(¢0) p0?

which is the spherical Jacobian.
NOTE: This “derivation” is circular since we used the Jacobian in writing the integral. A more rigorous
derivation is given in example 5.16.

5.2.4 Applications

"Table B.1 in Appendix B, shows the standard applications of 2- and 3-dimensional integrals. The examples
in subsection 5.1.2 showed how to compute these quantities in rectangular coordinates. In this section, the
guantities are computed in polar, cylindrical and spherical coordinates. More examples appear in the exercises
in section 5.4.

EXAMPLE 5.9. Find the centroid of the cardioid= 1 — sin(f) expressed in polar coordinates.
SoLUTION: We first input the curve and the polar formulas foandy:

> r0:=1 - sin(theta):
> X0:=r * cos(theta): yO0:=r * sin(theta):

27 p1—sin(0)
The area of the cardioid was found in example 5.6 from the inte@ml/ / rdr df to be:
0 0

> Muint(r, r=0..r0, theta=0..2*Pi): A:=value(%);

A:=—-m
2

“Stewart§§16.5, 16.8.
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Then the first moments about theandz-axes are

27 p1—sin(0) 27 p1—sin(0)
My:/ / xrdrdd and M, :/ / yrdrdf
0 0 0 0

except thatr andy must be expressed in polar coordinates. Thus we compute:
> Muint(x0*r, r=0..r0, theta=0..2*Pi); My:=value(%);

27 pl—sin(0)
/ / 2 cos(6) dr d
o Jo
My =0

> Muint(y0*r, r=0..r0, theta=0..2*Pi); Mx:=value(%);

27 pl—sin(f)
/ / 2 sin(6) dr df
o Jo
Mz : >

=T

4
Then thex- andy-components of the centroid are

> xbar:=My/A; ybar:=Mx/A;

zbar ;=0

ybar = 5
Finally, we convert to polar coordinates:
> cm:=r2p([xbar,ybar]);

5 1
cm ==, —= 7|
6’ 2
Thus7 = % andf = —g. As should be expected from the plot in example 5.6, the centroid is along the
negativey-axis.

CAUTION: It is tempting to try to compute thecomponent of the centroid directly as

1 27 pl—sin(0)
T = Z/ / rrdrdf
0 0

by putting anr into the moment integral instead of arory. This is ABSOLUTELY WRONG!
It leads to the incorrect result:
> 1/A*Muint(r'2, r=0..r0, theta=0..2*Pi); value(%);

27 pl—sin(f)
r2drdf
), |
3 T

10

9
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EXAMPLE 5.10. Find the mass and moment of inertia about4kexis of the solid between the paraboloids
z = 2% 4+ y? andz = 8 — 22 — y? with densityp = 1 + 22 + 32
SoLUTION: We first input the paraboloids and density but in cylindrical coordinates:
> z1:=r2: z2:=8 - r2: rho:=1+r"2;
Equating the two paraboloide? = 8 — 2, we find they intersect at= 2. So the mass is given by
> Muint(rho*r, z=z1..z2, r=0..2, theta=0..2*Pi); M:=value(%);

21 2 p8—712
/ / / (1+7*)rdzdrdd
0 0 Jr2

112
M = T’]T

Notice that you need to get the order of integration correct sincelihets depend om. Finally, the moment
of inertia about the-axis is
> Muint(r"2*rho*r, z=z1..z2, r=0..2, theta=0..2*Pi); lz:=value(%);

27 2 p8—712
/ / / 3 (1+7r?)dzdrdf
0 0 Jr2

Iz =647

EXAMPLE 5.11. Find the mass and center of mass of a hemisphere of radliits density is proportional
to the distance from the center of the base.
NOTE: To avoid confusion between the density and the spherical radial coorginatel should call the
densitys. You will also need to clear out the variabigo .
> rho:="rho”;
SOLUTION: We take the base to lie in thg/-plane with the center at the origin. Then the distance from
the center of the base is the spherical coordipatad the density is
> delta := K * rho:
whereK is a proportionality constant. Then the mass is
> Muint( delta * rho™2 * sin(phi), rho=0..a, theta=0..2*Pi, phi=0..Pi/2

); M:=value(%);
1/27 p27 pa
/ / / K p?sin(¢) dp df dé
0 0o Jo

1
M:=3 K atn
(Don't forget the Jacobiap? sin(¢).) By symmetry, the center of mass must be onzreis. So it remains
to compute the-component of the center of mass. In spherical coordinates;toerdinate is
> z0:=rho*cos(phi):
Then the moment away from thes-plane is

> Muint( z0 * delta * rho™2 * sin(phi), rho=0..a, theta=0..2*Pi,
phi=0..Pi/2 ); Mxy:=value(%);

1/27 27 pa
4 K si dpdf d
[ oteosto)Ksine) dpan s
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1
Maxy == = Kad®n
and thez-component of center of mass is
> zbar:=Mxy/M;
2
zbar := - a

Notice that this is reasonable because the center of mass is inside the hemisphere.

5.3 Multiple Integrals in General Curvilinear Coordinates

5.3.1 General Curvilinear Coordinates

8A curvilinear coordinate system IR™ is a list of functions ofn variables giving the: rectangular coordi-
nates as functions of thecurvilinear coordinates. In general,

—

(21,22, ... ,Tpn) = R(ug,ug,... ,up)
= (ml(ul,uQ,... JUn )y To (U, Uy oo s Up)y e e Tp (U1, U, ... ,un))
or more briefly,
7= R().

Of course, the variable names could change. A function of this type is also called a vector function of several
variables. In particular, a general curvilinear coordinate systeRt inas the form

(x,y) = E(u,v) = (m(u,v),y(u,v)) .
and a general curvilinear coordinate systeriRinhas the form
(r,y,2) = ﬁ(u,v,w) = (Jc(u,v,w),y(u,v,w),z(u,v,w)) .
Throughout this section, we will look at two examples, on®&fand one irR3:
¢ the 2-dimensional bipolar coordinate system given by

= sinhwv sinu
Y = R Y = )
() (u,0) (cosh v —cosu’ coshv — COSU)

¢ and the 3-dimensional paraboloidal coordinate system given by

u- —v

2 _ .2
(z,9,2) = R(u,v,0) = (uv cosf, uvsinf, 5 ) .

Maplealready knows about a large number of curvilinear coordinate systems(including bipolar and para-
bo\-loidal). A complete list may be found by looking at the help page:
> ?coords
Additional coordinate systems may be added using the commddcbords from theplots package,
but that is beyond this book. For more information see
> ?addcoords

8Stewart§16.9.
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For the purposes of this book, a curvilinear coordinate system may be entereldlapie using the
vec _calc commandmakefunction  or its aliasMF The first argument is the list of curvilinear coordi-
nates, and the second argument is the list of expressions for the rectangular coordinates.

EXAMPLE 5.12. Enter the (a) bipolar and (b) paraboloidal coordinate systemsvatule
SOLUTION: a) The bipolar coordinate system is
> R2:=MF([u, v],[ sinh(v)/(cosh(v)-cos(u)), sin(u)/(cosh(v)-cos(u)) 1);

sinh(v)
cosh(v) — cos(u)
b) The paraboloidal coordinate system is
]>) R3:=MF([u, v, theta],[ u*v*cos(theta), u*v*sin(theta), (U2 - v'2)/2

sin(u)

R2 :=|[(u, v) — ]

> (1w, 0) = cosh(v) — cos(u)

1
R3 :=[(u, v, 0) = uvcos(d), (u, v, ) — vvsin(d), (u, v, §) — 5 u? — = v

A coordinate curve is the curve obtained by allowing one curvilinear coordinate to vary while the other
coordinates are held fixed. If you draw several coordinate curves for each coordinate, you obtain a coordinate
grid for the curvilinear coordinate system. For the coordinate systems which are already knighapléo
the commandoordplot  from theplots package will plot a 2 dimensional coordinate grid and the com-
mandcoordplot3d  will plot an abbreviated 3 dimensional coordinate grid (also showing the coordinate
surfaces).

EXAMPLE 5.13. Plot a coordinate grid for the (a) bipolar and (b) paraboloidal coordinate systems.
SOLUTION: a) A coordinate grid for bipolar coordinates is

> coordplot(bipolar);

b) A coordinate grid for paraboloidal coordinates is
> coordplot3d(paraboloidal);
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A coordinate tangent vector to a coordinate curve is obtained by differentiating with respect to the pa-
rameter on that curve, i.e. the curvilinear coordinate which is varying. Since the remaining variables are held
fixed, these are partial derivatives. Thus, in a general 3-dimensional coordinate system, the three coordinate
tangent vectors are

OR OR OR
%a RU - %; R'w - a_w

In Maple if the coordinate system has been defined ubliigthese may be computed usibg

R, =

EXAMPLE 5.14. Compute the coordinate tangent vectors for the (a) bipolar and (b) paraboloidal coordinate
systems.
SOLUTION: a) The coordinate tangent vectors for the bipolar coordinate system are:

> R2u:=D[1](R2); R2v:=D[2](R2);
sinh(v) sin(u) (u, v) cos(u) 3 sin(u)?
(cosh(v) — cos(u))2” * 7 cosh(v) — cos(u)  (cosh(v) — cos(u))2
o cosh(v) sinh(v)? sinh(v) sin(u)

R2v:=(u, v) = cosh(v) — cos(u)  (cosh(v) — cos(u))?’ (v, v) = (cosh(v) — cos(u))?
b) The coordinate tangent vectors for the paraboloidal coordinate system are:
> R3u:=D[1](R3); R3v:=D[2](R3); R3theta:=D[3](R3);

R2u = [(u, v) — —

R3u = [(u, v, ) — vcos(), (u, v, §) — vsin(h), (u, v, ) — u]
R3v := [(u, v, 8) — wcos(f), (u, v, 0) — usin(b), (u, v, §) — —v]

RS8theta = [(u, v, ) — —uwvsin(d), (u, v, ) — uwvcos(f), 0]

The Jacobian matrix of a 2-dimensional curvilinear coordinate system is the matrix whose columns are
the coordinate tangent vectaRs, andR,,:

Oor Oz
d(z,y) ou v
O(u,v) Jy @
ou Ov
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Its determinant is the Jacobian determinant:
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or Ox
oz, y)| o ov
‘am,w =detl 9y oy
ou Ov

And the absolute value of the determinant is the Jacobian factor:

Oox Ox

Az, y)|| o ov
J(u’v>_H5‘(u,v) ‘— det @ @
ou Ov

Informally, any of the three may be called the Jacobian. Similar definitions hold in 3 and higher dimensions.

In Maple, the Jacobian matrix is computed using thex calc commandJAC and displayed as a
matrix by evaluating at a point and using timatrix command from thdéinalg  package. The Jacobian
determinant is computed using thec _calc commandJAC_DETand the Jacobian factor is computed by
taking the absolute value of the Jacobian determinant or more often by simply changing the sign of the
determinant when necessary.

EXAMPLE 5.15. Compute the Jacobian matrix, determinant and factor for the (a) bipolar and (b) parabo
loidal coordinate systems.
SOLUTION: a) For the bipolar coordinate system these are:

>  JM:=JAC(R2): matrix(IM(x,y));
sinh(y) sin(z) cosh(y) sinh(y)?
(cosh(y) — cos(x))? cosh(y) — cos(z)  (cosh(y) — cos(z))?
cos(z) sin(x)? sinh(y) sin(z)
cosh(y) — cos(z)  (cosh(y) — cos(z))? (cosh(y) — cos(z))?
> JD:=factor(JAC_DET(R2)(x,Y));

1
(cos(z) — cosh(y))?
Notice that the Jacobian determinant is everywhere positive (except at the origin). So the Jacobian factor

JD =

> J:=JD;

1
~ (cos(x) — cosh(y))?
b) For the paraboloidal coordinate system we have:

>  JM:=JAC(R3): matrix(IM(X,y,2));
ycos(z) xcos(z) —zysin(z)
ysin(z) xsin(z) xycos(z)

T —y 0
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> JD:=factor(JAC_DET(R3)(x,y));

JD =y (y* + %)
Notice that the Jacobian determinant is positive in tfieahd 3¢ quadrants and negative in the2and 4"
guadrants. So the Jacobian factor is:
> J:=abs(JD);

Ji=lyz(y® +27)]

5.3.2 Multiple Integrals

9The differential of area is the product of the Jacobian factor and the differentials of the curvilinear coordi-
natesdA = J(u,v) du dv. So an integral over a regidi in R? has the form

//fdA://f(x,y)da:dyz//f(u,v)](u,v)dudv.
R R

R

Similarly, the differential of volume igV = J(u, v, w) du dv dw and an integral over a regidh in R? has

the form
/}Z fdv_/}Z/f(xvy’z)dxdydz_/}Z/f(“vvvw)J(%U,w)dudvdw.

Further, the differential of-dimensional volume i8V = J(uy, ua, ... ,uy) duy dus - - - du, and an integral
over a regionk in R™ has the form

/.../de:/--/f(xl,xQ,...:cn)dxldxg'--dxn (5.1)
R R

= /---/f(ul,uQ,... sUn)J (Ut U2, .o uy) duy dug -+ - dty, . (5.2)
R

EXAMPLE 5.16. For spherical coordinat¥s describe the coordinate curves and compute the coordinate

tangent vectors, the Jacobian matrix the Jacobian determinant, the Jacobian factor and the volume element.
SoLUTION: The spherical coordinate system is given by

> R:=MF([rho, theta, phi], [rho*sin(phi)*cos(theta),

rho*sin(phi)*sin(theta), rho*cos(phi)]);

R:=(p, 0, ) — psin(¢) cos(0), (p, 0, ) — psin()sin(6), (p, 0, ¢) — pcos(¢)]
The p-lines are the radial lines, thtelines are the lines of latitude, and thdines are the lines of longitude.
The coordinate tangent vectors are
> Rr=D[1](R); Rtheta:=D[2](R); Rphi:=D[3](R);

Rr:={[(p, 0, ¢) — sin(¢) cos(0), (p, 0, ¢) — sin(¢)sin(0), (p, 0, ¢) — cos(¢)]

9Stewart§16.9.
10stewart§16.8.
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Rtheta := [(pa 9; ¢) - _pSin(¢) sin(@), (pa 9; ¢) - pSiIl(¢) COS(0)7 0]

Rphi := [(p, 0, ¢) — pcos(¢) cos(8), (p, 8, 6) — pcos(¢)sin(8), (p, 6, ¢) — —psin(¢)]
The Jacobian matrix and the Jacobian determinant are
> JAC(R); JAC_DET(R);

[[(p, 6, @) — sin(6) cos(@), (p, 6, &) — —psin(6) sin(6), (p, 6, &) — peos(6) cos(0)],
[(p, 0, ¢) — sin(¢) sin(0), (p, 0, ¢) — psin(¢) cos(b), (p, 8, ¢) — pcos(¢) sin(6)],
[(pv 97 d)) - COS(¢)7 07 (pa 9; ¢) - _pSin(¢)]]

(p, 8, ¢) — —sin(¢) p*
Notice that the Jacobian determinant? sin(¢) is negative (which says that this spherical coordinate system
is left handed). So the Jacobian is its negative
> J:=-JAC_DET(R)(rho, theta, phi);

J = sin(¢) p?
and the volume element i = p?sin(¢) dpdf d¢. This justifies the formula given in section 5.2.3 and
used in example 5.8 which was stated and used there without any real geometrical proof.

In computing a multiple integral, the most important thing is to pick a curvilinear coordinate system
adapted to the region and/or the integrand. This is done in the next examples:

EXAMPLE 5.17. Compute the integray/ (z* — y*)dA over the parallelogrank between the lines

R
y=xz,y=x+2,y=4— 3z andy =8 — 3z.

SOLUTION: To see the region, we first plot the four lines:
> plot( {x, x+2, 4-3*x, 8-3*x }, x=0..2.5);

0102 04 06 08 1 1.‘@( 1416 18 2 22 24

24

To do the integral, we first want to construct an adapted curvilinear coordinate system. Examining the four
lines, we see that if we define= y — x andv = y + 3z then the four boundaries become= 0, u = 2,
v =4 andv = 8. So we enter these two equations and solve:fandy:
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> egs:i= { u=y-x, v=y+3*x i

eqgs ={u=y—z,v=y+3z}

> sol:=solve(egs, {xy b;

1 1 1 3
sol == {x:—zu—i- 0= ZU+ZU}
This is the curvilinear coordinate system we will use. It can be converted into a list of expressions:
> Rexp:=subs(sol,[x,y]);
1 1 1 3
Rexp := [—Zu—i- 7Y ZU+ZU]
and then into a list of arrow defined functions:

>  R:=MF([u, v], Rexp);

1 1 1
R := [(u, v)—>—zu+1v, (u, v)—>1v+zu]

The Jacobian determinant is
> JAC_DET(R);

—t
4
Since the Jacobian determinant is negative, the Jacobian is
> := - JAC_DET(R);
1
J = -
4

. 1 . . . .
and the area elementisd = - dudv. The last thing we need to do before computing the integral is to
rewrite the integrand in terms of the curvilinear coordinates
> subs(sol, X2 - y"2); integrand:=simplify(%);

1 1 1 3
(—Zu+zv)2—(zv+zu)2
1 1
integrand == —=u® — = uv
2 2

So the integral is (Don’t forget the Jacobian.)
> Muint(integrand*J, v=4..8, u=0..2); value(%);

// — 2w - Zwuvdvdu
0 Ja 8 8

22

3
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EXAMPLE 5.18. Compute the volume between the parabol@igds- 22 + y? and3z = z2 + y2 + 4 above
the region between the parabolas = 22 and2y = 2 + 3 betweenr = —2 andz = 2 by using the
curvilinear coordinate system= z, v = 2y — 2% andw = 3z — 22 — 3%

SOLUTION: To see the solid region, we plot the shadow region inatfiglane and the upper and lower
surfaces over this region:
> shadow:= plot3d(0, x=-2..2, y=X"2/2..(x"2+3)/2):
> lower:= plot3d( (X"2+y"2)/3, x=-2..2, y=X"2/2..(X"2+3)/2,
color=gray):
> upper:= plot3d( (X"2+y"2+4)/3, x=-2..2, y=x"2/2..(x"2+3)/2):
> display( {shadow, lower, upper }, orientation=[75,75], axes=normal);

To do the integral, we first enter the equations for the curvilinear coordinates and salve fandz:

> eqgsi= { u=x, v=2*y-x"2, w=3*z-X"2-y"2 +
eqs = {u=x,v=2y—2% w=3z—2>—y*}
> sol:=solve(egs, {X, v, z })
1 1 1 1 1 1 1
sol :={z=u,y= §v+§u2, z= §w+§u2+ﬁv2+6vu2+ﬁu“}

We then convert this into a list of arrow-defined functions:
> Rexp:=subs(sol,[x, y, z]); R:i=MF([u, v, w], Rexp);

2 1 Loy

1 1 1 1 1
Rexp := [u, §v+§u , §w+§u +—12v2+6vu2+—12u4]
1 1 1 1 1 1 1
R:= [(U, v, ’LU)—>U, (u7 v, ’LU)—>§’U—|-§’U,27 (ua v, w)—’§w+§u2+—1202+6vu2+—12u4]

The Jacobian determinant is
> J:=JAC_DET(R);

| =
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Since this is positive, it is also the Jacobian factor and the volume eleméwt is — du dv dw. The last

thing we need to do before computing the integral is to notice that the boundary equations say the limits are
—2<u<2,0<v<3andl <w < 4.

So the volume integral is (Don't forget the Jacobian.)
> Muint(1*J, u=-2..2, v=0..3, w=0..4); V:=value(%);

4 03 24

///—dudvdw

o Jo J—26
V=38

EXAMPLE 5.19. Compute the volume inside the cone- /z2 + y2for0 < z < 1.

SoLUTION: In cylindrical coordinates the cone is given by= r. The piece up ta = 1 may be plotted
as
> plot3d(z, theta=0..2*Pi, z=0..1, axes=normal, coords=cylindrical);

Remember, the default for a cylindrical plot is to givas a function of andz. So the volume inside the
coneis
> Muint(1*r, r=0..z, theta=0..2*Pi, z=0..1); V:=value(%);

1 27 pz
// /rdrd@dz
o Jo 0
\%

1
= -7
1 1 ’
Of course, this id/ = 3 X Base x height = 3 X m(1)% x 1.

Integrals are not limited to 3-dimensions. The next example generalized the previous example.

EXAMPLE 5.20. In R4, find the 4-dimensional volume inside the 4-dimensional cone which has the rect-
angular equatiow = /2 + y2 + z2 for0 < w < 1.
SOLUTION: The 4-dimensional generalization of cylindrical coordinates is given by
> R:=MF([rho,theta,phi,w], [rho*sin(phi)*cos(theta),
rho*sin(phi)*sin(theta), rho*cos(phi), w]);
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R:={(p, 0, ¢, w) — psin(e) cos(6), (p, 0, ¢, w) — psin(¢)sin(6), (p, 0, ¢, w) — pcos(¢),
(p, 0, &, w) — w]
which is spherical coordinates far, y and z with an extraw coordinate. Then the equation of the cone
isw = p. We can't plot in 4D but we can still compute the 4-volume. The Jacobian determinant and the
Jacobian factor are
> JAC_DET(R); J:= - JAC_DET(R)(rho,theta,phi,w);

(p, 0, &, w) — —sin(¢) p*
J := sin(¢) p?

So the volume is
> Muint(1*J, rho=0..w, theta=0..2*Pi, phi=0..Pi, w=0..1); V:=value(%);

1 pm 27 pw
/// /sin(¢)p2dpd9d¢dw
0o Jo Jo Jo

V'—1

=T
3

W~

. . 1 1
You should notice that this 8" = e Base x height = 1% §7T(1)3 x 1.

1Sometimes you need to make two changes of variables, as in the next example.

EXAMPLE 5.21. Find the volume below the function= e~*"/16-%*/9 apove the regiot in thexy-plane
2

enclosed in the elli st + Y _ o5
P69
SOLUTION: The integrand is
> z1:= exp(-x"2/16-y°2/9);

2] — 6(71/161271/9742)

//e(—1/16x2—1/9y2) d.l?dy
over the ellipser.

We first notice that the formula for the ellipse will be simpler if we define curvilinear coordimaie%

So the rectangular integral is
> Muint(z1,x,y);

andv = 2 so that the equation of the ellipse becomés- v?> = 25 which is a circleC of radius 5 in the

uv-plane. So we define the curvilinear coordinates
> R:=MF([u,v],[4*u,3*V]);

R :=[(u, v) — 4u, (u, v) — 3]
compute the Jacobian
> JR:=JAC_DET(R);

JR =12

lStewart§16.9.
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and redefine the integrand
> z2:=subs( x = R(u,v)[1], y = R(u,Vv)[2], z1);

22 = e(-w* V%)

//12 6(7“2*’“2) du dv
over the circleC.

We now notice that it would be better to do this in polar coordingte8) in theuv-plane. So we define
the coordinate transformation
> T:=MF([rho, theta], [rho*cos(theta), rho*sin(theta)]);

T = [(p, 6) — peos(6), (p, 6) — psin(6)]

So the integral is now
> Muint(z2*JR, u, V);

compute the Jacobian
> JT:=JAC_DET(T)(rho,theta);

JT :=p
and redefine the integrand (Don't forget ti& is now part of the integrand.)
> z3:=simplify(subs( u = T(rho,theta)[1], v = T(rho,theta)[2], z2*JR));

28 =127
So the integral is now
> Muint(z3*JT, rho, theta);

127 pdpdo

over the region in thed-plane which is just the rectangle< p < 5 and0 < # < 2x. So the integral and
the final volume are
> Muint(z3*JT, rho=0..5, theta=0..2*Pi); V:=value(%);

27
/ / 12~ pdpd@

2(—6e"2 +6)7
Of course, we could have done thls in a single step using the elliptic coordinate systéndefined by
x = 4p cos(f) andy = 3psin(f) whose Jacobian iE2p.

5.4 Exercises

e DolLab: 9.8.
e Do Projects: 10.8,10.9,10.7 and 10.10.

1 1
1. Compute the double integral/ / (z®y® + 3zy?) dy da.
—-1J0
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N

1 z Yy
. Evaluate the triple integral / / / xyzdr dy dz.
0 0 0

sqrtx

4\
. Consider the integral / / 22y dy dx.
0 Jz/2

w

(a) Compute the integral.
(b) Plot the region of integration in they-plane.
(c) Reverse the order of integration and recompute the integral.

N

VT VT
. Consider the integral / / sin(z?) dx dy
JO Yy

(a) On paper, by hand, draw the region of integration inthelane.
(b) Reverse the order of integration and compute the integral showing all the intermediate steps.

(c) Return to the original order of integration and compute the integral again showing all the inter-
mediate steps.

NOTE: FresnelS is a special function that Maple knows about.
(d) What is the derivative of FresnelS? What is FresnelS(0)?

(621

3 9
. Evaluate the double integral/ / ycos (z?)dxdy  explicitly and by reversing the order of inte-
0 Jy2

gration. Examine the intermediate steps. Which one could you do by hand?

»

9 3
. Change the order of integration in the integray / sin(rz?) dz dy. Try to compute both
0 J\y

integrals. Examine the intermediate steps. Explain what happened.

~

1 1
. Change the order of integration in the integray / Va3 +1dxdy. Try to compute both
0 J\y
integrals. Examine the intermediate steps. Explain what happened.

8. Find the mass and center of mass of the solid bounded by the parabolic cylipderz2 and the
two planes givenby 2 =0 (thexy-plane)and y+ z =4 (a slanted plane). Here the variable
density functionis givenby p=1+x+y + z.

©

. Compute the integral // sin®(z? + y?)dedy over the ring between the circlesz? 4 32 = g

and z?+y? =
10. Find the area of the region insider = 4sinf and outside r =2. Plot the two curves.

11. Find the area and centroid of the region which lies inside the cardioig- 5(1+cosf) and outside
the circle r =5. Plotthe two curves.

12. Find the area and centroid of the region which lies inside the cumve= 3cosf and outside the
curve r=2-—cosf. Plotthetwo curves.
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V1i—zU42 2—z2—y?
/ (2% +4?)*%dzdydz  into cylindrical coor-

13. Change the triple integral / /
Vi—z2 2 4y?2
dinates. Examine the intermediate steps. Which one would you prefer to do by hand?

5 VI5—aZ /25— —y? 1
14. Change the triple integral / / / ————————dzdydzx into spherical
-5.Jo Vaz+y?+ 22
coordinates. Examine the intermediate steps. Which one would you prefer to do by hand?

15. Use spherical coordinates to evaluate the triple integ%// 22 4+y?+22dV  whereB is the ball

2?24+ y% +22<09.

16. Compute the volume and centroid of the solid bounded on the sides by the circular cylinder
z?> +y?> =4, belowbythe plane =0, andabove by the slanted plane + z = 3.

17. Find the mass and center of mass of a solid hemisptieséradiusa whose density at any point is
proportional to the distance from the center of the base of the hemisphere.

x+2y dA

. 2 1 1 1
18. Use the transformatidhi: == -u+-v, y=—-u-+ 31} to evaluate //
COS T —

3 3 3
where( is the parallelogram in they-plane bounded by the lines x + 2y = 0 x—y =1,
r+2y=2, x—y=0.NOTE: Theinverse transformatiols T~ : w=x—-y, v=2x+2y.
This is useful in determining the new limits of integration.

. 1 1 1 1 —
19. Use the transformatiohl : = = —u+ -v, y = —-u + —v to evaluate // 79 dA,
2 2 2 2 T4y

where( is the parallelogram in they-plane bounded by the linesz +y = 2, = —y = 0,
z+y=4, x—y=—2.NOTE: Theinverse transformatiols T™': u=z—y, v=2x+uy.

1 2 2 4
20. Plot the four curves y = —, y= -, y = -, Yy = — for 5 <z<5
x X

and 0<gy<5. Thencomputethe integral // z?ydzdy overthe “diamond” shaped region

bounded by these four curves.

HINT:  Define the curvilinear coordinatesu = zy and v = z%y.  In terms ofu andv, what
are the boundary curves? What are the ranges &ordv for the region? Solve far andy in terms of
u andw. Find the Jacobian factor and the integrand. Then integrate.

1 1 1 1
21. Plot the four curves y =1+ 56”, y =2+ Ee”, y=3-— 56”, y=6— §e”

for —1<z<3 and 0<y<5 Thencompute the integral // y?e®dxdy overthe

“diamond” shaped region bounded by these four curves.

. - . 1 1
HINT: Define the curvilinear coordinatesu = y — =€* and v =y + —-€*. Interms ofu

andv, what are the boundary curves? What are the rangesdodv for the region? Solve far and
y in terms ofu andv. Find the Jacobian factor and the integrand. Then integrate.



Chapter 6

Line and Surface Integrals

6.1 Parametrized Curves

Iparametric curves were introduéed section 1.3 and their differential properti@gere discussed in section

2.2. In this section, we will discuss their integral propefties

So, consider a parametrized curve whose position vector is givelithy= (x(t),y(t), z(t)). Then its

dz?

velocity isd(t) = dr_ <dm dy dz

dt dt’ dt’ dt dt

6.1.1 Line Integrals of Scalars

In section 2.2, we used th{scalar) differential of arc length

ds = \/dx? + dy? + dz? = |v] dt ,

to compute the arc length fromh = 7*(a) to B = #(b) as

s(A, B) = /ds—/|17|dt

dy*®

)and its speed ig(t)| =/ — +— +

dt

dz?

dt

It can also be used to define the line integral etalarfunction f(t) defined along the curve to be

/f%—/f (t)]dt .

Alternatively, if f(z,y, z) is defined throughout space, then it may be restricted to the curve by composing

with #(¢) and then its integral is

/f@—/f (1) dt.

1stewart Chs. 11, 14, 17.
2Stewart§§11.1, 14.1.
SStewart§§14.2, 14.3, 14.4.
4Stewart§17.2.
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EXAMPLE 6.1. Plot the spiral helix’(t) = (¢ cos(t), tsin(t),t) for 0 < ¢ < 87 and compute the integral
of the functionf (z,y, z) = z(2 + xy) over this portion of the spiral helix.

SoLUTION: We enter the curve and plot it:
> r=MF(t,[t*cos(t), t*sin(t), t]);

r:= [t — tcos(t), t — tsin(t), t — {]

> spacecurve(r(t), t=0..8*Pi, numpoints=96, axes=normal,
orientation=[30,50], thickness=2);

The functionf (z,y, z) = z(2+ 22 +y?) may be restricted to the spiral helix by forming the composition
f(Ft)) =t (24 (tcos(t))? + (tsin(t))?) . In Maplewe enter the function
>  f=MF(xy,z], z¥(2 + X2 + y2));

f=(a 0y, 2) = 22+ 2% +y7)
and form the composition
> fri=simplify(f(op(r(t))));
fro=2t+13

Notice the use obp to strip the square brackets off)
(87,0,87)

8w
The integral off betweert = 0 andt = 8« is/ fds = f(7(t))|v] dt. UsingMaple, the
0

. (0,0,0)
velocity and speed are

> v:=D(n);

v = [t — cos(t) — tsin(t), t — sin(t) + ¢ cos(t), 1]
> speed:=simplify(len(v(t)));

speed := \/2 + t2
So, the integral is
> Int(fr * speed, t=0..8*Pi); value(%);
87
/ (2t +13) V2 +t2dt
0

1 4
=2+ 64 72)(5/2) = V2
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6.1.2 Mass, Center of Mass and Moment of Inertia

Table B.2 in Appendix B, shows the standard applications of line integrals of scalar functions. As examples,

we will discuss the mass, center of mass and moment of inertia of a wire with a specified linear density.
Suppose the wire has the shape of a cuiv¢ and has linear densify(¢) at the point™(¢). (Notice that

p(t) is measured in units of mass per unit length so thiakds is the mass of a piece of wire of lengfk.)

Then the mass of the wire betwedn= i"(a) andB = 7(b) is

B b
M:/ pds=/ p(8)[5] dt -
A a

(M. M,. M,
5y7z)7 < M ) M ) M )

and the center of mass is

—~
8

where the first moments are
B b
Myzz/ xpds:/ x(t) p(t)|7| dt
B ab
Mo = [ wpds= [y )i
a
B b
sz/ ZpdS:/ =(t) (0|5 dt .
A a

EXAMPLE 6.2. Suppose a wire has the shape of the spiral helix of example 6.1, and has density proportional
to the distance from they-plane. Find its mass and center of mass.
SOLUTION: The distance from they-plane isz. So the density is = K z (for some constank’), which
may be entered as
> rho:=K*r(t)[3];

p=Kt
Hence the mass is
> Int(rho * speed, t=0..8*Pi); M:=value(%);

8
/ Kt\/2+t2dt
0

1 - 2
M= (2+ 647%) B3/ K — 3 V2 K
To find the center of mass, we first compute the momemRtaple is unable to compute the integrals

exactly usingvalue , for example:
> Int(r()[1] * rho * speed, t=0..8*Pi); Myz:=value(%);

8T
/ t? cos(t) K \/2 + t2 dt
0
8m
Myz ::/ t?cos(t) K /2 + 12 dt
0
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So we get an approximate value usaglf
NOTE: The commandkxpand is needed to factor out the constdt

> Myz:=evalf(expand(Myz));

Myz := 1894.954419 K
The other two moments are
> Int(r())[2] * rho * speed, t=0..8*Pi); Mxz:=evalf(expand(%));

87
/ t?sin(t) K /2 + t2dt
0

Mzxz := —15749.84329 K
> Int(r()[3] * rho * speed, t=0..8*Pi); Mxy:=evalf(expand(%));

8
/ 2K \/2+t2dt
0

Mzy = 100061.0758 K

and the center of mass is
> CM:=evalf([Myz/M, Mxz/M, Mxy/M]);

CM := [.3564659633, —2.962753618, 18.82281041]

Examine the plot in example 6.1 and notice that the center of mass is neaiattie but above the center
since the density of the spiral helix is greater toward the top.

The moments of inertia about the three axes are:

B b
L= [0+ pds = [ (02 + =07 o)l e

A a

B b

I, = /A (22 + 22) pds = / (x(t)? + =(6)%) p()[ 7] dt
B b

I - / (2 +3?) pds = / (2(0)% + y(8)2) p(0)| 7 e

A a

EXAMPLE 6.3. Find the moments of inertia of a wire in the shape of the spiral helix of example 6.1 with
density proportional to the distance from thg-plane.
SOLUTION: The quantities were all defined in the previous examples. So the moments of inertia are
> nt( (r()[2]"2 + r()[3]"2) * rho * speed, t=0..8*Pi);
Ix:=evalf(expand(%));

87
/ (t*sin(t)? + %) K t\/2 + t2 dt
0

Iz = .3008290674 10" K
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> Int( (r()[1]"2 + r(®)[3]°2) * rho * speed, t=0..8*Pi);
ly:=evalf(expand(%));

8
/ (t?cos(t)® +1*) Kt /2 + 12 dt
0
Iy == .3024140862 10" K

> nt( (r()[1]"2 + r()[2]°2) * rho * speed, t=0..8*Pi);
Iz:=evalf(expand(%));

8w
/ (t? cos(t)® + t?sin(t)?) K t /2 + t2 dt
0

Iz ;= .2010810512 10" K

6.1.3 Line Integrals of Vectors

Given a vector field
ﬁ(mayvz) = (Fl(x7yaZ)aFQ(may7Z)7F3(may7Z)) 5

the line integrdl of F* over a curve(t) is

/Bﬁ-d;:Lbﬁ(F(t))-U(t)dtz/Bﬁ-Tds

A

where thevector differential of arc lengtrs:

dr dy dz

ds = (dx,dy,dz) = (G2

Ydt = Fdt =Tds .

and whereF (7(t)) is the composition of the vector fielfi(, y, z) and the curve?(¢). We will also say that

F(7(t)) is the restriction of: to the curve or the value df along the curve. Writing the integral in the form
B

/ F - T ds with the unit tangent vectdr’, is useful for theoretical purposes, but it is more convenient to
A

b
compute it in the form/ F(7(t)) - o(t) dt .

(67,0,67) .

EXAMPLE 6.4. Compute the line integraf F - ds of the vector fieldF = (32, 2wy, 2%) along

(0,0,0)
the spiral helix*(t) = (¢ cos(t), tsin(t), ¢). Then plot the vector field and the spiral helix in the same plot.
SoLuTION: We input the curve and the vector field:

> r=MF(t, [t*cos(t), t*sin(t), t]);

r:= [t — tcos(t), t — tsin(t), t — {]

SStewart§17.2.
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> F:=MF([xy,z], [3*x*z, 2*x*y, X2]);

Fi=[(z,y, 2) = 3zz, (2,4, 2) = 22y, (z, y, 2) — 2°]
Then we compute the velocity and evaluate the vector field on the curve:
> v:=D(n);

v:= [t — cos(t) — tsin(t), t — sin(t) + t cos(t), 1]
> Fr:=F(op(r(t)));

Fr:= [3t? cos(t), 2t cos(t) sin(t), t* cos(t)?]
(Again, notice the use ddp to strip off the square brackets.) Next we compare the endpg@ints0) and

(67,0, 67) with (thez-component of) the parametrizati@cos(t), ¢ sin(t), t) and observe that the parameter
range i) < ¢ < 67 . Hence the integral is

> Int(Fr & v(t), t=0..6*Pi); value(%);
6
/ 412 cos(t)? — 3% cos(t) sin(t) + 2% cos(t)? sin(t) 4+ 2% cos(t) — 22 cos(t)® dt
0

162 % + % T
Finally, we plot the spiral helix and the vector field and display them in the same plot:
> pr:=spacecurve(r(t), t=0..6*Pi, numpoints=96, thickness=2):
> pF:=fieldplot3d(F(x,y,z), x=-6*Pi..6*Pi, y=-6*Pi..6*Pi, z=0..6*Pi):
> display( {pr,pF }, axes=normal, orientation=[30,50]);
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The line integral of a vector field can also be written as:

B B
/ ﬁd—‘;:/ Fl(x7yaz)dx+F2(may7z)dy+F3(may7z)dZ
A A

In this form, the integral is computed (by hand) by replacing the coordinates and the differentials by their

values on the curve and then integrating with respect to the parameter. However, on the computer, it is still
easier to integrate the dot product of the vector field and the velocity.
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(—37,0,37)
EXAMPLE 6.5. Compute the line integra/ —2%ydx + y*x dy + 2° dz along the spiral helix
(0,0,0)
7(t) = (t cos(t), tsin(t), ).
(—=37,0,3m) _ .
SOLUTION: We notice that the integral 7{ F - ds for the vector fieldF’ = (—22y, y%x, 2°) So
(0,0,0)

we enter the vector field:
> F=MF([Xy,z], [-X2*%y, y2*x, 2°3]);
F = [(xa Y, Z) - _:EQ Y, (l’, Y, Z) - y2 x, (CC, Y, Z) - 23]
and evaluate the vector field on the curve:
> Fr:=F(op(r(t)));

Fr := [—t3 cos(t)?sin(t), t3sin(t)? cos(t), %]
Next we compare the endpoints with (th&eomponent of) the parametrization and conclude that the param-
eter range i® < ¢t < 3w. Hence the integral is
> Int(Fr & v(t), t=0..3*Pi); value(%);

3w
/ — 213 cos(t)? sin(t) + t3 + sin(t) t3 cos(t) 4+ 2t cos(t)? — 2t* cos(t)* dt
0

5]

243 5 81 ,
20" T4 "

6.1.4 Work and Circulation

Table B.3 in Appendix B, shows the standard applications of line integrals of vector functions. As examples,
we consider the work a force does on a particle and the circulation of a fluid (or of an electric or magnetic
field).

Work  If a particle moves along a curv&t) due to the action of a forc&(z, y, z), then the work done on
the patrticle is the line integral of the tangential component of the force along the curve:

B _ B _
Work:/ F-Tds:/ F-ds.
A A

EXAMPLE 6.6. A 57 kg satelite is falling out of orbit along the spiral curve
27t 27t .. . .
R(t) = ((7124 — 13t) cos (8—777) (7124 — 13t) sin <8—7T7> ,0> where t is in minutes. Find the work

. Y ~ M . .
done on the satelite by the gravitational fofce= — Smfas the satelite falls from an altitude of 7124 km

(measured from the center of the earth) to the eartﬁ’s surface at 6371 km.
SoLUTION: We first input the curve and compute the velocity:

> R:=MF(@,[ (7124 - 13*) * cos( 2*Pi*t/87 ), (7124 - 13*) * sin(

2*Pi*t/87 ), 0]);

2 2
R:= [t — (7124 = 131) cos(gz mt), £ — (7124 — 134)sin(g= ), 0]
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>  V:=D(R);
Ve [t — —13cos(— 7t) — — (7124 — 13¢) sin(— 1)
=t - — — — _ =
COS 877T 37 Sin 877T ™,
2 2 2
t— —13sin(§ wt) + 7 (7124 — 131¢) cos(ﬁ i), 0]

In the force equation, the gravitational constanis= 6.67 x 10~'! m?/kg/seé, the mass of the earth is
M = 5.97 x 10** kg, the mass of the satelite is = 57 kg, the vector from the center of the earth is
7 = (z,y, z) and the distance from the center of the earthis \/x2 + y? + 22. We enter the constants and
compute the force:

> G:=6.67 * 107°(-11): M:=5.97 * 10"24: m:=57:

>  F:=MF( [x,y,z], evalll G*M*m * [x,y,z] / sqri(xX"2+y"2+z"2)"3 ) );

x
(1'2 + y2 + 22)(3/2)7
)
(.132 + y2 + 22)(3/2)’
z
(.132 +y2 +22)(3/2)]

F = [(x, y, z) — 2269734300 10'7

(z,y, ) — .2269734300 1017

(z,y, ) — 2269734300 1017

We then evaluate the force on the curve:
> FR:=simplify(F(op(R(1))));

FR := [-100000.

c0s(.07222052079t) (—.7359848498 1012 + .1343038047 1010¢) csgn(—548. + t)
(—548. 4+ t)3 ’

—100000.
sin(.07222052079 t) (—.7359848498 1012 + .1343038047 1019 ¢) csgn(—548. + t)
(—548. +t)3 ’

0]

To find the range for the parameter, we compare the curve to the formula for cylindrical coordinates
(rcosd,rsind, z). So the radius from the center of the earth-is= 7124 — 13¢. Thus, the altitude is
7124 km at = 0. We solve for the time when the altitude is 6371 km:

> t2:i=fsolve( 7124 - 13* = 6371, 1);

t2 = 57.92307692
So the work integral is
> Int(FR & V(t), t=0..t2); W:=evalf(%);

/57-92307692 5000000 107 csgn(—548. 4 t) (—.4783901525 1012 4- .872974731 10°¢)
0 ' —.164566592 10% + 900912. t — 1644. t2 4 ¢3

W := —.3765637247 102
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Circulation The instantaneous motion of a fluid is measured by its velocity t?g(dc, y, z) which gives

the velocity of the fluid at the poirtr, y, z). The line integral of the tangential component of the velocity
field around a closed curvét) is called the circulation of the fluid around the curve and measures the net
flow of the fluid around the curve:

Circulation = Vf Tds = 7( Vf - ds
() ()

NOTE: There are two velocities here: the velocity field of the fluid denoteﬁ}b;and the velocity of the
curve denoted by. o o
Itis also common to compute the circulation of an electric figlH - ds or of a magnetic fieldf B - ds.

EXAMPLE 6.7. Plot the fluid velocity fieIde = (—y,z) and compute its circulation around the two
families of circlesz? + y* = o and(z — 2)% + ¢ = o>

SoLUTION: We input the velocity vector field and plot it:
> VE=MF([x,y], [-y.x]);

Vf = [(.13, y) - Y, (l‘, y) - J)]
> fieldplot(Vf(x,y), x=-5..5, y=-5..5, scaling=constrained);
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////////,2’,\\\\\,\,\,\,\
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\\\\\\\\\_2:/,////////
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NNANNNSNSNS~—meem s g gy )]
NNNNSNSNSN =]
NANNNNSNS gl s s
NANNNNSN SN e s s s
NANNNNSN ] s s s S

Notice that fluid seems to circulate around the origin.
The first family of circles are centered at the origin. We enter a parametrization and compute the velocity
of the curve:

> ri=MF(t[a*cos(t),a*sin(t)]);

r:= [t — acos(t), t — asin(t)]
> v:=D(n);

v:= [t — —asin(t), t — acos(t)]
The restriction of the fluid velocity to the curve is
> Vir=Vf(op(r(t)));

Vfr := [—asin(t), acos(t)]
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and hence the circulation is
> Int(Vfr & v(t), t=0..2*Pi); C:=value(%);

27
/ a?dt
0

C:=2d*r
The second family of circles are centered at the p@nd). We enter a parametrization and compute the
velocity of the curve:

> r=MF(t[2+a*cos(t),a*sin(t)]);

r:=[t— 2+ acos(t), t — asin(t)]
> v:=D(n);

v:= [t — —asin(t), t — acos(t)]
The restriction of the fluid velocity to the curve is
> Vir=Vi(op(r(t)));

Vfr := [—asin(t), 2 4+ acos(t)]
and hence the circulation is
> Int(Vfr & v(t), t=0..2*Pi); C:=value(%);

2m
/ a® 4 2acos(t) dt
0

C:=2d’r

Notice that for both families of circles, the circulation is twice the area of the circle. This is not a coincidence

and will be explained in subsection 8.3.2 using Green’s Thetrrem

6.2 Parametrized Surfaces

In R, a parametric curvehas one parameter, a parametric suffdes two parameters and a curvilinear

coordinate systefrhasn parameters. In sections 1.3, 2.2 and 6.1, we studied parametrized curves and their

differential and integral properti&s Similarly, in sections 5.3 and 5.3, we studied curvilinear coordinate
systems and their differential and integral properties.

In section 1.3 we introduced parametrized surfaces. We now study their differential and integral proper-
ties'!. These properties are analogous to those for curves and curvilinear coordinate systems. We will restrict

attention to surfaces iR3 but point out those properties which don’'t generaliz&tobecause they depend
on the cross product.

6Stewart§17.4.
“Stewart§11.1, 14.1.
8Stewart§17.6.
9Stewart§16.9.
10stewart§§14.2, 14.3, 14.4.
listewart§17.6, 17.7.



126 CHAPTER 6. LINE AND SURFACE INTEGRALS

6.2.1 Tangent and Normal Vectors

A surface is specified by giving a list of 3 functions of 2 variables which give the 3 rectangular coordinates
as functions of the 2 parameters or coordinates. Thus,

(2,9, 2) = R(u,v) = (w(u,v),y(u,v), 2(u, ) -

A coordinate curve is the curve obtained by allowing one parameter to vary while the other parameter is held
fixed. If you draw several coordinate curves for each parameter, you obtain a coordinate grid for the surface.
The tangent vector to a coordinate curve is obtained by differentiating with respect to the parameter which is
varying:

5 OR oR
= u "

In R3, there is one further vector which can computed, and that is the normal vector which is perpendicular
to the surface and may be computed as the cross product of the two coordinate tangent vectors:

and R

]\7: Ru X R?)

A surface may be entered inMaple using thevec _calc commandmakefunction  or its aliasMF
The first argument is the list of parameters, and the second argument is the list of expressions for the rectan-
gular coordinates. You can plot a parametric surface with its coordinate grid by usipiptBé command
with a parametric argument. The coordinate tangent vectors may be compute® asidghe normal may
be computed using theec _calc commandcross orthevec _calc operato&x.

EXAMPLE 6.8. Plot the spiral ramgi(r, 6) = (r cos(6),r sin(6), ) for 0 < r < 9 and0 < § < 8. Then
compute the coordinate tangent vectrsand B, and the normal vectay .

SoLUTION: We enter the surface and plot it:
> R:=MF([r, theta],[r*cos(theta), r*sin(theta), theta]);

R:=|(r, 0) — rcos(d), (r, ) — rsin(d), (r, §) — 6]

> plot3d( R(r, theta), r=0..9, theta=0..8*Pi, grid=[10,97],
scaling=constrained, orientation=[45,65]);
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From the plot, we see why the surface is called a spiral ramp.
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We next compute the coordinate tangent vectors and the normal vector.
> Rr:=D[1](R); Rtheta:=D[2](R);

Rr :=[(r, 0) — cos(0), (r, 8) — sin(0), 0]

Rtheta :=[(r, ) — —rsin(0), (r, §) — rcos(f), 1]
> N:=simplify(Rr(r, theta) &x Rtheta(r, theta));

N := [sin(f), —cos(h), 7]
NOTE: The cross product operat@x expects to act on expressions. So we must evaluate the tangent vectors
at the point(r, theta) before taking the cross product.
For future reference, notice that the normal points basically upward sineetimponentV, = r is positive.

6.2.2 Surface Area

The(scalar) differential of surface areia
ds = ‘N’ du dv

Here the length of the normazm plays the role of the Jacobian for the parametric surface. Hence, the area
of a regionR on a parametric surface is given by

A:é/dSzé/‘ﬁ‘ du dv

where the limits on the integrals must be taken as the appropriate ranges for the pararapthrs Notice
that these formulas are analogous to those for a curve giving the scalar differential of arc length and the arc
length in terms of the length of the velocity.

EXAMPLE 6.9. Find the area of one cycle of the spiral ramp of example 6.8 férr < 9.
SoLuUTION: We first compute the length of the normal:
> lenN:=simplify(len(N));

lenN := /1 + 72

One cycle of the ramp occurs for< § < 2x. So, the area of the ramp is
> Muint(lenN, r=0..9, theta=0..2*Pi); A:=value(%); evalf(%);

27 9
/ / V1+7r2drdd
o Jo

A::2(g\/8_2—%ln(—9+\/8_2))7r

265.1250052
This is slightly larger than the area of a circle of radius®9= 792 = 817 ~ 254.
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6.2.3 Surface Integrals of Scalars

Thescalardifferential of surface ared,S, can also be used to define the surface integralobdarfunction
f(u,v) defined along a surface R to be

// fd5 = / £ (u0) [N] dudo

R R

Alternatively, if f(x, y, z) is defined throughout space, then it may be restricted to the surface by composing
with R(u,v) and then its integral is

//fds://f(ﬁ(“vv))u\?ldudv.
R R

EXAMPLE 6.10. Compute the integral of the functiofix,y,2) = = + y — z over the spiral ramp of
example 6.8 fo < r <9and0 < 4 < .

SoLUTION: The functionf may be entered as
>  fi=MF(x,y,z], X +y - 2);

f=(z,y,2) D ax4+y—=z
and its restriction to the spiral ramf{(r, 0)) is:
> fR:=f(op(R(r, theta)));

fR :=rcos(f) + rsin(d) — 0
(Notice the use obp to strip off the square brackets.)

T 9
Then the integral off over the spiral ramp i#/fds = / / F(R(r,0))|N| dr do, which may be
0 0
R

computed using/lapleas
> Muint(fR * lenN, r=0..9, theta=0..Pi); value(%);

0 0

2 164 9 1
_g—'—T 82—Z7r2\/8_2+ 171'2111(—94-\/8_2)

6.2.4 Mass, Center of Mass and Moment of Inertia

Table B.2 in Appendix B, shows the standard applications of surface integrals of scalar functions. As exam-
ples, we will discuss the mass, center of mass and moment of inertia of a region of a surface with a specified
surface density.

Suppose a sheet of plastic has the shape of a rdgimma surface?(u, v) and has surface densijtyu, v)
at the pointR(u, v). (Notice thatp(u, v) is measured in units of mass per unit area so fifatv) ds is the
mass of a piece of the surface with ar&a) Then the mass of the plastic sheet is

M://pdS://p(u,v)|]\7|dudv.
R R
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EXAMPLE 6.11. Suppose the dome of a grain silo has the shape of the paraboloid
2 2 2 2
2=30-2 +y for z > 10 and has a density = 320 + Y
Plot the dome and find the total mass of the dome.
SOLUTION: The surface may be parametrized in polar (or cylindrical) coordinates as
> R:=MF([r, theta],[r*cos(theta), r*sin(theta), 30 - r"2/20]);

so that the dome is thicker at the bottom.

R:=|(r, ) — rcos(d), (r, ) — rsin(d), (r, §) — 30 — % 2]
2

The bottom of the dome is at= 10 = 30 — ;—0 or atr = 20. So we plot the dome and save it for future use:

> pdome:=plot3d(R(r, theta), r=0..20, theta=0..2*Pi, axes=normal,
scaling=constrained, view=[-20..20, -20..20, 0..30],
orientation=[30,80]): pdome;

10 10 20

20
In these coordinates, the density may be entered as
> rho = 320 + r°2/10:
The coordinate tangent vectors are
> Rr=D[1](R); Rtheta:=D[2](R);

Rr:=[(r, ) — cos(6), (r, §) — sin(d), (r, ) — —%0 7]

Rtheta := [(r, ) — —rsin(d), (r, §) — rcos(8), 0]
The coordinate normal vector and its length are

> N:=simplify(cross( Rr(r, theta), Rtheta(r, theta) ));
lenN:=simplify(len(N));

L2 1 oo
N = [10r cos(6), 0" sin(@), ]

1
Ni=—/r 211
len TR (r2 +100)

So the mass is
> Muint(rho * lenN, r=0..20, theta=0..2*Pi); M:=value(%);

27 p20 1 1
/ / — (320 + — 1) \/72 (r2 + 100) dr df
0 0

10 10
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170000 31600
V5 —

M:=2(
3 3

)m

To find the center of mass, we need to find the first moments:

M, ://xpdS://x(u,v)p(u,v)|]\7|dudv
R R

Mo = [[wpas = [ [ vtwv)otu,) ¥ dudo
R R

Mw://zpdSz//z(u,v)p(u,v) |N| du dv
R R

Then the center of mass is

__ . (M, M,. Mg,
(xﬂy7z)<Mﬂ M} M)
EXAMPLE 6.12. Find the center of mass of the grain silo dome of example 6.11.
SOLUTION: By symmetryz = 0 andy = 0. To findz, we first find thez-moment

> Muint(R(r,theta)[3] * rho * lenN, r=0..20, theta=0..2*Pi);
Mxy:=value(%);

2 20 1 1
/ / 30—— )(320+1—0r2) 72 (12 + 100) dr df
2
May =2 ( 358(1)000 i 707261000)7r

Then thez-component of the center of mass is
> zbar:=simplify(Mxy/M); evalf(%);

10 5875 /5 — 1769
7T 4255179
18.63803258
Notice that the center of mass is slightly below the center of the height of the dome.

Finally the moments of inertia about the 3 axes are:

L= [[ 6+ pds = [ [ w02+ 20,02)p(0,0) (] duds
R R

1, = //(x2 +2%) pdS = //(x(u,v)2 + 2(u, v)?)p(u, v) |N| du dv
R R

L= [[@ 4 ds = [[ @0 + w07t o) ¥ dudo
R R
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EXAMPLE 6.13. Find the moment of inertia about theaxis of the grain silo dome of example 6.11.
SoLUTION: The moment of inertia about theaxis is

> Muint( (R(r,theta)[1]’2 + R(r,theta)[2]"2) * rho * lenN, r=0..20,

theta=0..2*Pi); 1z:=value(%);

27 20 1 1
/ / — (r?cos(0)? + r?sin(0)?) (320 + — %) /72 (r2 + 100) dr df

488000000 17600000
488000000 /5 . 4 17600000

Iz = T
21 21

6.2.5 Surface Integrals of Vectors

Given a vector field
ﬁ(xayvz) = (Fl(x,y,z),FQ(x,y,z),Fg(x,y,z)) )

the surface integral of over a surface?(u, v) is

//F ds = // R(u,v) Ndudv—/FNdS

where thevector differential of surface area:

9y, 2)
O(u,v)

0(z, )
O(u,v)

)

dS = (dy dz,dz dz, dx dy) = (’

‘a(m, y)
13w, v)

and whereF' (R (u, v)) is the composition of the vector fielll(z, y, z) and the surfac&(u, v)). We will also

—

say thatF'(R(u,v))) is the restriction off to the surface or the value @ along the surface. Writing the

>mm:ﬁmm:Nﬁ.

integral in the form// F - N dS with the unit normal vectolV, is useful for theoretical purposes, but it is
R
more convenient to compute it in the forfu F(R(u,v))- N dudv .

It should be noticed that if you reverse the direction of the normal vééttiren the integral of any vector
field changes sign. This means that if you plan to integrate a vector field over a surface then you must specify
the side of the surface to which the normal should point and only use a parametrization for which the normal
points to the correct side of the surface. However, if you pick a parametrization and find that the normal is
backwards, you may correct the problem by reversing the normal by multiplyirglby

EXAMPLE 6.14. Plot the vector field7(x, y,2) = (yz, w2, —z?) and the grain silo dome of example 6.11.
(Think of the vector field as rain falling on the dome.) Then compute the integﬁélawfer the surface of the
grain silo dome with normal pointing downward.

SoLUTION: The vector field may be entered as
> V:=MF([x,y,z], [y*z, x*z, -Z2°2));

V= [(x’ Y, Z) — Yz, (l‘, Y, Z) — Tz, (Z, Y, Z) - 7’22]
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Then we plot it and display it with the dome (previously plotted in example 6.11).
> pV:= fieldplot3d(V(x,y,z), x=-20..20, y=-20..20, z=0..30):
> display( {pdome,pV });

2

In example 6.11, we parametrized the silo dom&éas 6) = (r cosf,rsiné, 30 — ;_0) and computed the
normal to be:
> N;

1 1
[1—0 r? cos(6), 1 r?sin(6), 7]
SinceN, = r > 0, the normal points upward and we must reverse it to point downward:
> N:=-N;

1 1
N = [_E 7“2 COS(G), _E 7'2 Sin(a)a —’I"]

WhenV is restricted to the silo dome, the composition is
> VR:=V(op(R(r, theta)));

1 1 1
VR := [rsin(f) (30 — 20 %), rcos(6) (30 — 20 r?), —(30 — 20 r%)?]
(Again, notice the use afp to strip off the square brackets.)
27 20
The integral oft’ over the silo dome i?//‘? - dS = / / V(R(6,¢)) - N dr df. UsingMaple, the
B 0 0

integral is

> Muint(VR &. N, r=0..20, theta=0..2*Pi); value(%);

27 20
1 1
/0 /0 — 677 sin(f) cos(6) + 100 77 sin(6) cos(0) + 900 — 37° 4 100 5 dr df

520000
3

™
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The surface integral of a vector field can also be written as:

//ﬁ~dt9://Fl(x,y,z)dydz+Fg(x,y,z)dzdx—i—Fg(x,y,z)dxdy
R R

In this form, the integral is computed (by hand) by replacing the coordinates by their values on the curve and

the products of differentials by the appropriate Jacobian determinants. The result is integrated with respect to
the parameters. However, on the computer, it is still easier to compute the dot product of the vector field and

the normal.

EXAMPLE 6.15. Compute the surface integrj(y —22y dy dz+y*x dz dx+ 23 dx dy over the spiral ramp
S

—

R(r,0) = (rcosf,rsind, 0) for 0 < r < 5and0 < 0 < 37 and with the normal pointing upward.
SoLuTIoN: We input the surface and compute the tangent vectors and the normal vector:
> R:=MF([r, theta], [r * cos(theta), r * sin(theta), theta]);

R:=|[(r, 0) — rcos(9), (r, ) — rsin(0), (r, §) — 0]
> Rr:=D[1](R); Rtheta:=D[2](R);

Rr :=|[(r, 8) — cos(0), (r, ) — sin(h), 0]

Rtheta := [(r, ) — —rsin(d), (r, §) — rcos(0), 1]
> N:=simplify(Rr(r, theta) &x Rtheta(r, theta));

N := [sin(f), —cos(h), ]
SinceN, = r > 0, the normal points upward and we do not need to reverse the normal. Next we look at the
coefficients ofdy dz, dz dx anddx dy to identify the vector field and evaluate the vector field on the curve:
> F=MF(xy,z], [- X2 *y, y2 * x, 2°3]);
F = [(x’ Y, Z) - _:EQ Y, (l’, Y, Z) - y2 z, (iC, Y, Z) - 23]
>  FR:=F(op(R(r, theta)));

FR := [—13 cos(6)?sin(), 3 sin()? cos(d), 6°]
Finally, we compute the surface integral:
>  Muint(FR &. N, r=0..5, theta=0..3*Pi); value(%);

3w 5
/ / — 273 cos(0)? + 273 cos(0)* + 63 rdr db
o Jo

2025 , 1875
8 16

6.2.6 Flux and Expansion

Table B.3 in Appendix B, shows the standard applications of line integrals of vector functions. As examples,
we consider the flux of a fluid through an open surface and the expansion of a fluid through a closed surface.
These applications may also be applied to an electric or magnetic field.



134 CHAPTER 6. LINE AND SURFACE INTEGRALS

Flux If a fluid flows through a surfacé(u, v), then the volume of fluid that flows through the surface per
unit time is called the flux of the fluid through the surface and is computed as the surface integral of the
normal component of the velocity field over the surface. The flux will be positive if the fluid flows through
the surface in the direction of the normal vector. In particular, if the fluid velocity fieﬁ‘}jﬂ;hen the flux is:

fzuxz//vf-zvdsz//vf-dig.
R R

EXAMPLE 6.16. Suppose a fluid is moving with the velocity fieﬂ;L = (x — y,z + y, 2z). Find the flux
of the fluid outward through the piece of the cylindér+ y? = 4 for 0 < z < 3. Then plot the fluid velocity
and the cylinder in the same plot.

SOLUTION: The surface may be parametrized as

> R:=MF([theta, z], [2 * cos(theta), 2 * sin(theta), z]);
R:= (0, z) — 2cos(8), (0, z) — 2sin(d), (0, z) — 2]
So the tangent and normal vectors are
> Rtheta:=D[1](R); Rz:=D[2](R);
Rtheta = [(0, z) — —2sin(d), (0, z) — 2cos(6), 0]

Rz:=0, 0, 1]
> N:=cross(Rtheta(theta,z),Rz(theta,z));

N :=[2cos(6), 2sin(6), 0]

Examining the sign of the- andy-components of the normal, we verify that the normal points outward. We
now input the velocity field and restrict it to the surface:

> VE=MF([x,y,z], [xy, x+y, 2*z]);

V=[x, y,2) —x—vy, (x,y,2) =z +uy, (z,y, z) = 22]
> VfR:=Vf(op(R(theta, 2)));

VIR := [2cos(f) — 2sin(0), 2 cos(f) + 2sin(h), 2 2]
Then the flux is
> Muint( dot( VIR, N), theta=0..2*Pi, z=0..3 ); Flux_cyl:=value(%);

3 27
// 4d0dz
0 Jo

Flux_cyl :==24m
We plot the fluid velocity and the cylinder and then display them together:
> pVf.=fieldplot3d(Vf(x,y,z), x=-3..3, y=-3..3, z=0..3):
> pR:=plot3d(R(theta, z), theta=0..2*Pi, z=0..3):
> display( {pVf, pR }, axes=normal, orientation=[35,75]);
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Expansion If the fluid flows through a closed surface, then the flux through the surface (with the outward
normal) is called the expansion of the fluid out of the solid region enclosed by the surface.

EXAMPLE 6.17. Suppose a fluid is moving with the velocity fiel?}c = (z — y,x + y,2z). Find the
expansion of the fluid out of the solid cylindet + y* < 4for0 < z < 3.

SoLuTIioN: The flux of the fluid through the curved surface of the cylinder was found in the previous
example. It remains to compute the flux through the top and bottom surfaces with outward normals. Both the
top and bottom surfaces may be parametrized as

> R:=MF([r, theta], [r * cos(theta), r * sin(theta), z0]);
R:={(r, ) — rcos(d), (r, ) — rsin(d), (r, §) — 20]
wherez0 is 3 for the top and O for the bottom. In both cases the tangent and normal vectors are
> Rr=D[1](R); Rtheta:=D[2](R);
Rr :=[(r, 8) — cos(0), (r, ) — sin(h), 0]

Rtheta := [(r, ) — —rsin(0), (r, §) — rcos(f), 0]
> N:=simplify(cross(Rr(r, theta),Rtheta(r, theta)));

N :=[0, 0, 7]
Examining the sign of the-component of the normal, we see that this normal points upward. So we need to
reverse the normal for the bottom:
> N2:=-N;

N2 :=10,0, —7]
We now restrict the vector field to the surface:
> VIR:=Vf(op(R(r, theta)));

VIR := [rcos(8) — rsin(f), rcos(#) + rsin(f), 2 z0]
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Then the flux through the top is
> z0:=3; Muint( dot( VfR, N), r=0..2, theta=0..2*Pi ); Flux_top:=
value(%);

=3

20 =
2 2
/ / 67drdf
JO 0
Flux_top .= 24~
and the flux through the bottom is

> z0:=0; Muint( dot( VIR, N2), r=0..2, theta=0..2*Pi ); Flux_bot:=
value(%);

20 =0
27w p2
/ 0drdo
0 0
Flux_bot := 0

Adding the fluxes, we have that the net expansion is
>  Flux_cyl + Flux_top + Flux_bot;

48
Since the net expansion is positive, we see that there is a net flow of fluid out of the surface.

6.3 Exercises
e Do Project: 10.11.

1. If awire has the shape of the spiral(t) = (¢cos(t),¢sin(t)) for 0<¢ <27 and has linear
density p(t) =t, compute the mass and center of mass of the wire.

2. If a wire has the shape of the astroid™(¢) = (cos®(t),sin®(t)) for 0<t<2r and haslinear
density p(x,y) =22 +y?  compute the mass and center of mass of the wire.

3. Compute the integral which represents the work done by the force fiéi"dr,y) =(z,y+2) in
moving an object along an arch of the cycloid*(¢) = (¢t — sint,1 — cost) for 0<t <2x.

4. Compute ?{ (—y®dx + 23 dy)  once counterclockwise around the circler? + 3> = 9.
C

—y x
22 + y2 ’ 2 + y2
circles, plot the circulation as a function of the radiuand discuss the dependencemn

5. Repeat example 6.7 but for the velocity field:Vf = For each family of

NOTE: Before computing the integral for the second family of circles, you will need to impose the
assumption 0 < a < 2 (and separately the assumptior2 < a ) by usingMaple’s assume
command. (OtherwiseMaple is unable to do the integral.) You do this by executing:
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10.

11.

12.

13.

14.
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assume(0<a,a<2); From then oMaple will write a asa” to indicate that an assumption has
been made oa. You may turn off the tildes by clicking o®PTIONS—ASSUMEDVARIABLES—NO
ANNOTATION.

. The surface of a sphere of radius 2 may be parametrized as

R(6,¢) = (2sin(¢) cos(), 2sin(¢) sin(6), 2 cos()) .

Plot the sphere and compute the coordinate tangent vectors and the normal vector. Does the normal
point radially inward or outward?

. What percent of the earth’s surface is above the arctic circle at &@:%h latitude? (In spherical

coordinates that’s at = 23.5°.)

NoOTE: In simplifying the length of the normal, you may encounter the expressign(sin(  ¢)) .
The functioncsgn is called the “complex sign” and is1 if its argument is positive and is1 if its
argument is negative. At this poiNtaple does not know thatin(¢) > 0 since0 < ¢ < . It will
discover this fact from the limits on the area integrals.

. Find the area of the part of the parametric surfad(u, w) = (u+w,u —w,w) that lies over the

triangular shadow region in they-plane with vertices (0, 0), (4, 2), and (0, 2).

. Evaluate the surface integr7{/ y dS, where the surfac# is the part of the plan&x + 2y + 2 = 6
S

that lies in the first octant.

Find the mass, center of mass and moment of inertia abortakis of the spiral ramp of example 6.8
for 0<r<9 and 0<6<8r ifthemassdensityisgivenbyp=2z.

NOTE: The center of mass may not be on thaxis.

Consider a thin funnel whose conically-shaped surfagegiven by z = /22 +y2 for 1<
z < 4. Usecylindrical coordinates to parametrically specify The shadow region (projection of
the funnel surface onto they-plane) is a washer or ring. Accordingly, what are the ranges ford
0? Compute the mass and center of mass of the funnel, given tharigbledensity is p =10 — z.

Consider the sphere of radius 2 centered at the origin. Compute the integral of the vector field

F(z,y,2) = (yz,7z,2%) over the eighth of the sphere in the first octant with normal pointing
away from the origin.

Suppose the velocity field of a fluid is the radial vector fielﬁ"f = (z,y,2). Plotthe velocity field

and compute the expansion of the fluid out of the two families of sphetes+ y? + 22 = «> and

2 +y* 4+ (2 — 2) = a®>.  For each family of spheres, relate the expansion to the volume of the
sphere. This is not a coincidence and will be explained in subsection 8.5.2 using Gauss’ Theorem.

Repeat exercise 13 but for the velocity field,

- v Y z ot

Ve = . For both families of spheres,
f ((x2 +y2 + 22)3/2’ (x2 +y2 + 22)3/2’ (x2 +y2 + 22)3/2) P

plot the expansion as a function of the radiusnd discuss the dependencemon

NOTE: Before computing the integral for the second family of spheres, you will needfame

0<a<?2 (andseparately 2 <a ). See exercise 5.



138 CHAPTER 6. LINE AND SURFACE INTEGRALS

15. In physics, the integral form of Gauss’ Law for electrostatics I]{/ E-dS = 47Q whereE is the

S
electric field and? is the total electric charge inside the closed surfdceCompute the total charge
inside the cylinder 22 +y2 <a? for 0<z<h foreach of the following electric fieldsk(
is a constant.)

a) E = (kz(2® +y?), ky(a® + y*),0)
b) E= (kx, ky,0)

k
_kr My
J)Q + y2 J)Q + y2
One of these fields represents the electric field of a line of charge aloregtkis since the total charge
is proportional to the length and independent of the radiaof the cylinder. Which one?

One of these fields represents the electric field of a uniform charge distribution since the total charge is
proportional to the volume of the cylinder. Which one?

c) E=(

16. An electric charge distribution along a curve is specified by giving the linear charge demdiigh
is measured in units of charge per unit length. Assume there is a uniform charge density along the
z-axis with constant charge density Thus the charge in a lengthis @ = L. This produces
2 \x 2y 0)
x2+y2’x2+y2’ :
a) Compute the flux of the electric field through a cylinder of radiasd lengthL centered on the
z-axis.
b) Compute the flux of the electric field through a cylinder of radius < a and lengthL
centered on the ling = @ andy = 0.
NoOTE: Before computing the integral, you will needdssume 0 <r < a. See exercise 5.
¢) Compute the flux of the electric field through a cylinder of radius > a and lengthL
centered onthe line = aandy = 0. NOTE: Thistimeassume 0<a<r.
d) Discuss the results by relating the flux to the amount of charge inside the cylinder. (See exercise
15andlab 9.11))

an electric field E = (

17. Assume there is a uniform electric curréninoving up thez-axis. This produces the magnetic field
. 21

B = m(—y,fll, 0)

a) Compute the circulation of the magnetic field counterclockwise around the citcle 3% = r2
in thexy-plane.

b) Compute the circulation of the magnetic field counterclockwise around the cirgle— a)? +
y? =712 inthexy-planeif r <a.
NoOTE: Before computing the integral, you will needdssume 0 <r < a. See exercise 5.

c) Compute the circulation of the magnetic field counterclockwise around the cirgte— a)? +
y> =712 inthexy-planeif r >a. NOTE: Thistimeassume 0<a <7.

d) Discuss the results by relating the circulation to the current passing through the circle. (See lab
9.12))
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Vector Differential Operators

7.1 The Del Operator and the Gradient

In rectangular coordinates, it is useful to introduce the “del”-operator given by

ﬁ— g 2 g —i£+A£+]%2
\0z' 0y’ 0z) oz ]8y 0z
ThusVv is the vector whose components are the partial derivative operators. Throughout this chapter, we will
use theV operator to construct other differential operators. HoweBEMWARE:
CAUTION: TheV operator only makes sense in rectangular coordinates.
For example, when th¥ operator is applied to a scalar field (i.e. a functignit produces a vector field
whose entries are the partial derivativesfofin subsection 3.1.4 this was defined to be the grafligithe
function:
= of of of
—orad f= [ =L =L 2L
/= grad f <ax, oA
It may be computed using the commagrad in thelinalg  package which acts on expressions or using
the commandRADN thevec _calc package which acts on arrow-defined functions. Examples appear in
subsection 3.1.4. The applications, interpretation and plots of the gradient are discussed in subsections 3.2.4,
3.2.5,3.2.6and 3.2.7.

7.2 Divergence

7.2.1 Computation

The divergenckof a vector fieldF = (Fy, F», F3) is defined by

0F, 0F, OF;

vF=V.F=—>1 424232
div v 6$+8y+8z

1Stewart§17.5.
2Stewart§15.6.
SStewart§17.5.
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where we have interpreted the formula as the dot product dﬁtbperator and the vector fielel except that
multiplication has been replaced by differentiation. The result is a scalar field (or function).

The interpretation of the divergenceis discussed in lab 9.9. Basically, the divergence atfapeiasures
the expansion of the vector field out of a small spher &br out of a circle inR?).

In Maple, you may compute the divergence by usinglihalg commandliverge for expressions
or by using thevec _calc commandIV for arrow-defined functions.

EXAMPLE 7.1. Plot each of the following 2-dimensional vector fields fe2 < z < 2and—2 < y < 2
along with a circle centered &t, 1) of radius.5.

a) 7= (l‘,y)
b) & = (y,—a)

From the plot, is the divergence positive, negative or zero? (It is positive, if more or bigger vectors come out
of the circle than go in; negative, if more go in than out.) Then compute the divergence.

SOLUTION: We enter each vector field usitif; plot it usingfieldplot anddisplay it with the cir-
cle produced using theircle command from thelottools package. Then we compute the divergence
usingDIV.

a) For# = (z,y) we have

> r=MF(xyl, [xyl);
r=[(z, y) =z, (z,y) = Y]

> fp:=fieldplot(r(x,y), x=-2..2, y=-2..2):

> with(plottools):

> display(fp, circle([1,1],.5), scaling=constrained);
NNANNNANANANN2N T 777777
NNANNNANANANN WYL T 7S
NNNNNANANA A T /] /77
SNONNNN NN AN e 7 Y
‘\‘\'\\\\\\‘y\ [ v
AN N N N N \1\’!7 -
D S R
Pl P D R A N N L T T e e N N Ny
////////1_117&&\\\\\\\\
P A A A A A T T e
IS L L 0 P VNV VNN N N NN
S 0 L VY VN NN NN N
S0 LYV NN NN
L0000 R4V VNN NN

CAUTION: The vectors produced Hieldplot may not have the correct lengths. They have been scaled
to look good in the plot. However, the directions and relative lengths are correct.

Notice that bigger vectors come out of the circle. So the divergence should be positive. Itis:

> div_r:=DIV(r);

div_r :=2
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b) Ford = (y, —z) we have

> omega:=MF([x,y], [y,-X]);

w:=[(z, y) —

> fp:=fieldplot(omega(x,y), x=-2..2, y=-2..2):

Y, (J,‘, y) - —JT]

> display(fp, circle([1,1],.5), scaling=constrained);

Notice that the same size and number of vectors go in as out of the circle. So the divergence should be zero.

Itis:

> div_omega:=DIV(omega);

VPP OGN N NN
J ]S — NN NN\
J /77—~~~ ~~N NN N\ N\
VPP N NN\
J /77 =~ NN
DL RN MRV
VA AN AV VAV PP BN VA
111 - ~ N Vv
(A A . [T T S S
T 1110 . voeov b
SRR N
lz\\\\%\\ . /?Xzzll%
U UENENEN v g4
ANAANANANNAS S ~ e e v vy )]
\\\\\\\\K—l-”(////////
NNN N NN N S - e s/ )/
NNN N NN N s - e s /)
NANANNNSN S S Ae e s s
NANNNN S A e S S )
NN SN~ e e e S

div_omega := 0
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EXAMPLE 7.2. Plot the 3-dimensional vector fielti = (0,—2y,0)for -2 <z < 2, -2 <y < 2and
—2 < z < 2 along with a sphere centered(at 1, 1) of radius1. From the plot, is the divergence positive,

negative or zero? (It is positive, if more or bigger vectors come out of the sphere than go in; negative, if more

go in than out.) Then compute the divergence.

SoLUTION: We first enter the vector field usidF, plot it usingfieldplot3d

the sphere produced using thphere command from thelottools

divergence usin®IV:

> F:=MF(x,y,z], [0, -2*y, 0]):

F = [07 (J), Y, Z) - _2y7 O]

> fp:=fieldplot3d(F(x,y,z), x=-2..2, y=-2..2, z=-2..2):
> display(fp,sphere([1,1,1],1), scaling=constrained,

orientation=[15,80]);

anddisplay it with
package. Then we compute the
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CAUTION: The vectors produced byeldplot3d may not have the correct lengths. They have been
scaled to look good in the plot. However, the directions and relative lengths are correct.

Notice that bigger vectors go into the sphere. So the divergence should be negative. It is:

> div_F:=DIV(F);

div_F = =2

7.2.2 Applications

EXAMPLE 7.3. In physics, the differential form of Gauss’ Law for electrostatic¥'isE = 47 p, whereE
is the electric field angd. is the electric charge density. Compute the charge density for each of the following
electric fields. £ is a constant.) See exercise 6.15.

a) E = (kz(2® +y?), ky(2® + ¢*),0)
b) E'= (k,ky,0)
kx ky

C E: o . 97 9 | o>
) ($2+y2 $2+y2

0)

For each field, compute the total charge inside the cylinder y? < a? for 0 < z < h.

One of these fields represents the electric field of a line of charge aloneggtkis. Which one?

One of these fields represents the electric field of a uniform charge distribution. Which one?
SoLUTION: (To save space, we omit some output.)
a) ForE = (kz(a?® + °), ky(2® + y?),0), we compute

> E:=MF(x,y,z], [k*x * (X"2+y"2), k*y * (X"2+y"2), 0]):

> rho:=simplify(1/(4*Pi)* DIV(E)(x,Y,2));

k(2® +y?)

pi=
™
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Since the density is hon-zero and non-constant, this electric field is neither a line of charge aloagithe
nor a uniform distribution. In cylindrical coordinates, the density is

> rho:=k*r"2/Pi:
So the total charge is

> Q:=Muint(rho*r, r=0..a, theta=0..2*Pi, z=0..h); Q:=value(%);

h p27 pa 3
Q::/ / / kv ardo dz
o Jo o T

Q= % ka*h
This shoulg agree with your result from exercise 6.15(a).
b) ForE = (kz, ky,0), we compute
>  E=MF(xy,z], [k*x, k*y, 0]):
> rho:=1/(4*Pi)* DIV(E)(X,Y,2);

| =
3|

pi=

Since this is constang; is the electric field for a uniform charge distribution. So the total charge is

> Q:=Muint(rho*r, r=0..a, theta=0..2*Pi, z=0..h); Q:=value(%);

h 27 pa
1k
Q::// /—ldrdedz
o Jo 02T

1
QI: EkGQh

This should agree with your result from exercise 6.15(b).
kx ky

x2+y2’x2+y2’
> E:=MF(x,y,z], [k*x I (X2+y"2), k*y [ (X"2+y"2), 0]):
> rho:=1/(4*Pi)* DIV(E)(x,y,2);

c) ForE = ( 0), we compute

p=0

Since the density is zero, there does not appear to be any charge anywhere. However, this conclusion is based
on Gauss’ equation which only holds at points where the electric field is well-defined. Since the electric field

is undefined (infinite) on the-axis, Gauss’ equation fails and there may still be charge along-&hés. In

fact, you should have found in example 6.15(c) that there is a uniform charge density alangxise
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7.3 Curl

7.3.1 Computation
In R?, the curf of a vector fieldF' = (Fy, F», F) is defined by

i 7k
. S o 1o} 0 0 0F; O0F, 0F, O0F; 0F, O
1F = F=- - —|=(l2_-—=_-—_-__-"=2__"2___"-
cur VX Ox Oy Oz (&%2 Ox3 Oxs Oz Oz 6:@)

L F, F3

where we have interpreted the formula as the cross product d?bhperator and the vector fielfi except
that multiplication has been replaced by differentiation. The result is a 3-dimensional vector field.
The interpretation of the curl is discussed in lab 9.10. Basically, the direction of the curl specifies the axis
and direction of rotation (by the right hand rule) while the magnitude of the curl specifies the rate of rotation.
In Maple you may compute the curl by using thealgy commandcurl for a vector of expressions
or by using thevec _calc commandCURLfor a list of arrow-defined functions.

EXAMPLE 7.4. Each of the following vector fields was plotted as a 2-dimension al vector field in example
7.1. Now regard each as a 3-dimensional vector field by appending 0 asthmponent.

a) 7= (z,y,0)
b) 0= (yv 7%,0)

By examining the circulation around the circle , is theomponent of the curl positive (counterclockwise),
negative (clockwise) or zero? Now compute the curl. Notice that each curl ends up pointing-ditbetion.
Is thez component positive, negative or zero?

SOLUTION: After examining the plot, we re-enter the vector field udiiig and compute the curl using
CURL

a) Forr = (x,y,0) we examine the plot and see that the vectors circulate around the circle clockwise as
much as counterclockwise. So we expectittomponent of the curl is zero. We compute:
> r::MF([X,y,Z], [X! y! 0])!

ri= [(ZC, Y, Z) — T, ((L’, Y, Z) —Y, 0]
> curl_ri=CURL(r);

curl_r := [0, 0, 0]
b) Ford = (y, —x,0) we examine the plot and see that bigger vectors circulate clockwise around the
circle. So we expect thecomponent of the curl is negative. We compute:
> omega:=MF([x,y,z], [y, -x, 0]);

W= [(l’, Y, Z) - Y, (QC, Y, Z) - -, 0]
> curl_omega:=CURL(omega);

curl_omega := [0, 0, —2]

4Stewart§17.5.
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EXAMPLE 7.5. Compute the curl of the vector field = (—z, 0, z) and convert the curl to spherical coor-

dinates. Then ploZ and orient the plot according to the directionfx @. What do you notice?
SoLUTION: We enterii, compute the curl and convert to spherical coordinates:

> w:=MF([x,y,z], [-z,0,X]);

U= [(J), Y, Z) - —Z, Oa (.13, Y, Z) - x]
> curl_u:=CURL(u);

curl_u := [0, =2, 0]
> r2s(curl_u(x,y,2));
1 1

[27 -5 5
2 2

So the curl points in the directich= —F rad= —90° and¢ = & rad= 90°. We now ploti, taking the
orientation to be the direction of the curl:
> fieldplot3d(u(x,y,z), x=-2..2, y=-2..2, z=-2..2,
orientation=[-90,90]);

7]

e ~ N\
/S = = NN
/v NN
[ Vo
oA o
N /
N\ /

NN — — )/
NN~—— )

Notice that the vector field rotates counterclockwise around the direction of the curl.

7.3.2 Applications

EXAMPLE 7.6. In physics, the differential form of Ampere’s Law for magnetostatic¥isc B = 4r.J
whereB is the magnetic field and is the electric current density. (A current has the units of charge per unit
time, while a current density has the units of charge per unit time per unit area. Thus if you integrate a current
density over a surface, you get the total current passing through that surface.) Compute the current density
for the magnetic field3 = (2°z,7°2,0).

SoLUTION: We enter the magnetic field and compute its curl:
> B:=MF([x,y,z], [x"3*z, y"3*z, 0]);
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> curlB:=CURL(B);

curlB = [(x, y, 2) — —y°, (z, y, 2) — 2%, 0]
Dividing by 47 gives the current density:
> J:i=evall(1/(4*Pi)*curlB(X,y,2));

J:=[-

4
Notice that just because a vector field lies in theplan
to thexy-plane.

7.4 Higher Order Differential Operators and Identities

In this section, we will investigate the second and higher order differential operators which may be construc-
ted from the gradient, divergence and curl, and the identities satisfied by some of these.

7.4.1 Laplacian of a Scalar

The divergence of the gradient of a scafais also called the Laplacidmof f and is simply the sum of the
second partial derivatives gfwith respect to each variable:

- o - o%f o%f O%*f
/ f = Lap(f) Ox? + Oy? + 022

A function satisfyingV2 f = 0 is called harmonic.
In Maple, you may compute the Laplacian by using timalg commandaplacian  for expressions
or by using thevec _calc command.AP for arrow-defined functions.

EXAMPLE 7.7. Compute the Laplacian of each of the following functions.
a) f = ax® + by? + c2? + 2pyz + 2qxz + 2rzy wherea, b, ¢, p, g andr are constants.
b) g = € cos(y)

SOLUTION: For each vector field, we enter the function usiigand compute the Laplacian usihgP:
a) Forf = ax? + by® + c2® + 2pyz + 2qzz + 2rzy we compute
>  fi=MF([x,y,z], a*xX"2 + b*y"2 + ¢c*Z2"2 + 2*p*y*z + 2*q*X*z + 2*r*x*y);

fi=(z,y,2) > as®+by’ +c2®+2pyz+2quz+2ray
> LE:=LAP(f);

Lf .= (xz,y,2)—2a+2b+2c
b) Forg = 52° sin(y) we compute
> g:=MF([x,y], exp(x)*cos(y));

g:= (z,y) — e cos(y)

SStewart§17.5.
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> Lg:=LAP(9);

Sog is harmonic.

7.4.2 Laplacian of a Vector

The divergence of the gradient of a vecfor= (Fy, F», F3) is called the Laplacidhof F andis simply the
Laplacian of each componentﬁf

_O’F N O°F N O°F
C0x2 0 9y? 022
In Maple thevec _calc commandLAP is designed to compute the Laplacian of any array or list of

arrow-defined functions. For arrays or lists of expressions, you mastthelinalg commandapla-
cian onto the array or list.

V-VF = V?F = Lap(F)

- (ﬁQFl,ﬁQFQﬁQFg)

EXAMPLE 7.8. Compute the Laplacian of the electric field of a point charge:

E = L z Yy z
T3 (x2 +y2 + 22)3/2’ (x2 +y2 + 22)3/2’ (x2 +y2 + 22)3/2
SoLUTION: We enter the electric field usingF, compute the Laplacian usigAP:
> E=MF([X,Y,z], [ XI(X2+y"2+272)"(3/2), y/(x"2+y"2+2"2)"(3/2),
z/(X"2+y"2+2°2)7(3/2) ]):
> LE:=LAP(E);
LE =10, 0, 0]
SoE is a harmonic vector field.

7.4.3 Hessian of a Scalar

The gradient of the gradient of a scajais also called the Hessian ¢fand is simply the matrix of all second
partial derivatives off:

A
0x0x 0x0z
VVf = Hess(f) = : :
0z0x 020z

In subsection 4.1.2, we used the leading principal minor determinants of the Hessian to classify the critical
points of a function as local maxima or local minima.

In Maple, you may compute the Hessian by using linalg commandhessian for expressions or
by using thevec _calc commandHESSfor arrow-defined functions. To display the result as a matrix, use
thelinalg commandnatrix which only works for expressions.

6Stewart§17.5.
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EXAMPLE 7.9. Compute the Hessian of the functign= az? + by? + cz? + 2pyz + 2qzz + 2ray.
SOLUTION: We enter the function usinlylE compute the Hessian usitdESSand display it using

matrix

> fi=MF([x,y,z], a*xX"2 + b*y"2 + ¢c*Z°2 + 2*p*y*z + 2*q*X*z + 2*r*x*y);

fi=(z,y,2) > aa®+by’ +c2®+2pyz+2quz+2ray
>  Hf:=HESS(f): matrix(Hf(x,y,2));

2a 2r 2gq
2r 2b 2p
2qg 2p 2c

7.4.4 Higher Order Gradients of Scalars

of
oL 83:7 '
The second order gradient ¢f(i.e. the Hessian) is the matriX;V f, of second partial derivatives ¢f
0% f
&maxj '
Similarly, the third order gradient of is the three-dimensional arrdy V'V f, of third partial derivatives
3

The gradient of a scalar field, is the vectorY f, of first partial derivatives of’, namely

namely

0
of f, namelym.
(]

And in general thé-th order gradient of is thek-dimensional arraﬁ e ﬁf, of k-th partial derivatives
oFf
Oy,

These higher dimensional arrays are called tensors and are beyond the scope of this book. However,
the higher order partial derivatives have been used in subsection 3.2.3 to construct the Higher Order Taylor
Polynomial Approximations.

of f, namelyax_

7.4.5 Curl of a Gradient

The curl of the gradient of a scal@isatisfies the first of two extremely important identified/e first consider
some examples.

EXAMPLE 7.10. Compute the curl of the gradient of each of the following functions:

a) f = ax® + by® + c2% + 2pyz + 2quz + 2rzy

_ v\ _ain (T
b) g = cos(e¥) — sin (z)
SoLUTION: We enter each function usiddgFand compute the curl of the gradient usBRARRNdCURL
a) Forf = ax? + by? + ¢2% + 2pyz + 2qxz + 2rzy we compute
> fi=MF([x,y,z], a*xX"2 + b*y"2 + ¢*Z2°2 + 2*p*y*z + 2*q*X*z + 2*r*x*y):

“Stewart§17.5.
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> grad_f:=GRAD(f);
grad_f :=[(z,y, z) = 2ax+2qz+2ry, (x,y,2) > 2by+2pz+2ra,
(z,9,2) = 2cz+2py +2qa]
> curl_grad_f:=CURL(grad_f);

curl_grad_f := [0, 0, 0]
b) Forg = cos (¢Y) — sin (f) we compute
z

0:=MF([x,y,z], cos(exp(y)) - sin(x/z)):
grad_g:=GRAD(q);

x x
cos(—) cos(—)z
’ (.2?, Y, Z) - —Sin(ey)ey7 (J), Y, Z) -

grad-g := |(z, y, z) — — e

> curl_grad_g:=CURL(grad_g);

curl_grad_g := [0, 0, 0]

Try several other functions. You'll always gét= (0,0,0). From these we conjecture that for any
function f (z, y, z), we have the identity

curl(grad f) = 0 or VxVf=0

You should prove this by hand but it can also be proved ubiagle First we clearf and compute its
gradient.

> f=f
> grad_f:= grad(f(x,y,z), [xy.z]);

0 0 0
gmd_f T %f(ma Y, Z)7 a_yf(ma Y, Z)7 &f(l‘, Y, Z)

Finally, we compute the curl:
> curl_grad_f:=curl(grad_f, [x,y,z]);

curl_grad_f := [0, 0, 0]
You always geb = (0,0, 0).

7.4.6 Divergence of a Curl

The divergence of the curl of a vectbrsatisfies the second extremely important ideftitye first consider
some examples.

8Stewart§17.5.
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EXAMPLE 7.11. Compute the divergence of the curl of the vector figle= (sin(z?), cos(y?), tan(z")).
SoLUTION: We enter the vector field usifngFand compute the divergence of the curl usidRLand

DIV:

>  F:=MF(xy,z], [ sin(xy), cos(y'z), tan(z’x) ]):

> curl_F:=CURL(F);

curl_F := [(z, y, 2) — sin(y?) y* In(y), (=, y, 2) — —(1 + tan(z")?) 2% In(z),
(z, 9, 2) — —cos(a¥) 2V In(z)
> div_curl_F:=DIV(curl_F);

div_curl_F :=0

Try several other vector fields. You'll always dgét From these we conjecture that for any vector field

—

F(z,y,z), we have the identity
div(curl F) = 0 or V-VxF=0

You should prove this by hand but it can also be proved uslagle We start with a general vector field

—

F = (Fy, F», F5) and compute its curl.
> curl_F:= curl(F1(x,y,z), F2(x,y,2), F3(x.y,2)], [x.y,z]):

curl_F = (5% F3(z, y, 2)) — (% F2(z, y, 2)), (5% Fl(z, y, 2)) — (5% F3(z, y, 2)),

0 0

(% F2(z, y, 2)) — (8_y Fl(z, y, z))
Finally, we compute the divergence:

> div_curl_F:=diverge(curl_F, [x,y,z]);

div_curl_F :=0
You always ge®.

7.4.7 Differential Identities

So far in this chapter we have derived two indentities:

1. curl(grad f) =0 or VxVf=0

2. div(curl F) = 0 or V-VxF=0
There is a third identity relating second derivatives:

3. curl(curl F) = grad(div F') — Lap(F) or VxVxF=V(V.F)-VF

There are many other identities satisfied by the gradient, divergence and curl. The most important of these
are the product rules listed hete:

9Stewart§17.5.
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4. grad(fg) = feradg + ggrad f or V(fg) = fVg+gVf

5. grad(F-G) = (F - grad)G + (G - grad) F or V(F-G)=(F-V)G+(G-V)F
whereF - grad or F'- V is the directional derivative operator which acts on a veGtoy differentiating
each component af.

6. div(fG) = fdivG+gradf G or V-(fG)=fV-G+Vf-G

7. div(FxG)=(cwlF)-G4+F-(cwrlG) or V-(FxG) =(VxF)-G+F-(VxQG)
8. curl(fG) =grad f x G + fcurlG or Vx(fG)=VfxG+fVxG
9. curl(FxG)=(curlF) x G—F x (curlG) or Vx(FxG) =(VxF)-G-F-(VxQGq)
These identities will be proved in the exercises. They are all proved by computing the left and right sides and

subtracting. You will need to use tigead , diverge andcurl commands from thénalg  package.

7.5 Finding Potentials

In the last section, we proved two important identities:

(=11

e VxVf=
e V-VxA=0

These can be rephrased as the two statements:
olf F=Vf, then VxE=0.
elf G=VxA, then V-G=0.

In general, the converses are not always true. They depend on the region on which the vector fields are
defined. In particular,

o If F isdefinedina“nice’ region R and V xF =0, then F=Vf forsome
function f definedin R. fis called a scalar potential fér.

o If G isdefinedina“nice’region R and V-G =0, then G=VxA forsome
vector field A definedin R. Ais called avector potential faF.

The meaning of “nice” is different in the two cases. Suffice it to say that if the re§isrcontractable (it has
no holes of any type) then the region is “nice” for both cases.
It remains to explain how the scalar and vector potentials may be found.
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7.5.1 Scalar Potentials

10Suppose you are given a vector fi€las a list of arrow-defined functions as produced byMffeommand.
Then thevec _calc commandPOT(F, 'f) will return true if F has a scalar potential and will return
false ifthere is no potential. In addition, if there is a scalar potential, this command will store the potential
in the variabld .
NOTE: There must be single forward quotes around the variable

Similarly, if F is a vector of expressions in the variablesy, z] ,thenthdinaly command
potential(F, [x,y,z], 'f) will give the same results.

EXAMPLE 7.12. Determine if each of the following vector fields has a scalar potential and if it does, find
it.

a) F = (yz,xz,7y)

SoLUTION: For each vector field, we enter the function usivif test for existence of a scalar potential
using bothCURLandPOTand write out the potential (if it exists) usieyal on the potential found by OT.

a) ForF = (yz,zz, xy), we compute:
> F=MF([Xy,z], [y*z,x*z,x*y]):
> CURL(F); POT(F, 'f);

[0, 0, 0]

true
Since the curl is zero anf is defined in all of space, there is a scalar potential. Its value may be seen in two
ways:
> eval(f); f(xy,z);

(x,y,2) mzyz

TYz
You can check it by computing the gradient:
> GRAD(f);

[(fl:, y? Z) - yz? (xﬂ y? Z) - x'z’ ($7 y? Z) - xy]
b) Ford = (yz, —xz, xy), we compute:
> w=MF([x,y,z], [y*z,-x*z,x*y)):
> CURL(u); POT(u, 'f);
[(z,y,2) = 22,0, (z,y, 2) > —22]
false
Since the curl is not zero, there cannot be a scalar potential.
CAUTION: When there is no scalar potential, the functicgets a wierd value. Don'’t use it as a scalar

potential!
> eval(f);

(z,y,2) =y

10stewart§17.3.
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7.5.2 \Vector Potentials

Suppose you are given a vector fi&das a list of arrow-defined functions as produced byNtfeommand.
Then thevec _calc commandvVECPOT(G, 'A’) will returntrue if Ghas a vector potential and will
returnfalse if there is no potential. In addition, if there is a vector potential, this command will store the
potential in the variabl@é.
NOTE: There must be single forward quotes around the variable

Similarly, if Gis a vector of expressions in the variables y, z] ,thenthdinaly command
vecpotent(G, [x,y,z], 'A) will give the same results.

EXAMPLE 7.13. Determine if each of the following vector fields has a vector potential and if it does, find
it.

a) G = (yz,az,ay)

SoLUTION: For each vector field, we enter the function usiig test for existence of a vector potential
using bothDIV and VECPOT and write out the potential (if it exists) usireyal on the side result of
VECPOT

a) ForG = (yz, xz, xy), we compute:
> G:=MF([x,y,z], [y*z,x*z,x*y]):
> DIV(G); VEC_POT(G, 'A);

0

true
Since the divergence is zero a6tlis defined in all of space, there is a vector potentMaple agrees. Its
value may be seen in two ways:

> eval(A);
[(z, y Z)—>—$22—l$y2 (z, ¥ Z)_>_ly22 0]
) Y 2 2 Y ) ) 2 Y
> AXY,2);
1 1 1
[ExZQ - Emyz, —EyzQ, 0]

You can check it by computing the curl:
>  CURL(A);

[(‘1"7 y? Z) - yz7 (x’ y? Z) - .T/‘Z, (‘7"7 y’ Z) - xy]
which is back toG.
b) Forv = (xz, zy, yz), we compute:
> Vi=MF([x,y,z], [x*z,x*y,y*z]):
> DIV(v); VEC_POT(v, 'A);

(r,y,2) > 2+x+y

false
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Since the divergence is not zero, there cannot be a vector potential.

CAuTION: When there is no vector potential, the variaBlegets a wierd value. Don’t use it as a vector
potential!

> eval(A);

(,y,2) = yz

7.6 Exercises

1. Find the divergence and curl of the vector fielﬁ(x, y,z) = (€%, —2e¥*, 3zeY).

2. Ploteach of the following 2-dimensional vector fieldsfor-1 <z <1 and —-1<y <1 along
with a circle centered dt75,.75) of radius.25. From the plot, is the divergence positive, negative or
zero? (Itis positive, if more or bigger vectors come out of the circle than go in; negative, if more go in
than out.) Then compute the divergence.

@F = (2%0)  (b)G=(0,2°)

3. Plot each of the following 3-dimensional vector fields for-2 < » < 2, -2 <y <2 and
—2 < z <2 along with a sphere centered(at 1, 1) of radiusl. From the plot, is the divergence
positive, negative or zero? (It is positive, if more or bigger vectors come out of the sphere than go in;
negative, if more go in than out.) Then compute the divergence.

(@7 = (m,y,z) (b)a= (0,0,Z) ()7 = (0727 _y)

4. Each of the following vector fields was plotted as a 2-dimension al vector field in exercise 2. Now
regard each as a 3-dimensional vector field by appending 0 asadbmponent.

@F = (0,00  (b)G=(0,20)
By examining the circulation around the circle , is theomponent of the curl positive (counterclock-

wise), negative (clockwise) or zero? Now compute the curl. Notice that each curl ends up pointing in
the z-direction. Is thez component positive, negative or zero?

5. For each of the vector fields in exercise 3, rotate the plot to see if there is an axis about which the vector
field circulates. (HNT: Orient the plot so one axis points straight at yyothen compute the curl to
see that it points along the axis of rotation.

6. Check that the function f(z,y,t) = e (V3 " 1 & (F " satisfies the 2-dimensional wave
. 0?f  0*f 1 0%f ) .
equation —s + —5 — —=—=> = 0. You should definé as an expression, take theandy
or?  Oy? 2 o2
derivatives using thénalg commandaplacian  and take the derivatives usingliff . Make a
movie of the wave (for = 2) by using the commands
> f2:=subs(c=2,f);
> animate3d(f2, x=-20..20, y=-20..20, t=-12..12, view=0..2,
frames=25);

Then click in the plot and click on theLAY ARROW on the button bar. Repeat for the functions:
2 2
f=e (@) _ et and f =sin(x — ct) — cos(y + ct).
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. Prove the identities #3 — #9 of subsection 7.4.7. You will need to usgrétie, diverge andcurl

commands from thénalg  package. See the proofs at the end of subsections 7.4.5 and 7.4.6.

. Showthat F(z,y,z) = (42®+y%— 3z, 22y — 2y — 6yz, —3z — 3y2—8z)  is a conservative vector

field .le. V x F =0 )andfind a scalar potential functighsuch that F = V f.

. Showthat F(z,y,z) = (—1222y323 + 223, —8xz, 6xy®2* — 6222 — 321y?)  is a solenoidal vector

field (.e. V-F =0 )andfind avector potentiad suchthat F =V x A.

The electric field of a point charge is

o T Y z . = . .

E = — , . SinceF is not defined at the
((12 + y2 + 22)3/2 (1'2 + y2 + 22)3/2 (1'2 + y2 + 22)3/2)

origin, there may or may not be a scalar potential defined everywhere but the origin ®verfif= 0.

Compute the curl off to see it is zero. Then find the scalar potential and determine where it is

undefined. Check the potential by computing its gradient.

The magnetic field of an electric current along tkexis is B = (%, %, 0). Since

e+ Yy Tty
B is not defined on the-axis, there may or may not be a scalar potential defined everywhere but the
z-axis even ifV x B = 0. Compute the curl of3 to see it is zero. Then find the scalar potential and
determine where it is undefined. Check the potential by computing its gradient.

The magnetic field of an electric current along tkexis is B = (2_7:(}2, %, O). Since
ety ety

B is not defined on the-axis, there may or may not be a vector potential defined everywhere but the

z-axis even ifV - B = 0. Compute the divergence & to see it is zero. Then find a vector potential

and determine where it is undefined. Check the potential by computing its curl.

The electric field of a point charge is

- T Y z . = . .

E= , , . SincekF is not defined at the
((JJZ + y2 + 22)3/2 (.1?2 + y2 + 22)3/2 (.1?2 + y2 + 22)3/2)

origin, there may or may not be a vector potential defined everywhere but the origin &vevit= 0.

Compute the divergence @ to see it is zero. Then find a vector potential and determine where it is

undefined. Check the potential by computing its curl.

In this case th&/ECPOTcommand makes an error and cannot find the potential. “Oh well, nobody’s
perfect.” So you will need to find this vector potential “by hand” by solving the equations:

04y 0y o OA Ay Ay 0A_

dy 0z ! 0z ox  ? ox oy 3
Remember, you are only looking for some solution, not all solutions. So look for a solution with
A3 = 0. Solve the first two equations fot; and A; and then check that the third equation is satisfied.



Chapter 8

Fundamental Theorems of VVector
Calculus

8.1 Generalizing the Fundamental Theorem of Calculus

LIn single variable calculus, the Fundamental Theorem of Calculus shows that the integral and the derivative
are essentially inverse operators except for an additive constant. The integral is defined as a limit of Riemann
sums, but the Fundamental Theorem of Calculus shows that the integral may also be computed in terms of
anti-derivatives. Specifically, the Fundamental Theorem of Calculus may be stated in three forms:

The Fundamental Theorem of Calculus.

& [ swa= @ @

|0 1 = o) - 9@ @
b

/ F(#)dt = F(b) — F(a) where 62_1;: £ @3)

The first two forms show that derivatives and integrals are inverse operators except for an additive constant
of integration:—g(a) . The third form is used to compute integrals in terms of antiderivatives. Itis the second
form which generalizes to all the theorems of several variable calculus to be discussed in this chapter.

1stewart Ch. 17.
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8.2 Fundamental Theorem of Calculus for Curves

The Fundamental Theorem of Calculus for Curves.?If #(t) is a curve inR™ traversed from a point
A = 7(a) to a pointB = 7(b) and if f is a differentiable function defined in a neighborhood of the curve,
then

B
[ Vs ds= 1B - )

8.2.1 \Verification

EXAMPLE 8.1. Verify the Fundamental Theorem of Calculus for Curves by computing both sides for the

function f (z,y) = x cos(y) — y* sin(x?) and the curve(t) = (t cos(t), tsin(t)) for 0 < t < 4.

NOTE: This is not a proof of the theorem because you are not verifying it for a general function and curve.
SoLUTION: We enter the function and the curve usivig

> fi=MF([x,y],x*cos(y) - y 2*sin(x"2)):

> ri=MF(t,[t*cos(t), t*sin(t)]):

Then we compute the gradient of the function usBigADand evaluate on the curve:

> delf:=GRAD(f);

delf := [(z, y) — cos(y) — 2y*cos(z?) z, (x, y) — —xsin(y) — 2ysin(z?)]
> delfr:=delf(op(r(t)));
delfr := [cos(tsin(t)) — 2% sin(t)? cos(t* cos(t)?) cos(t),
—t cos(t) sin(tsin(t)) — 2t sin(t) sin(t? cos(t)?)]
Next, we compute the velocity usiriy
> v:=D(n);
v = [t — cos(t) — tsin(t), t — sin(t) + t cos(t)]
Finally, wedot the gradient into the velocity and integrate using andvalue to obtain the left hand

side: (This takedaplea relatively long time.)
> Int(delfr &.  v(t),t=0..4*Pi); LHS=value(%);

/47Tcos(t sin(t)) cos(t) — cos(tsin(t)) tsin(t) — 2> %1 cos(t)* + 2> %1 cos(t)*
0

+21* %1 cos(t) sin(t) — 2 ¢* %1 cos(t)® sin(t) — t cos(t) sin( sin(t)) sin(t)
— % cos(t)?sin(t Sln( )) — 2tsin(t? cos(t)?) + 2 tsin(t? cos(t)?) cos(t)?

— 2% sin(t) sin(t? cos(t)?) cos(t)dt

%1 := cos(t? cos(t)Q)

LHS =47
On the other hand, we compute the right hand side by evaluating the function at the initial and final points:
> A:=r(0); B:=r(4*Pi);

2Stewart§17.3.
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A:=10, 0]
B :=[4m, 0]
So the right hand side is
> RHS=f(op(B))-f(op(A));
RHS =4~

Notice thatMaple took a long time to compute the left side of the F.T.C.C. and it would take you an even
longer time, but it was trivial to compute the right side of the F.T.C.C.

8.2.2 Applications

B
Path Independence for Line Integrals 3An integral/ F . dsis path independent in a regiddif the
A
7(t
value of the integral is the same for any curie) whick(1 )starts atd, ends atB and stays in the regioR.

If the vector fieldF has a scalar potential in the regid i.e. F = ﬁf for some functionf defined in
the regionR, then the Fundamental Theorem of Calculus for Curves show#tﬁat ds = Ik ﬁf - ds may
be computed ag(B) — f(A) and so is path independentih Conversely, if/ F' - ds is path independentin
R, then the formula

P — —
f(pP)= / F - ds
A
defines a scalar potentid( P) in the regionR. Here A is a fixed point in the regio® and P is a variable
pointin . L
If F does not have a scalar potential, thed”" - ds is not path independent and must be computed
explicitly.

EXAMPLE 8.2. Compute each of the following integrals. If the integral is path independent, you may find
a potential and use the Fundamental Theorem of Calculus for Curves.

102 .
a) 7)F-ds for the vector fieldF = (2z2%+yz, xz, 202 2+zy) along the helix’(t) = (cost,sint, t).
(1,0,0)
(1.02m) .
b) G - ds for the vector fieldZ = (yz, —xz, %) along the helix(t) = (cost,sint, t).
(1,0,0)

SOLUTION: a) We first enter the curve and the vector field:
> r:=MF(t,[cos(t), sin(t), t]):
> F:=MF([X,Y,z],[2*X*Z2"2+y*Z X*Z,2*X"2*2+X*Y]):
To check ifF* has a scalar potential, we compute the curl and usB@iecommand (Notice the single quotes
around thd .):
> CURL(F);

[0, 0, 0]

SStewart§17.3.
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>  POT(F,f);

true
Both methods show thaf has a potential, but theROTcommand stores the potential in the variable
> eval(f);

(x,y,2) 2?22 +xyz

So we evaluate the integral by using the F.T.C.C. The initial and final points are
> A:=[1,0,0]: B:=[1,0,2*PIi]:

So the integral is

> f(op(B))-f(op(A));

472
b) The curve is the same as in part (a). The vector field is
> G:=MF(xy,z],[y*z, -x*z, 2°2]):
It does not have a potential since
> POT(G,g";

false
So the F.T.C.C. does not apply and the integral must be done by hand. First notice that th&Queve
(cost,sint,t) hasz = ¢t while the endpoints arél, 0,0) and(1, 0, 27). So the parameter rangels< ¢ <
27. Next, the velocity is
> v:=D(n);

v := [—sin, cos, 1]
and the vector field on the curve is
> Gr:=G(op(r(t));

Gr := [tsin(t), —cos(t)t, t*]
So the integral is
> Int(Gr & v(1),t=0..2*Pi); value(%);

2
/ t2 —tdt
0

8
—m3 9

3

2

Work, Conservative Forces and Potential Energy “If a particle moves along a curvt) under the action
of a forceF from a pointA = #(a) to a pointB = #(b), then the work done by the force on the particle is
defined to be

B — -
Work:/ F - ds.
A
7(t)

4Stewart§17.3.
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The forceF is called Qonsgrvative if the work integriédfis path independent or equivalently if the force
has a scalar potential, i.é! = VV. In that case the scalar potentiélis called the potential energy and, by
the Fundamental Theorem of Calculus for Curves, the work is the change in the potential energy:

B
Work = / SV . ds = V(B) - V(A).
A
7(t)

(See Table B.3 in Appendix B.) Note, the potential energy is only defined up to an additive constant which is
sometimes fixed by requiring the potential energy to be zero at infinity.

GMm _

EXAMPLE 8.3. The gravitational force of a mask/ on a massn is F = —Tr wherer is the
T

vector from M to m. If M is fixed at the origin andn is at (x,y,z), then7 = (z,y,2) and

- M . . .

F = —G—mg(:p,y,z). Find the work done in moving the mass from A = (a,0,0) to

Va2 +y? + 22
B = (b,0,0) along thez-axis. Then find the work done in moving the massrom |7] = co to |7F] = R
along an arbitrary path.

SoLUTION: We enter the force and check to see if it has a scalar potential:

> F:=MF([x,y,z], [[G*M*m*x/(X"2+y"2+2"2)"(3/2),
-G*M*m*y/(X"2+y"2+Z2"2)"(3/2), -G*M*m*z/(X"2+y 2+Z"2)"(3/2)]):

>  POT(F,'VY);

true

Yes it does. So the work is path independent, the force is conservative and the potential energy is
> eval(V);

GMm

(@9, 7) = s

(Notice that the potential energy is normalized to zero at infinity.) To compute the work, we enter the initial
and final points:

> A:=[a,0,0]: B:=[b,0,0]:
and find the change in potential energy:
> W:=V(op(B))-V(op(A));

GMm GMm
B Va2
Since the potential energy only depends on the distance from the pfiigind the work is path independent,
the work in bringing a mass frofitf] = co to || = R along an arbitrary path is
> Winf:=limit(subs(b=R,W),a=infinity);

W=

GMm

Winf = i
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8.3 Green’s Theorem

Green’s Theorem. °If R is a “nice” region inR? anddR is its boundary curve traversed so tifastays
on the left, and ifP and(@ are differentiable functions defined in a neighborhoo®othen

4/ <% - g—];> d dy zaijda:—i—Qdy

We will not clarify the definition of a “nice” region. There are two variants of Green’s Theorem. First, if
we define the vector field = (P, Q)), then Green’s Theorem may be rewritten as:

2-Dimensional Stokes’ Theoiem.‘Slf R is a “nice” region inR? anddR is its boundary curve traversed
so thatR stays on the left, and i is a differentiable vector field defined in a neighborhood&othen

//(6xﬁ)-/%da:dy=7§ﬁ-d}
R OR

whereV x F' is computed by extending to the 3-dimensional vector fieldi = (F}, F5, 0).
Second, if we define the vector fiefd = (Q, —P), then Green’s Theorem may be rewritten as:

2-Dimensional Gauss’ Theogem.7lf R is a “nice” region inR? anddR is its boundary curve traversed
so thatR stays on the left, and @ is a differentiable vector field defined in a neighborhoo&othen

//ﬁédmdy:?{é.da
OR

R

i N d d
where the normal vector differentialds = (dy, —dx) = (d_i’ _d_f> dt.

8.3.1 \Verification

EXAMPLE 8.4. Verify Green’s Theorem and its variants for the indicated functions or vector field on the
region between the parabaja= 2* and the liney = 4. Notice all three cases produce the same integrals.

a) Green's Theorem witl? = —y% andQ = 3.
b) The 2-Dimensional Stokes’ Theorem with= (—y?, z%).
c) The 2-Dimensional Gauss' Theorem with= (2%, 3%).

NOTE: This is not a proof of the theorem because you are not verifying it for general functions and regions.
SOLUTION:
a) For the left side of Green’s Theorem, we first erdtaandQ:
> Pi=y'3r Qi=x"3:
SStewart§17.4.
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. 0 oP .
We then compute the mtegraﬂ(?g v and integrate:

> integrand:=diff(Q,x)-diff(P,y);

integrand = 3 2% + 3y
> Muint(integrand,y=x"2..4,x=-2..2); LHS=value(%);

2 4
/ /33:2+3y2dydx
-2 x2

8576
LHS = ——
35

The right side is the sum of two line integrals, the first along the c@ryey;) = (¢,t%) for —2 < t < 2
and the second along the curie;,y2) = (2 —t,4) for 0 < ¢t < 4. Notice the total curve is traversed
counterclockwise. For the first curve, the coordinates, their derivatives, the funétiand @ and the line
integral are:

> xl=t: yl:i=t"2:

> dx1:=diff(x1,t); dyl:=diff(yl,t);

del =1
dyl =2t
> Pl:=subs(x=x1,y=y1,P); Ql:=subs(x=x1,y=y1,Q);
Pl = —"
Q1 =t

> Int(P1*dx1+Q1*dyl,t=-2..2); I1:=value(%);

2
/ — 02t dt

-2

—384
Il = ——
35

For the second curve, the analogous quantities are
> X2:=2-t. y2:=4:
> dx2:=diff(x2,t); dy2:=diff(y2,t);

dz2 = —1

dy2 :=0
>  P2:=subs(x=x2,y=y2,P); Q2:=subs(x=x2,y=y2,Q);

P2 .= —-64

Q2:=(2-1)°
> Int(P2*dx2+Q2*dy2,t=0..4); 12:=value(%);

4
[ eta
0
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12 .= 256
So the total line integral is:
>  RHS=I1+12;
8576
RHS = ——
35

b) For the left side of the 2-Dimensional Stokes’ Theorem, we enter the vector field as the 3-dimensional
field F = (—y®, 2°,0):
> F:=MF([x,y,z],[-y"3,x"3,0]):
compute théc-component of the curl and integrate:
> integrand:=CURL(F)[3](x,Y,2);

integrand = 3z 4+ 3y
> Muint(integrand,y=x"2..4,x=-2..2); LHS=value(%);

2 4
/ /3x2+3y2dydx
-2 x2

8576
LHS = ——
35

For the right side, there are again two parts. For the first curve, the position, velocity, vector field on the curve
and line integral are
> rl:i=MF(t,[t,t"2,0]); v1:=D(rl); Fri:=F(op(rl(t)));

rl =t —t,t—t* 0]
vl :=[1,t— 2t,0]

Fri .= [~t% 3, 0]
> Int(Frl & v1(t),t=-2..2); I1l:=value(%);

2
/ —t5 42ttt
-2

e
35

For the second curve, the analogous quantities are
> r2:=MF(t,[2-1,4,0]); v2:=D(r2); Fr2:=F(op(r2(t)));
r2:=[t—2—1,4,0]
v2 :=[-1, 0, 0]

Fr2 .= [—64, (2 —t)%, 0]
> Int(Fr2 & v2(1),t=0..4); 12:=value(%);
4
/ 64 dt
0

12 := 256
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So the total line integral is again:
>  RHS=11+12;

8576
RHS = ——
35

c) For the left side of the 2-Dimensional Gauss’ Theorem, we enter the vector field:
> G:=MF(x,y],[x"3,y"3]):
compute the divergence and integrate:
> integrand:=DIV(G)(X,Y);

integrand = 3z 4+ 3y
> Muint(integrand,y=x"2..4,x=-2..2); LHS=value(%);

2 4
/ /3x2+3y2dydx
—2Jx2

8576
LHS = —
35

For the right side, there are again two parts. For the first curve, the position and velocity were entered in part
(b). The normal vector, vector field on the curve and line integral are
> nl:=[v1[2],-v1[1]]; Gr1:=G(op(ri(t)));

nl =t — 2t, —1]

Grl = [t3, t9]
> Int(Grl &. ni(t),t=-2..2); I1l:=value(%);

2
/ —t5 42ttt

-2
5. =384
35

For the second curve, the analogous quantities are
> n2:=[v2[2],-v2[1]]; Gr2:=G(op(r2(t)));
n2 = [0, 1]

Gr2 :=[(2 — )3, 64]
> Int(Gr2 &. n2(t),t=0..4); 12:=value(%);

4
/ 64 dt
0

12 := 256
So the total line integral is again:
>  RHS=I1+12;
8576
RHS = ——
35

Notice we have gotten the same answer six different ways.
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8.3.2 Applications
Area as a Line Integral 8Several special cases of Green’s Theorem allow one to compute the area enclosed
0Q 0P

in a closed curve as a line integral around the curve. In particul®r=#f ay and@Q = bx thena— =
€T Y

b — a. Hence,
%aydm +brdy = //(b —a)dxdy = (b—a)Area(R)
OR R

Thus, making three different choices foandb, we have

1
Area(R) = —%ydx: %mdy: 57{—ydx+a:dy
OR OR OR

NOTE: This formula for area explains the results in example 6.7.
EXAMPLE 8.5. Compute the area of each of the following regions.
a) The region between the parabgle: =2 and the liney = 4.
b) The region inside one loop of the polar daisy: sin(40).

SOLUTION:
a) We will use the formuladrea(R) = _7{ —ydz. So the relevant vector field is

OR
> F:=MF(x.y],[-y,0]);

F = [(QC, y) - Y, 0]
The boundary of the region between the paralyotaz? and the liney = 4 must be traversed counterclock-
wise. For the parabola, the position, velocity, vector field on the curve and line integral are
> rl:=MF(t,[t,t°2]); v1:=D(rl); Frl:=F(op(rl(t)));

rl:=[t—t t—t%
vl =1, t — 2t

Fri:=[—t% 0]
> Int(Frl & v1(t),t=-2..2); Al:=value(%);

2
/ —t2dt
-2

—16
Al = =
For the line, the analogous quantities are

> r2:=MF(t,[2-t,4]); v2:=D(r2); Fr2:=F(op(r2(t)));

r2:=[t—2—t, 4

8Stewart§17.4.
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v2 :=[—1, 0]
Fr2 :=[—4, 0]
> Int(Fr2 & v2(1),t=0..4); A2:=value(%);
4
/ Adt
0
A2 =16
So the total area is:
>  Area=Al1+A2;
32
Areqa = —

c) Before computing the area, we plot the polar daisy, sin(46):
> polarplot(sin(4*theta), theta=0..2*Pi, scaling=constrained);

0.87

0.4\

208.06=04-02 02 04—06 08
2

0.4/
—0,/6

0.8 1

We see that one loop has the parameter range) < T Since the rectangular coordinates are related to the

polar coordinates by = r cos 6,y = r sin 8, the rectangular parametrization is
> R:=MF(theta, [sin(4*theta)*cos(theta), sin(4*theta)*sin(theta)]);

R := [0 — sin(40) cos(#), 6 — sin(4 0) sin(9)]
and the velocity is
>  V:i=D(R);

V :=1[0 — 4cos(40) cos(f) — sin(40) sin(d), & — 4 cos(4 0) sin(9) + sin(4 0) cos(9)]
We will use the formuladrea(R) = }{ x dy. So the relevant vector field is

OR
> F:=MF([x,y],[0,X]);

F = [Oa (z,y) — .13]
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and its value on the curve is
> FR:=F(op(R(theta)));

FR := [0, sin(4 0) cos(0)]
So the area is
> Int(FR &. V(theta)theta=0..Pi/4); Area=value(%);

1/4m
/ 768 cos(6)® — 624 cos(6)® + 192 cos(0)* — 16 cos(#)? — 320 cos(#)** df
0

Area = —
rea 167T

Obviously, you would not like to do this integral by hand.

8.4 Stokes’ Theorem (The Curl Theorem)

Stokes’ Theorem. °If S is a “nice” parametrized surface R® andds is its boundary curve traversed so
that the normal to the surface and the velocity of the curve are related by the right hand ruleFasdaif
differentiable vector field defined in a neighborhoodothen

//mﬁ).dtq:j{ﬁ.d;
S oS

We will not clarify the definition of a “nice” region.

8.4.1 \Verification

EXAMPLE 8.6. Verify Stokes’ Theorem by computing both sides for the vector fiéle: (yz, —xz,2y%2)
and the surface which is the hyperbolic paraboloid = z? — y? above the square2 < = < 2 and
—2 < y < 2 with normal pointing toward increasing NOTE: This is not a proof of the theorem because
you are not verifying it for general vector fields and surfaces.
SoLuTION: The hyperbolic paraboloid = 2 — 2 is above a square. So we use rectangular coordinates
to parametrize the surface:
>  R:=MF(uVv], [u, v, U2 - Vv'2)):
NoTE: We could have used andy as the parameters insteaduoindv, but that is sometimes confusing.
The tangent and normal vectors are:
>  Ru:=D[1](R); Rv:=D[2](R); N:=Ru(u,v) &x Rv(u,v);

Ru:=11, 0, (u, v) — 2u]
Rv:=[0, 1, (u, v) = —2v]

N :=[-2u, 2v, 1]

9Stewart§17.8.
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Since thez-component ofV is positive, it points up as required. Next, we enter the vector field and compute
its curl:

> F=MF([Xy,z].[y*z, -X*z, X*y*z]):

> curlF:=CURL(F);

curlF :=[(z, y, 2) mz 2+, (2,9, 2) 2y —yz, (2,9, 2) > —27]
Then we evaluate the curl on the surface, dot into the normal and integrate to obtain the left hand side of
Stokes’ Theorem:
> curlFR:=curlF(op(R(u,v)));

curlFR = [u (u? — v?) 4+ u, v — v (u? — v?), —2u* 4+ 207%]
> Muint(curlFR &. N, u=-2..2, v=-3..3); LHS=value(%);

3 42
/ / —2u* —4u? + 402+ 2v* dudv
—3J-2

LHS =784

The boundary of the hyperbolic paraboloid consists of four curves. We parametrize them so they are
traversed counterclockwise as seen from the positiagis and compute the velocities: (We suppress the
output.)
> rl:=MF(u,[u, -3, u™2-9]): v1:=D(rl): #for u=-2..2
> r2:=MF(v,[2, v, 4-Vv'2]): v2:=D(r2): #for v=-3..3
> 13:=MF(,[-t, 3, t72-9]): v3:=D(r3): #for t=-2..2
> r4:=MF(@,[-2, -t, 4-t°2]): v4:=D(r4): #for t=-3..3
Then we restricF to each curve, dot into the velocity and integrate: (To save space, we display the answers
on one line.)
> 1L:=int(F(op(ri(u))) & vi(u), u=-2..2):
12:=int(F(op(r2(v))) &. v2(v), v=-3..3):
13:=int(F(op(r3(t))) &. v3(t), t=-2..2):
14:=int(F(op(r4(t))) &. VvA(t), t=-3..3):
11, 12, 13, 14;

vV V. V V

1516 444 1516 444
) ) _ 5757 575
The sum of these integrals is the right side of Stokes'Theorem:
> RHS=I1 + 12 + 13 + 14

RHS =784

8.4.2 Applications

Surface Integrals as Line Integrals and Line Integrals as Surface Integrals 1°If an exercise asks you to

use Stokes’ Theorem to do a surface integral, it really means you are to do a line integral. On the other hand,
if an exercise asks you to use Stokes’ Theorem to do a line integral, it really means you are to do a surface
integral.

10stewart§17.8.
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EXAMPLE 8.7. Use Stokes’ Theorem to compute the surface inte}{?élé - dS where
P

G = (—xz,—yz,2° + 4> + 2%) and P is the paraboloid = 22 + 4?2 for z < 9 with normal pointing in and
up.

SOLUTION: The statement of the problem really means we are to find a vector potential and do a line
integral of the vector potential around the boundary curve. So we first enter the vecta faeld find a
vector potential:
> G:=MF(x,y,z], [-X*z, -y*z, X"2+y"2+2"2]):
> VEC_POT(G, 'AY;

true
> A

1 1 1
[(J), Y, Z)—>—§y22—$2y——y3, (J?, Y, Z)_> 5'13227 0]

3
Then by Stokes’ Theorem, we have

//é.d*sz//(vm.d:q:j{g.d;
P P op

The boundary of the paraboloid is the cirale+ y? = 9 in the planez = 9 traversed counterclockwise as
seen from the positive-axis. So we enter the curve and compute the velocity:
> r=MF(t,[3*cos(t), 3*sin(t), 9]):
> v:=D(n);
v:= [t — —3sin(t), t — 3cos(t), 0]
Finally, we evaluate the vector potential on the curve and integrate:
> Ar=A(op(r(t));

Ar = [—? sin(t) — 27 cos(t)? sin(t) — 9sin(t)?, ? cos(t), 0]
> Int(Ar &. v(t), t=0..2*Pi); value(%);

27
/ 27 cos(t)? + ? — 54 cos(t)* dt
0

1539
— T
2

EXAMPLE 8.8. Use Stokes’ Theorem to compute the line inte?{aﬁ - ds of the vector field
R oT
F = (zy® + 2y, 2zyz,y2* — xy) along the line segments frof@, 0, 0) to (0, 3,0) to (0,0, 4) and back to
(2,0,0).

SoLuTION: Notice that the three line segments form the boundary of the tridnglih vertices(2, 0, 0),
(0,3,0)and(0, 0,4) and normal pointing up into the first octant. So the statement of the problem really means

we are to compute the surface integf@[(ﬁ x F)-dS.
T
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We first need to parametrize the plane of the triangle. The vertices are:
> A:=[2,0,0]: B:=[0,3,0]: C:=[0,0,4]:
The tangent vectors are:
>  AB:=B-A; AC.=C-A;

AB :=[-2, 3, 0]

AC :=1-2,0, 4]
Then the parametrized planedls = A + sAB + tAC and the triangle corresponds @< s < 1 and
0 <t<1-s.We enterthis as
>  R:i=MF([s,t], evalllA + s*AB + t*AQC));

R:=|(s,t) = 2—2s5—2t, (s, t) = 3s, (s, t) = 41]
Notice that the tangent vectors are j@) andAC. So the normal vector is:
> N:=AB &x AC;

N =12, 8, 6]
which points into the first octant as required. Now the vector field and its curl are:
> F=MF([Xy,z], [xX*y 2+z*y, 2*x*y*z, y*z"2-x*y)):
> curlF:=CURL(F);

curlF = [(.2?, Y, Z) - 22 —T = ZIya ($, Y, Z) - 2?/, (1"’ Y, Z) - 2yZ - me - Z]
and the restriction of the curl to the plane of the triangle is:
> curlFR:=curlF(op(R(s,t)));

curlFR := [16t* —2+25+2t—6(2—25—2t)s, 65,245t —6(2— 25— 2t)s — 41]
Finally its integral over the triangle is:
> Muint(curlFR &. N, t=0..1-s, s=0..1); value(%);

1 1—s
// 1922 — 24 — 144 s + 216 s> + 360 s t dt ds
0 0

13

Surface Independence for Surfaces Integrals A surface integray/ F . dS is surface independent in a

S
region R if the value of the integral is the same for any surfécehich stays in the regio® and has the
same boundary cuns.

—

If the vector fieldF has a vector potential in the regidh i.e. F = V x

{ for some vector fieldd
defined in the regiot®, then Stokes’ Theorem shows tr%fﬁ ds = / V x A- dS may be computed
S S

as the line integral A - ds and so is surface independentfin If F does not have a vector potential, then
oS
//ﬁ dS must be computed explicitly.
S
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EXAMPLE 8.9. Consider the surfacg which is the grapht = sin(z) sin(y) for0 <z < 7mand0 <y <7
with normal pointing up. Comput%/ F - d& over the surfacé for each of the following vector fields. If
S

the integral is surface independent, you may use Stokes’ Theorem and change the surface.
a) F = (y—xz,a:—yz,a:Q +?/2 +22)
b) F = (zz—y,yz —z,2° + > + 2%)

SOLUTION:
a) We first enter the vector field:

> F=MF([x,y,z], [y-x*z, x-y*z, X2 + y2 + 2°2]):
To check ifF has a vector potential, we compute the divergence:
>  DIV(F);

0
SoF has a vector potential, and Stokes’ Theorem says

//ﬁ-dfqz//ﬁxﬁ-d@”:]{l-cﬁs
S S oS

However, the boundary &f, is also the boundary of the squdre< x < 7 and0 < y < « in thezy-plane.
Let T" denote this square with normal pointing up. Then Stokes’ Theorem also says

74 .d;:fg.d;://exg.dtsz//ﬁ.dtg
oT T

a8 T

SN

In other words,// F . dS is surface independent and it is easier to comgﬁﬁaﬁ - dS. The square may
S T

be parametrized as
> R:=MF([x,y],[x,y,0]);

R:=[(z,y) ==, (z,y) =y, 0]
Its tangent vectors ar, = (1,0,0) and &, = (0,1,0) and its normal vector i& = (0,0,1). With these

parametersﬁ may be evaluated on the square by setting 0 and its dot product WithV is just F3. So the
desired integral is:

> Muint(F[3](x,y,0), x=0..Pi, y=0..Pi); value(%);

//x2+y2dxdy
o Jo
2

3
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NOTE: Notice we never used the vector potenl!falSo there was no reason to use YteCPOTcommand.
b) Once again we enter the vector field:

>  F=MF(xy,z], [X*z-y, y*z-X, X2 + y"2 + Z2°2]):

and check ifF' has a vector potential:

> DIV(F);

(x,y,2) >4z
It does not! So we cannot use Stokes’ Theorem. The sufanay be parametrized as
> R:=MF([X,Y],[x,y,sin(x)*sin(y)]):
and so its tangent and normal vectors are
>  Rx:=D[1](R); Ry:=D[2](R); N:=Rx(x,y) &x Ry(X.,y);

Rz =11, 0, (z, y) — cos(x)sin(y)]
Ry =10, 1, (x, y) — sin(x) cos(y)]

N := [—cos(z) sin(y), —sin(x) cos(y), 1]
On the surface, the vector field becomes
> FR:=F(op(R(x.,y)));

FR := [zsin(x)sin(y) — y, ysin(z)sin(y) — z, 2° + y* + sin(x)? sin(y)?]
So the integral is
>  Muint(FR &. N, x=0..Pi, y=0..Pi); value(%);

/OW/OW — cos(x) xsin(z) + cos(x) x sin(z) cos(y)? + cos(z) sin(y) y — cos(y) y sin(y)

+ cos(y) ysin(y) cos(z)? + sin(x) cos(y) z + 2 + y? + 1 — cos(y)? — cos(z)?
+ cos(z)? cos(y) dzdy

1 2

5 7T2 + g 7T4

Circulation and Flux In subsection 6.1.4, we discussed the circulation of a vector field and in subsection
6.2.6, we discussed the flux of a vector field. (See Table B.3 in Appendix B.) These are not directly related
by Stokes’ Theorem. Rather, the circulation of a vector figilslequal to the flux of its curl:

Circulationz](ﬁ- d_éz//(ﬁxﬁ)- ds .
s s

On the other hand, if the vector fielthas a vector potentiaf, then the flux ofv' is equal to the circulation

of its vector potential:
fzuxz//ﬁ-diez//(ﬁxfi’)- d@:}{fi’-d;
S S

oS
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EXAMPLE 8.10. Find the circulation of the vector fieltf = (—y°z, 2%z, z*) counterclockwise around the
circlez? + 42 = 4 in the plane: = 5.
SoLUTION: We could explicitly compute the circulation as the line inte#af - ds. However we will
c
use Stokes’ Theorem and compute the circulation as the surface inyéﬁ(zfl’ x F) - dS. So we enter the
S

vector field and compute the curl:
>  F:=MF(x,y,z], [-y'3*z, x"3*z, z°4]):
> curlF:=CURL(F);

curlF = [(z, y, 2) — —2°, (z, ¥, 2) — —v°, (x, y, 2) — 322 2+ 39° 2]
We parametrize the disk and compute the tangent and normal vectors:
> R:=MF([r, theta], [r*cos(theta), r*sin(theta), 5]):
> Rr=D[1](R): Rtheta:=D[2](R): N:=simplify(Rr(r,theta) &x
Rtheta(r,theta));

N :=[0, 0, 7]

Since the circle is traversed counterclockwise, the normal to the disk should point up as it does. Finally we
evaluateV x F on the surface, dot into the normal and integrate:
> Muint(curlF(op(R(r,theta))) & N, r=0..2, theta=0..2*Pi);

Circ:=value(%);
27 2 .
/ / 1573 dr df
0 0

Circ : = 1207

EXAMPLE 8.11. Find the flux of the vector field? = (zy?,yz? —2(z* + y?)) upward through the
paraboloid: = 2% + y2 for z < 9.

SOLUTION: We could explicitly compute the flux as the surface inte%/% F - dS. However we will
P

use Stokes’ Theorem and compute the flux as the line intgérgl- ds whereA is a vector potential fof.

P
So we enter the vector field and see if it has a vector potential:
> F=MF([X,Y,z],[x*Y "2, y*X2, -z*(X"2+y"2)]):

> VEC_POT(F/AY);

true

SoF does have a vector potential which is:
> A

[(x’ Y, Z) - ny 2, (iC, Y, Z) - _ny 2, 0]
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We now parametrize the boundary circle. Since the paraboloid is oriented upward, the circle should be
traversed counterclockwise:

> r.=MF(theta, [3*cos(theta), 3*sin(theta), 9]):
Next we compute the velocity and restrict the vector potential to the circle:
> v:=D(r); Ar:=A(op(r(theta)));

v:=[0 — —3sin(h), § — 3cos(h), 0]

Ar := [243sin(0) cos(6)?, —243 cos(6) sin(#)?, 0]
So the flux is:
> Int(Ar &. v(theta), theta=0..2*Pi); Flux=value(%);

27
/ — 1458 cos(6)? + 1458 cos(0)* do
0

729
Flux = - s

8.5 Gauss’ Theorem (The Divergence Theorem)

Gauss’ Theorem. HIf V' is a “nice” solidqregion iR anddV is its boundary surface oriented with the
normal pointing out from the volume, and i is a differentiable vector field defined in a neighborhood of

V, then
// ﬁ-ﬁdvz//ﬁ-diq
\% ov

We will not clarify the definition of a “nice” region.

8.5.1 \Verification

EXAMPLE 8.12. Verify Gauss’ Theorem by computing both sides for the vector field (%22, 3322, 2%)

and the solid regio’” above the paraboloid = x2 + 32 and below the plane = 9. NOTE: This is not a

proof of the theorem because you are not verifying it for general vector fields and volumes.
SoLUTION: We enter the vector field and compute the divergence:

> F=MF([x,y,z], [x"3*2°2, y"3*2°2, z"3)):

> divF:=DIV(F);

divF := (z,y, 2) — 322 2% + 3y% 22 + 322
It is easiest to integrate over the solid paraboloid in cylindrical coordinates (Don't forget the Jacobian!):
> divFeyl:=simplify(divF(r*cos(theta), r*sin(theta), z));

divFeyl := 372 2% + 322

lStewart§17.9.
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> Muint(divFcyl*r, z=r"2..9, r=0..3, theta=0..2*Pi); LHS=value(%);

27 3 r9
/ // (37222 +32%) rdzdrdd
0 0 Jr2

452
LHS — 5 70971-

There are two boundary surfaces. First, the paraboloid may be parametrized as
> R1.=MF([r,theta], [r*cos(theta), r*sin(theta), r"2]):

The tangent and normal vectors are:

> R1r:=D[1](R1); R1itheta:=D[2](R1);

> N1:=simplify(R1r(r,theta) &x R1theta(r,theta));

Rir:=[(r, 0) — cos(8), (r, ) — sin(8), (r, §) — 2]
R1theta = [(r, 8) — —rsin(d), (r, ) — rcos(d), 0]

N1 :=[-2r%cos(d), —27%sin(h), 7]
This normal points up, but the outward normal should point down. So we reverse the normal:
> N1:=-N1;
N1 := [27%cos(), 272 sin(f), —r]
The restriction ofF to the paraboloid is
>  FR1:=F(op(R1(r, theta)));

FR1 := [r" cos(0)?, r" sin(0)*, r°]
So the integral is
> Muint(FR1 & N1, r=0..3, theta=0..2*Pi): I1:=value(%);

27 3
/ / 479 cos(0)* 4 277 — 479 cos(0)? — 77 dr df
o Jo

321489
T

11 :

Second, the plane may be parametrized by

> R2:=MF([r,theta], [r*cos(theta), r*sin(theta), 9]):
The tangent and normal vectors are:

> R2r:=D[1](R2); R2theta:=D[2](R2);

> N2:=simplify(R2r(r,theta) &x RZ2theta(r,theta));

R2r :=[(r, 8) — cos(0), (r, ) — sin(0), 0]
R2theta := [(r, 8) — —rsin(0), (r, ) — rcos(d), 0]

N2 :=]0, 0, ]
This time the normal points up as it should. The restrictiof’'d® the plane is
>  FR2:=F(op(R2(r, theta)));

FR2 := [8173 cos(0)?, 8173 sin(0)?, 729]
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So the integral is
> Muint(FR2 &. N2, r=0..3, theta=0..2*Pi); 12:=value(%);

27 3
/ / 729 rdr df
o Jo

12 := 65617
So the total integral over the boundary is:
>  RHS=I1+12;
452709
RHS = 50 "

8.5.2 Applications

Surface Integrals as Volume Integrals 2If an exercise asks you to use Gauss’ Theorem to do a surface
integral over a closed surface, it really means you are to do a volume integral.

EXAMPLE 8.13. Use Gauss’ Theorem to compute the following surface integrals over the complete surface
of the cylinderC given byz? + 4% < 4 for 0 < z < 5 with normal pointing out.

a)//FdeorF (232,932, 2% + y? + 22).

b) //G dS for G = (—x 2, —yz, 22 +y* + 2%).

SOLUTION:

a) We enter the vector field and compute the divergence:
> F=MF([x,y,z], [X"3*z, y'3*z, xX2+y"2+2°2]):
> divF:=DIV(F);

divF = (z,y, 2) = 32224+ 3y* 2+ 22
Then we evaluate the divergence in cylindrical coordinates and integrate:
> divFcyl:=simplify(divF(r*cos(theta), r*sin(theta), z));

divFeyl :=3r° 2+ 22
> Muint(divFcyl*r, r=0..2, theta=0..2*Pi, z=0..5); value(%);

5 p27m 2
// / (3r?z+22)rdrdfdz
0oJo Jo

400
b) We enter the vector field and compute the divergence:
> G:=MF([x,y,z], [-X*z, -y*z, X" 2+y"2+z"2]):
> divG:=DIV(G);

divG =0

12stewart§17.9.
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Since the divergence is zero, the integral is automatically zero.

Volume as a Surface Integral A special case of Gauss’ Theorem allows one to compute the volume en-
closed in a closed surface as a surface integral. In particular, for the general positiorfvedtery, z) the
divergence isv - i = 3. Hence,

!//F-d@z/‘///?)dV:SVolume(V)

Thus

Volume(V) = %//F s
2%

NOTE: This formula for volume explains the results in exercise 6.13.

EXAMPLE 8.14. Use a surface integral to compute the volume of the region between the parabetoid
22 4+ 4 and the plane = 9.
SOLUTION: As in example 8.12, there are two boundary surfaces. For the paraboloid, the parametrization
and normal vector are:
> R1(rtheta); N1;

[r cos(B), rsin(h), 7]
[272 cos(6), 272 sin(6), —7]

_ 1 - | - = . . .
In the mtegralg //F dS the vector field |s§ of the position vectoR?; . So the first surface integral is

av
> 1/3*Muint(R1(r,theta) & N1, r=0..3, theta=0..2*Pi); V1:=value(%);

1 27\' 3 3
- r° dr df
i)

For a disk in the plane = 9, the parametrization and normal vector are:
> R2(rtheta); N2;

[r cos(8), rsin(6), 9]

[0, O, 7]
So the second surface integral is
> 1/3*Muint(R2(r,theta) & N2, r=0..3, theta=0..2*Pi); V2:=value(%);

1 2 3
—/ /9rdrd9
3 Jo 0

V2.=27Tn
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So the volume is:
> Volume=V1+V2;

81
Volume = 5 T

Expansion, Divergence and Source The expansion of a vector field was introduced in subsection 6.2.6.
By Gauss’ Theorem, the expansion of a vector field out of a surface is the integral of its divergence over the

enclosed volume:
E:Epansion://ﬁ" dTS':///ﬁ'ﬁdV.
ov v

(See Table B.3 in Appendix B.) If the expansion is interpreted as the amount of stuff flowing out of the
surface, then the divergenc‘é,- ¥, should be interpreted as the amount of stuff spreading out from a point.
Then its integral over a volumié is again the net amunt of stuff which is flowing out of the volume.

The negative of the expansion is called the contraction; the negative of the divergence is called the con-
vergence. If the expansion is positive, we say the stuff is expanding out of the volume; if the expansion is
negative, we say the stuff is contracting. If the divergence is positive at a point then we say the point is a
source for the stuff; if the divergence is negative at a point then we say the point is a sink for the stuff.

. o 3
EXAMPLE 8.15. Consider the velocity field = (z°z, 7>z, 124).

a) Locate the sources and sinks of the fluid.

b) Find the expansion of the fluid out ofthe cubgé < z < 2, -1 <y < 2,-1 < z < 2 by two
methods. Is the fluid expanding or contracting out of the cube? Identify the faces of the cube on which
the fluid is flowing in or out of the cube.

SOLUTION:

a) We first enter the velocity field and compute the divergence:
>  vi=MF([x,y,z], [X"3*z, y"3*z, 3/4*7°4]):
> div_v:=DIV(v); div_v:=factor(div_v(x,y,2));

divv:=(z,y,2) — 3222 +3y* 2+ 325
div_v =3z (2% + y? + 2?)
So the divergence is positive whern> 0 and negative when < 0. Thus the points above theg/-plane are
sources and the points below thg-plane are sinks.

b) We first compute the expansion using Gauss’ Theorem by integrating the divergence over the cube:
> Muint(div_v, x=-1..2, y=-1..2, z=-1..2); Expansion=value(%);

2 2 2
///3z(x2+y2+22)da:dydz
—1J-1J-1

29

7
Ezxpansion = e
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Since the expansion is positive, the fluid is expanding out of the cube.

Next we compute the expansion explicitly by integrating the velocity over each face. We parametrize
each face (carefully choosing the order of the parameters so the normal will point outward.) and integrate the
velocity to obtain the flux out of that face: (To save space, we display the answers on one line.)

>  RL:=MF([z)y], [-1.y.z]): Fl:=siv(v, R1, y=-1..2, z=-1..2):
>  R2:=MF(ly,z], [2,y,z]): F2:=siv(v, R2, y=-1..2, z=-1..2):
>  R3:=MF([x,z], [x,-1,z]): F3:=siv(v, R3, x=-1..2, z=-1..2):
> R4:=MF([z,X], [x,2,2]): F4:=siv(v, R4, x=-1..2, z=-1..2):
>  R5:=MF(ly,X], [x,y,-1]): F5:=siv(v, R5, x=-1..2, y=-1..2):
>  R6:=MF([xy], [x,v,2]): F6:=siv(v, R6, x=-1..2, y=-1..2):
> F1, F2, F3, F4, F5, F6;

9 9 —27

oL 36, % 36, R 108

Thus the flux for each face is positive except fgr So the fluid is flowing out of all of the faces of the cube
except the bottom face wheee= —1. Finally, we check that the total flux out of the cube is equal to the
expansion :

> TotalFlux=F1+F2+F3+F4+F5+F6;

TotalFlur = ?

8.6 Related Line, Surface and Volume Integrals

8.6.1 Related Line and Surface Integrals

Suppose’; andC, are twoopencurves which start atl and end atB and stay in a regiom. We say
thatC; can be continuously deformed in€&, within R if there is a surface& within R whose boundary is
0S = Cy — C;. This means that the boundary®imay be traversed with the proper orientation by travelling
forward alongC> and then backward alon@; .

Similarly, suppose&”; andC> are twoclosedcurves which stay in a regioR. We say that’; can be
continuously deformed int¢’; within R if there is a surfacé within R whose boundary i8S = Cy — C.
This means that the boundary 8fconsists of the two curves; andC, with Cs traversed forwards and,
traversed backwards.

In either case)S = C; — C; and so Stokes’ Theorem says

//ﬁxﬁ.dszfﬁ.d;:/ﬁ.d;_/ﬁ.d;
S a8 Cs C1
This may be rewritten as

/ﬁ.d;:/ﬁ.d;+//exﬁ.dtg
S

Ca Ch
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In other words, to computf F' - ds, you may alternatively comput]{ﬁ -ds and /ﬁ x F - d8S, if that is
S

. Ca C1
easler.

In the special case th&t x F' = 0 everywhere in the regioR, then

/ﬁ.;:/ﬁ.d;
Cz Cl

whenevelC; can be continuously deformed inf& within R. For the case of open curves, this is a special
case of the path independence discussed at the beginning of section 8.2.2.

EXAMPLE 8.16. For each of the following vector fields, compute the line inte%a’?’ -ds along the curve
c

C which consists of the three line segments fr@0, 0) to (0,0, 7) to (7, 7, 7) to (m, 7, 0).
a) F = (sin(z),sin(y), sin(z)).
b) F = (sin(y) — sin(z), sin(x) — sin(z), cos(x) + cos(y)).

SOLUTION:

a) We first enter the vector field and compute the curl:
> F:=MF(x,y,z], [sin(x), sin(y), sin(z)]):
> CURL(F);

[0, 0, 0]
Since the curl is zero, we can replace the integral alOray a integral along the single line segméntrom
(0,0,0) to (m, m,0). The parametrized line and the velocity are
> r=MF(,[t,t,0]): v:=D(r);

v:=][1,1, 0]
Along the curve the vector field is:
> Fr:i=F(op(r(t));

Fr := [sin(?), sin(t), 0]

/ 2sin(t) dt
0
4

b) We enter the vector field and compute the curl:
> F:=MF([x,y,z], [sin(y) - sin(z), sin(x) - sin(z), cos(x) + cos(y)]):
> curlF:=CURL(F);

So the integral is
> Int(Fr & v(t), t=0..Pi); value(%);

curlF = |
(z, y, z) — —sin(y) + cos(z), (z, y, z) — —cos(z) + sin(z), (z, y, z) — cos(z) — cos(y)

]
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Since the curl is non-zero, we can replace the integral afomhy a integral along the line segmehtfrom

(0,0,0) to (m,m,0) plus an integral of the curl over the squafevith vertices(0, 0,0), (0,0, ), (7, w, )
and(w,m,0). The parametrized line and the velocity are the same as above. The restricted vector field and
the line integral are:

> Fr:=F(op(r(t)));
Fr:= [sin(t), sin(t), 2 cos(t)]
> Int(Fr & v(t), t=0..Pi); |_L:=value(%);

/ 2sin(t) dt
0
I L:=4

The parametrized square and the tangent and normal vectors are:
>  R:=MF([s,t], [t,t,s]);

R:= [(87 t) —t, (Sa t) —t, (S, t) - S]
> Rs:=D[1](R); Rt:=D[2](R); N:=Rs &x Rt;

Rs:=10, 0, 1]
Rt:=[1,1,0]
N :=[-1,1,0]

Applying the right hand rule to the normal, we check that= C' — L as it should be. The restriction of the
curl to the surface is
> curlFR:=curlF(op(R(s,t)));

curlFR = [—sin(t) + cos(s), —cos(s) + sin(t), 0]
and the surface integral is
> Muint(curlFR &. N, s=0..Pi, t=0..Pi); |_S:=value(%);

/ / — 2cos(s) + 2sin(t) dsdt
o Jo

I1.S:=4~7
So the line integral alon@' is
> |_C=LL + L_S;
I.C:=4+447
EXAMPLE 8.17. Compute the line integrap F' - ds for the vector fieldF = (27%, %,0)
¢+ yc ety

C
counterclockwise around the closed cuéevhich is the octagon with verticé8, —2, 3), (3,2, 3), (2,3,2),
(-2,3,-2),(-3,2,-3),(-3,-2,-3), (—-2,—-3,—-2) and(2, -3, 2).
SoLUTION: We first enter the vector field and compute the curl:
> F=MFE(x,y,z], [[Y/(X"2+y"2), x/(x"2+y"2), Q]):
> CURL(F);

[0, 0, 0]
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Thus the curl is zero. However, notice that the vector field is not defined onrdixés. So the curl is also
undefined on the-axis. Thus the octagon may be replaced by any curve which also circlesatkie once
counterclockwise. The simplest such curve is the ciréle- y? = 1 in thezy-plane:

> r:=MF(t,[cos(t),sin(t),0]):

The velocity, vector fieldF, and the line integral are:

> v:=D(n);
v 1= [—sin, cos, 0]
> Fr:i=simplify(F(op(r(t))));
Fr := [—sin(t), cos(t), 0]
> Int(Fr & v(t), t=0..2*Pi); value(%);
/ Ta
0
27

8.6.2 Related Surface and Volume Integrals

SupposeS; and S, are two opensurfaces which stay in a regidR and have the same boundary curve,
051 = 052 . We say thatS; can be continuously deformed inf within R if there is a solid regior//
within R whose boundary iV = Sy — S;. This means that the boundary &f with outward normal
consists ofS; with its normal unchanged artl with its normal reversed.

Similarly, supposeS; and S, are two closedsurfaces which stay in a regidR. We say thatS; can
be continuously deformed int8, within R if there is a solid regio’” within R whose boundary i8V =
Ss — S1. This means that the boundarywfwith normal pointing out o consists of the two surfaces
andSs with the normal ofS; reversed.

In either case))V = Sy — S7 and so Gauss’ Theorem says

///ﬁ-ﬁdvz//ﬁ.diqz//ﬁ-di@—//ﬁ-dﬁq
1% ov So S1

This may be rewritten as

//ﬁ-d@://ﬁ-dﬁ%// V-Fdv
Sl 1%

Sa

In other words, to comput{/ﬁ - dS, you may alternatively computf/ﬁ -dS and///ﬁ CFav, if
Sa S1 1%

that is easier. o
In the special case th&at - F' = 0 everywhere in the regioR, then

//ﬁ.dts:/ 7. ds

Sz Sl
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wheneverS; can be continuously deformed intg within R. For the case of open surfaces, this is a special
case of the surface independence discussed at the beginning of section 8.4.2.

EXAMPLE 8.18. For each of the following velocity fields, compute the flux integyfaﬁ- ds through the
c

coneC given byz? = 2% + y2 for 0 < z < 4 with the normal pointing in and up.
a) v = (z,y, —22).
b) v = (x,y,—3z2).

SOLUTION:

a) We first enter the velocity field and compute the divergence:
> F=MF(xy,z], [X, Y, -2*z]):
> DIV(F);

0
Since the divergence is zero, we can replace the integral over the’cbpa integral over the disk given
by 22 + y? < 4 with z = 2. The parametrized disk and the flux integral are
> R:=MF([r,theta],[r*cos(theta), r*sin(theta), 2]):
> Siv(F,R, r=0..2, theta=0..2*Pi); value(%);

2w p2
/ / —4rdrdb
o Jo

—167
b) We again enter the velocity field and compute the divergence:
> F=MF(xy,z], [x, Yy, -3*z]):
> divF:=DIV(F);

divF := —1
Since the divergence is non-zero, we can replace the integral over the_cbye integral over the disk
D given byx? + y? < 4 with = = 2 minusthe integral of the divergence over the solid cone between
z = /72 + y? andz = 4. The volume integral is subtracted because the normal to the cone points into the
volume. The parametrized disk is given above. So the surface integral is
> Siv(F,R, r=0..2, theta=0..2*Pi); |_D:=value(%);

27 2
/ / —67rdrdb
0 0
I-D:=-24~w

The solid cone may be parametrized in cylindrical coordinates. So the integral of the divergence is
> Muint(divF*r, z=r..2, r=0..2, theta=0..2*Pi); |_V:=value(%);

27 2 2
/ // —rdzdrdf
0 0 Jr

IV ——8

- = -

3
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Notice that this is just the negative of the volume of a cone of radius 2 and height 2. So the flux integral
throughC'is

> |_C=_D + LV,

1_.C = —?ﬂ

EXAMPLE 8.19. Compute the surface integr%y F - dS of the vector field
S

— T Y z
F= , , over the closed surface of the rectan-
((1‘2 + y2 + 2’2)3/2 (1‘2 + y2 + 22)3/2 (.1?2 + y2 + 22)3/2)
gular solid—5 < z < 5, —4 <y < 4, —3 < z < 3 with outward normal.
SOLUTION: We first enter the vector field and compute the divergence:

> F=MF([X,y,z], XI(X2+y"2+2°2)7(3/2), y/(X"2+y"2+Z2"2)"(3/2),
z/(X"2+y"2+Z2"2)"(3/2)]):

> divF:=DIV(F)(X,y,2);

divF =0

Thus the divergenceis zero. However, notice that the vector field is not defined at the origin. So the divergence
is also undefined at the origin. Thus the surface of the rectangular solid may be replaced by any closed surface
which also encloses the origin. The simplest such surface is the spherg? + 22 = 1:

> R:=MF([theta,phi], [sin(phi)*cos(theta), sin(phi)*sin(theta),

cos(phi)]):

The tangent and normal vectors are:

> Rtheta:=D[1](R): Rphi:=D[2](R):
> N:=Rtheta(theta,phi) &x Rphi(theta,phi);
N := [—sin(¢)? cos(), —sin(¢)? sin(h), —sin(¢) sin(6)? cos(¢) — sin(¢p) cos(h)? cos(d)]
Again we need to reverse the normal and restrict the vector field to the curve:
> N:=N;
N := [sin()? cos(h), sin(¢)? sin(h), sin(¢) sin(8)? cos(¢) + sin(¢) cos(8)? cos()]
>  FR:=simplify(F(op(R(theta,phi))));

FR := [sin(¢) cos(#), sin(¢) sin(h), cos(¢)]
Hence the expansion @t is
>  Muint(FR &. N, theta=0..2*Pi, phi=0..Pi); value(%);

/0 ! /0 QWsin(qb) 9 do
Ar
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8.7 Exercises

e Dolabs: 9.9,9.10,9.11 and 9.12.
e Do Project: 10.12.

1. Verify the Fundamental Theorem of Calculus for Curves by computing both sides for the indicated
function and curve:

@ f=xz+y*+2> and 7t)=(3t%t) for 1<t<2
() f =z wt and 7(t) = (¢4, ¢3,2,1) for 1<t<2.

2. Find a scalar potentiglfor the vector field F(z,y) = (22y%,32%y?).  Then use the Fundamental
Theorem of Calculus for Curves to evaluate/ F - ds, where C is the line segment from

C
A=1(2,3) to B=(572). Verifyyourresultby computing the line integral directly.

3. Show that the line integral / (2zsiny) dz + (2% cosy — 3y?) dy  is independent of path and eval-
C
uate it on any curve between(—1,0) and (5,1) usingthe Fundamental Theorem of Calculus

for Curves.

4. Find a scalar potentigifor the vector field F= (y,z) anduseitto evaluate/ F-ds, where
C
C'is the arc of the quartic curve y = z* — z*  from (1,0) to (2,8).

5. Compute each of the following integrals along the spirgk) = (tcost,tsint) for 0 <t < 7—7r.

If the integral is path independent, you may find a potential and use the Fundamental Theorem of
Calculus for Curves.

(a)/:vd:v+ydy (b)/xdm—ydy (C)/ydm—xdy (d)/ydx+xdy

6. Compute each of the following integrals once counterclockwise around the ellipse
7(¢) = (4cos¢,3sing). If the integral is path independent, you may find a potential and use the
Fundamental Theorem of Calculus for Curves.

(a)?{xdw—kydy (b)?{xdm—ydy (C)jl{ydx—xdy (d)]{ydx—kxdy

7. Verify Green’s Theorem by computing both sides for the line integrjé xtyS de+2"y% dy, where
C
Cisthecircle 2%+ y?>=4 traversed once counterclockwise.

8. Use Green’s Theorem to evaluate the line integr% (y +evV®)dr + (22 + cos(y?)) dy,  where
C
C is the boundary of the region enclosed by the parabolgas= z> and 2z = 2.

9. Repeat exercise 6 but use Green’s Theorem to do the integrals.

2 2
10. Compute the area of the region inside the general eIIipgg + 22—2 =
a
HINT:  The general ellipse may be parametrized by(0) = (a cos 6, bsin9).

1.
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11

12.

13.

14.

15.

16.

17.

18.

19.
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. Consider a propeller with three blades, the front face of which has the parametric boundary
7(t) = ((3 + 2cos3t)cost, (3 + 2cos3t)sint), for 0 < ¢ < 2w  Use Green’s Theorem to
compute the area of the face of the propeller.

Verify Stokes’ Theorem by computing both sides for the vector fielll = (0,0,3v/22+y?) and
the paraboloid z =22 +y?> for z <4 withthe normal pointing up and in.

NoOTE: Ifan integral returns a complex number, useandRe to show that the integral is in fact real
and find its value.

Verify Stokes’ Theorem by computing both sides for the vector field = (yz,y%, —ry) andthe
surfaceS which is the elliptic paraboloid y = z>+ 22> for y <9 with normal pointing in and
up along they-axis.

Use Stokes’ Theorem to evaluate the surface integ?é/ V x F-dS, where the surfac8 is the
S

part of the paraboloid y = 1 — 2% — 22 that lies to the right of the z-plane, oriented toward the
zz-plane, and the vector field is F(z,y, z) = (yz3, sin(zyz), 2%).

LetT be the triangular surface with verticesP = (0,0,2), Q =(2,2,2) and R = (2,0,2)
and letC' be its boundary path traversed frofhto Q to R to P. Userectangularcoordinates to
parametrizel’; i.e., ﬁ(x,y) =(_,_,_). The shadow region (the projection of the triangular
surface onto they-plane where: = 0) is the triangular region with vertices P’ = (0,0), Q' =
(2,2) and R’ =(2,0). Accordingly, whatare the rangesofindy? Then use Stokes’ Theorem
to compute the line integral 7{ F.-ds where F(z,y,z2)=(a%y? 2222 y222).

c

Use Stokes’ Theorem to evaluate the line integr% F.ds where F(z,y,z2)= (a2 2% 2%
C
andC is the curve of intersection of the planez +y + z = 1 with the cylinder 2% + ¢y = 9,

oriented counterclockwise as viewed from above.

Verify Gauss’ Theorem by computing both sides for the indicated vector field and solid region:

(@) F = (2*,4%,2%) andV is the region inside of the spherez® + y? + 22 = 4.

(b) F = (cos(z),cos(y),cos(z)) andV is the region inside of the cube0 < z < ,
0<y<wm and 0<z<m.

Use the Gauss’ Theorem to calculate the surface integyé/ F.dS forthe vector field
S

—

F(x,y,2) = (2*,9% 2%), whereS is surface of the solid bounded by the cylinder:? + 4> = 1
andtheplanes =0 and 2z =2 with outward normal.

Use the Gauss’ Theorem to compute the surface integyé/ﬁ- dS, where S isthe sphere
s

P?4+y2+22=9 and F(z,y,z2) = (2222, —ya?, 3z97%).
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20.

21.

22.

23.

24,

2 2 2
Do a surface integral to compute the volume of the region inside the general ell%ei(% +
a

1.
HINT: The general ellipsoid may be parametrized Byf, ¢) = (a sin ¢ cos 0, bsin ¢sin 0, ¢ cos ¢).

z
c2

For each of the following vector fields, compute the line integr#ﬁ .ds along the parabola

P
y=2z=16—22 from (—4,0,0) to (4,0,0). If the line integral is path independent,

you should change the path to a straight line. If not, you should apply Stokes’ Theorem to the surface
between the parabola and the line.

(@F = (e",e%,e) (b) F = (yz, —xz, zy)

For each of the following vector fields, compute the line integr?{ﬁ -ds around the closed

T
equilaterial triangle T from (\/5, —1,3) to (—\/5, —1,3) to (0,2,3) andbackto
(\/5, —1,3). If the line integral is path independent, you should change the path to the circle

z2+y*> =4 intheplane z = 3. If not, you should apply Stokes’ Theorem to the surface
between the triangle and the circle.

= Y T 1 = 1 1
AF=|—-————,——,— bhF=——-5——,0
() ( $2+y2’$2+y2722) () ($2+y2’$2+y2’ )
For each of the following vector fields, compute the surface integ?é/ F.dS overthe quartic
Q

surface z = (16 — 2%)(9 — y?) +5 abovetherectangle —4 <z <4 and -3 <y < 3.

If the surface integral is surface independent, you should change the surface to a rectangle in the plane
z =>5. Ifnot, you should apply Stokes’ Theorem to the volume between the quartic and the rectangle.
@F=(y"z"a") O F =@y 2"

For each of the following vector fields, compute the surface integrj{yﬁ -dS  over the total
S

closed surface of the cylinderz? +42 <9 and —4< z<4. Ifthe surface integral is surface
independent, you should change the surface to the sphefe+ y? + 22 = 25.  If not, you should
apply Stokes’ Theorem to the volume between the cylinder and the sphere.

@)F = ° , Y , :
($2+y2+22)3/2 ($2+y2+22)3/2 ($2+y2+22)3/2

- x Y z
bF: ’ ’
(®) (x2+y2+22 z? +y? + 22 x2+y2+22>



Chapter 9

Labs

This chapter contains a collection of labs on vector calculus. These labs are designed for a lab which meets
once a week for about 1 hour. Typically the students would work in pairs. They would work on the lab in
class one week, complete the lab on their own time during the week and turn it in at the next week’s lab. A
short lab report is expected. The report should be graded on matherittjdeand English presentation.

¢ 9.1 Orienteering
9.2 Dot and Cross Produéts

9.3 Lines, Planes, Quadric Curves and Quadric Surfaces

9.4 Parametric Curvés

9.5 Frenet Analysis of Curves

9.6 Linear and Quadratic Approximatidhs
e 9.7 Multivariable Max-Min Problents
e 9.8 A Volume of Desserfs

9.9 Interpretation of the Divergente
9.10 Interpretation of the CUfl
9.11 Gauss’ Law

e 9.12 Ampere’s La#?

1Stewart Ch. 13.
2Stewart Ch. 13.
3Stewart Ch. 13.
4Stewart Ch. 14.
5Stewart Ch. 14.
6Stewart§§15.4, 15.6.
“Stewart§§15.7, 15.8.
8Stewart Ch. 16.
9Stewart§§17.5, 17.9.
10stewart§§17.5, 17.8.
11Stewart Ch. 17.
12stewart Ch. 17.
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9.1 Lab: Orienteering

Objectives: In this lab you will learn to usdapleto perform vector addition and scalar multiplication, to
convert between rectangular and polar or spherical coordinates and to plot points and dot-to-dot pictures.
You are strongly encouraged to work with a partner.

Before Lab: %Read subsections 1.1.1 and 1.1.2 and section 1.2. Also re&sgbie help pages oplot
and plotoptions . These are accessable by executing:

> ?plot

> ?plot,options

Maple Commands: You will need to use thdlaple commands for addition and scalar multiplication of
vectors, and the followinglot andspacecurve commands:
e Maplecanplot alist of points as follows:
> plot([[1,0], [2,3], [3,0], [0,2], [4,2]], style=point,
symbol=diamond);
Look at the help omlot,options to see how to turn off the axes or change sgebol .
e If you leave off the optiorstyle=point  , Maplewill connect the dots with line segments. To connect
back to the start, you must repeat the starting point:
> plot([[1,0], [2,3], [3.0], [0,2], [4,2], [1,0]], axes=none);
What shape did you get?
¢ You can also plot points and dot-to-dot pictures in 3-dimensions. For example, here is a cube:
> spacecurve( {[[0,0,0], [0,1,0], [1,1,0], [1,0,0], [0,0,0], [0,0,1],
[0,1,1], [1,1,1], [1,0,1], [0,0,1]], [[O,1,0], [O,1,1]], [[1,1,0],
[1,1,1]], [[2,0,0], [1,0,1]] }, orientation=[30,60]);
Notice that several dot-to-dot pieces are put together by enclosing them in braces and separating them by
commas.

vec _calc commands: You may need to use theec _calc command®vall (evaluate listy2d
(convert radians to degreeg)2r (convert degrees to radiansPp (convert rectangular to polarp2r
(convert polar to rectangulargs (convert rectangular to sphericar (convert spherical to rectangular).

Initialization:
e In a text region, at the top of tidaple Worksheet, type “Lab: Orienteering”.
e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegplecomment.

13stewart Ch. 13.



190 CHAPTER 9. LABS

Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking are Bnd RRINT.

1. Orienteering: You start at the origin and travel North-East for 26 paces. Then you travel South-South-
East for 17 paces. Finally you travel West-South-West for 22 paces. Construct a vector for each of
these travel segments. If you want to go directly back to the origin, in what direction should you travel
and how many paces will it take? Give the direction in degrees East or West of North. Plot your path.

2. Finding the North Star: Plot the big dipper and the north star as shown below:
11

o]

1]

21

_3] .

—4-

3. Starfleet 3D Orienteering: Galactic Coordinates are specified by taking the origin at the center of
mass of the galaxy, with the galaxy in thg-plane, thex-axis passing through the sun, (We're still
heliocentric!) and the-axis specified by the right hand rule so that when you are on the positixes,
the galaxy rotates counterclockwise from the positivaxis to the positive-axis.

You start at the galactic origin and successively make each of the following motions. Where do you
end up? Plot your path.

Each motion is specified in spherical coordinates wiésdhe distance you trave,is the polar angle
measured down from the positizveaxis and is the azimuthal angle measured counterclockwise from
the positiver-axis. Give your final position in spherical coordinates.

(@) (p,0,¢) = (4 lightyears45°,30°)

(b) (p,0,¢) = (3 lightyears240°,135°)

(©) (p,0,0) = (2lightyears120°, 45°)
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9.2 Lab: Dot and Cross Products

Objectives: You will learn theMaplecommands for 3-dimensional analytic geometry and vectors.
You are strongly encouraged to work with a partner.

Before Lab: '“Read sections 1.1 and 1.2. Do problem 1 below by hand; you will redo it in lab Msipte
You are expected to turn in this hand computation before lab or else there will be a penalty on the grade.

Maple Commands: You will need to uséMaplées assignment statements and arithmetic operators and the
Maplecommand&xpand , evalf andspacecurve . See lab 9.1 for an example usisgacecurve

vec _calc commands: dot (dot product)len (length of a vector)gross (cross productkevall
(evaluate list) and2d (convert radians to degrees).

Initialization:
e In a text region, at the top of thdaple Worksheet, type “Lab: Dot and Cross Products”
e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usideagple comment.

Lab Report Requirements:  Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking areRnd FRINT.

1. Derive the identity

(@ 9)° + | x 0 = |af*|o]?

as follows: Let 4@ = (u1,ue,u3) and o= (vi,ve2,v3).
(@) Write out (i -%)? to get6 terms.
(b) Write out |7 x ©]> to get9 terms.

() Add (u- %)%+ |@ x 9> and cancel some terms.
(d) Multiply out |@|?|#]? and check that it equals the answer from part (c).

Inproblems2—4,let 4= (4,1,3) and o= (-1,4,2).
2. Find the angle between the vectarandv in degrees.
3. Find the scalar and vector projectiong/adlong.

4. Find the area of the triangle with edgéandy.

14Stewart Ch. 13.
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5. Giventhe points A= (2,6,—-1), B=(-1,4,2), C=(2,2,7), and F =(0,6,5), find
the volume of the parallelepiped with adjacent edgds, AC, andAF. Then find the other four
vertices and plot the parallelepiped usspgpcecurve

6. Show that the three pointsP = (3,1,2), @ =(1,1,4) and R=(3,—1,4) arethe vertices
of an equilateral triangle by computing the three angles and the lengths of the three edges. Plot the
triangle usingspacecurve and rotate the plot so you can see it is equilateral.

9.3 Lab: Lines, Planes, Quadric Curves and Quadric Surfaces

Objectives: You will learn to useMaple to solve problems involving lines, planes, quadric curves and
guadric surfaces.
You are strongly encouraged to work with a partner.

Before Lab: !°Read sections 1.1 and 1.3.
Maple Commands: angle , solve ,completesquare ,implicitplot andimplicitplot3d

vec _calc commands: MF (Make Function),dot (dot product),cross (cross product)jen
(length of a vector) andvall  (evaluate list).

Initialization:
e In a text region, at the top of tidaple Worksheet, type
“Lab: Lines, Planes, Quadric Curves and Quadric Surfaces”
e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegplecomment.

Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking are end RRINT.

1. Considertheline (z,y,z) = (-3—3t,4+1¢,11+6t) andtheplane 2z —3y+4z=1. Find
the angle (correct to the nearest degree) between the line and the normal to the plane and determine if
the line and plane are parallel or perpendicular or neither. If they are not parallel, find their point of
intersection.

2. Showthatthe planesz+y—2=1 and 2x—3y+4z=>5 are neither parallel nor perpendic-
ular by finding (correct to the nearest degree) the angle between their normals. Then find parametric
equations for their line of intersection. (HINT: Let= ¢ and solve these three equationsfor and

15Stewart Ch. 13.
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3. Thepoints P=(3,1,2), @ =(1,1,4) and R =(3,—1,4) are the vertices of an equilat-
eral triangle. (See lab 9.2.) Find the centéof the triangleA PQ R by finding the intersection of two
lines, each from a vertex to the midpoint of the opposite side.

4. Follow the directions of example 1.14 for the following quadric curves:

(@) 22 +2y%2 —6x+4y =7
(b) 22 — 292 —6x+4y =17
(€) 2> +2y? —dx + 4y = -7
(d) -2y — 6z +4y =7

5. Follow the directions of example 1.15 for the following quadric surfaces:

@ 22 4+2y2+922 —6x+4y =7
(0) 22 — 2924+ 922 —6x+4y =7
(€) 22 —2y?> —6x+4y =7

(d) 22 —2¢% + 922 — 4o + 4y = -7
(€) 22 —2y%2 + 922 —dx + 4y = -2
() =22 +922 — 6z +4y =7

(@) 2% +922 —6x+4y =17

9.4 Lab: Parametric Curves

Objectives: You will learn to useMapleto plot parametric curves, to find intersections of parametric curves
with various lines, to find slopes of parametric curves, and to find self-intersections of parametric curves.

You are strongly encouraged to work with a partner.

Before Lab: 'SRead sections 1.3 and 2.1. Also read Maple help pages on parametric plots and the
fsolve command. These are accessable by executing:

> ?plot,parametric

> “?fsolve
In particular, look at the example &folve  with two equations, two variables and two intervals.

16stewart Ch. 14.
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Maple Commands:
e Suppose you want to plot the parametric curve- cos(t),y = sin(t) for 0 < ¢ < 27. This can be
done in one statement using the plot command:
> plot([cos(t), sin(t), t=0..2*Pi]);
Notice the square brackets; they're necessary. Of course, you can definartdg coordinates beforehand:
> x0:= t-> cos(t);
> y0:= t-> sin(t);
> plot([x0(t), yO(t), t=0..2*Pi]);
Notice that we named the coordinats andyO rather tharx andy so thatx andy would still be available
to be used in equations.
e To solve an equation, it is often best to dselve in conjunction with a plot. For example, to solve
the equation2 sin(z) = = + cos(z) you should first plot the two functions:
> fi=x->2*sin(x);
> g:=X->X+C0S(X);
> plot(  {f(x),9(x) }, x=-5..5);
Notice there are three solutions in the intenval®, —1], [.5,1.5] and[2, 3]. So you can now usfsolve
with intervals:
> fsolve(f(x)=g(x),x=-2..-1);
> fsolve(f(x)=g(x),x=.5..1.5);
> fsolve(f(x)=g(x),x=2..3);
e To solve two equation for two unknowns, uselve  with the following syntax: For example, to solve
the equations — 3t = 0 andst = 5, execute:
> fsolve( {s-3*=0, s*t=5 +{st }, {s=8..6,t=1..2 H;

Initialization:
e In a text region, at the top of thdaple Worksheet, type “Lab: Parametric Curves”
e Next type your NAMES, ID’s and SECTION.
e Execute:
> with(plots):
e Save your file now and after each problem.
e Number each problem either in a text region or usideagple comment.

Lab Report Requirements: This lab concerns the parametric curve
x = 2sin(2mt) — 2cos®(2nt)  y = cos(2mt) — 3sin(27t) for 0<t<1.

Answer the following questions. Where appropriate, you must explain your reasoning in text regions. Print
out your worksheet by clicking oniEe and FRINT.

1. HaveMapleplot the curve. Also plot the points on the curve wheig 0, 0.1, 0.2, 0.3, 0.4, and 0.5,
and label them on your output. (Okay: you'll have to label them later, but it must be done.) See lab 9.1
for how to plot points. Then use tltisplay command in thelots package to combine the two
plots.

2. Determine the pointse, y) where the curve crosses the line= 1.

HINT:  You'll have to find the values of which make ther coordinate equal to 1 by usirigolve
A plot of z(t) will be helpful. Then plug inta: andy.
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T

3. Determine the points, y) where the curve crosses the lipe= 5

HINT:  You'll have to find thet values which solve(t) = ?

4. Find the pointgz, y) where the tangent line to the curve is horizontal.

dy  dy/dt
HINT: — =
N 2 = dejdi

d
, so you'll need to solveﬁ =0 fort.
5. Find the pointgz, y) where the tangent line to the curve is vertical.
. . . 1
6. Find the pointgz, y) where the tangent line has sloge
. . cdy  ldzx Cdy/dt 1
HINT: It's easier to work with the equati = —— than the equatio =-.
quation; = 3% quation rar ~ 3

7. Find the pointgz, y) where the curve crosses itself.

HINT:  You'll need to find two different values; andt., so thatz(t1) = x(t2) andy(t1) = y(t2).
Do this by using'solve on the pair of equations with ranges ferandt,.

8. (20% EXTRA CREDIT)  Atone point(z, y) where the curve crosses itself, find the angle in degrees
between the two branches of the curve.

HINT:  Find the slope of each branch; find the inclination angle of each branch asiten
subtract inclinations, and then convert to degrees. To see the angles properly in your plot, you must use
the optionscaling=constrained

9.5 Lab: Frenet Analysis of Curves

Objectives: You will learn theMaplecommands for the geometric properties of space curves.
You are strongly encouraged to work with a partner.

Before Lab: ’Read section 2.2. Also read thiec _calc help page on Frenet Analysis of Curves which
is accessable by executing:

> with(vec_calc);

> ?Curve

Maple Commands: You will need to useMaplées trigopnometric and hyperbolic functions and thiaple
commandspacecurve , D, Int ,value andsimplify

vec _calc commands: MF(make function)dot (dot product)cross (cross productjen (length
of avector)evall (evaluate list)Cv (Curve velocity) Ca(Curve accelerationf;j (Curve jerk),CT(Curve
unit tangent)CN(Curve unit principal normal)CB(Curve unit bonormal)Ck (Curve curvature)ct (Curve
torsion),CL (Curve arc length)CaT (Curve tangential acceleration), aGadN (Curve normal acceleration)

17Stewart Ch. 14.
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Initialization:
e In a text region, at the top of thdaple Worksheet, type “Lab: Frenet Analysis of Curves”

e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegple comment.

Lab Report Requirements:  Consider one of the following space curves. (Your instructor will individually
tell you which to use.)

7(t) = (cosh(t), sinh(t), t) or 7(t) = (tcos(t), tsin(t), t)

Compute the items below withlaple If necessary, ussimplify  to clean up final expressions. Among
thevec _calc commands, you magnly use the commanddF, dot , cross ,len andevall to compute
the quantities. The mathematical definitions of the various quantities are provided to aid you in this semiau-
tomatic computation. You may then use the Curve commands fromethecalc package to check your
work in a fully automatic fashion.

Answer the following questions. Where appropriate, you must explain your reasoning in text regions.
Print out your worksheet by clicking onliFE and RRINT.

1. Definer(t) as aMaplevector functiorr usingMFE
2. Plot#(t) for 0 < t < 2 usingspacecurve . Putyour plot in your worksheet.
3. Compute the velocity(¢) usingD. Check usingCv. v=r7
4. Compute the acceleratiaiit). Check usindCa. a=v ="
5. Compute the jerk(¢). Check usingCj . j=d =0 =7
d ds
. h inglen . > g
6. Compute't espeegz usinglen o |0(t)]
7. Compute the arc length of 7(¢) for 0 < ¢ < 2 usingInt andvalue .
2
Check usingCL. L :/ |T(t)] dt
0
8. Compute the unit tangent vectBr Check usingCT. T = |;E2|
9. Compute the unit binormal vectét usingcross andlen .
Check usingCB B = M
|0(t) x a(t)]

10. Compute the unit principal normal vectst . o
Check usingCN N=BxT

11. Compute the curvature Check usingck. K= “EOF
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. . G(t) x a(t) - j(t
12. Compute the torsion Check usingCt. T = UQ X a(j i)
|0(t) > a(t)?
13. Compute the tangential acceleratign
. oo d?s d
Check usingCaT. ap=ad-T = Frelin o(t)]
14. Compute the normal acceleratiof. R
Check usingCaN ay =a- N = rx(t)|5(t)|?

9.6 Lab: Linear and Quadratic Approximations

Objectives: You will learn to useMaple to find the linear and quadratic approximations to a surface in
3-dimensional space.
You are strongly encouraged to work with a partner.

Before Lab: *®Read subsections 3.2.1, 3.2.2, 3.2.3 and 3.2.7, especially examples 3.8 and 3.14.

Maple Commands: diff ,solve ,fsolve ,subs,simplify ,evalf ,implicitplot3d ,
plot3d ,display andmtaylor

vec _calc commands: MF(Make Function)GRAO(gradient) andlot or&. (dot product).

Initialization:
¢ In a text region, at the top of tidaple Worksheet, type
“Lab: Linear and Quadratic Approximations”
o Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegple comment.

Lab Report Requirements: Consider the function
F(z,y,z) = mxsin(yz) + 2wy cos(zz) + z .

and the surfacé given by F(z,y,2) = 4r.  Answer the following questions. Where appropriate, you
must explain your reasoning in text regions. Print out your worksheet by clickingu@anahd RRINT.

. 1 . .
1. Show that the point P = (2, 3 ) lies onthe surfacé. Plot the surface& on the region 1.5 <

r <25 0<gy<1l and 25 < z < 3.5 usingimplicitplot3d with the options
grid=[25,25,25], color=blue

18stewart§§15.4, 15.6.



198 CHAPTER 9. LABS

2. The equation F(z,y,z) = 4w implicitly definesz as a function ofc andy, specifically =z

f(x,y). Use implicit differentiation to find % and 2—5 and their values at (z,y)

1
(2, 5). See example 3.8.

. . . 1 . .
3. Construct the linear approximationtof (z,y) at (x,y) = (2, 5). Then use it to estimate the
value of  f(2.03,0.52).

. 1 .
4. Plot the plane tangent to the surfagat the point P = (2, 5,#) over the region 1.5 < z <

25 and 0<y <1 usingplot3d with the optionsview=2.5..3.5, grid=[25,25],
color=red . Thendisplay it with the surface5 using the optiorrientation=[-25,70]

. . 1
5. Recompute the equation of the tangent plane to the suffeaethe point P = (2, Q’W) by
regardingS as a level surface of the function F'(z,y, z). See example 3.14.

. . 1
6. Recompute the equation of the tangent plane to the suffatehe point P = (2, 3 ) bycom-

. . . . 1
puting the first order Taylor polynomial P; (z,y,z) forthe function F(z,y,z) at (2, 2 ).
See subsection 3.2.3.

7. Compute the second order Taylor polynomialP:(x,y,z) for the function F(z,y,z) at

(2, %, 7).  Approximate the surfacg as the quadric Px(z,y,z) = 4n. Then plotthe quadric us-

ing implicitplot3d using the optionsgrid=[25,25,25], color=green . Finally,
display the quadric with the surfacg using the optiororientation=[-25,70]

Notice that the quadric surface is a much better approximation than the tangent plane.

9.7 Lab: Multivariable Max-Min Problems

Objectives: You will learn theMapleandvec _calc commands involved with multivariable max/min and
Lagrange multiplier problems.
You are strongly encouraged to work with a partner.

Before Lab: °Read chapter 4. Also read threc _calc help page on Multivariable Max-Min Problems
which is accessable by executing:

> with(vec_calc);

> ?Multi_Max_Min

Maple Commands: D, equate , solve ,fsolve , RootOf , allvalues/independent ,
allvalues/dependent ,subs , evalf , map, op, union , implicitplot , contourplot
plot3d , implicitplot3d , contourplot3d , Spacecurve anddisplay

19stewart§§15.7, 15.8.
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vec _calc commands: MF(make function) GRAD(gradient) HESS(hessian), andtPMD(leading
principal minor determinants)

Initialization:
e In a text region, at the top of tidaple Worksheet, type
“Lab: Multivariable Max-Min Problems”
e Next type your NAMES, ID’s and SECTION .
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
¢ Save your file now and after each problem.
e Number each problem either in a text region or usimdeagple comment.

Lab Report Requirements:  Consider one of the following functions. (Your instructor will individually
tell you which to use.)

flay) =@+ 42 22 +ay  or  flr,y) = (2 —ye ™ W

Use it to do exercises 1 and 2 below.
Print out your worksheet by clicking onife and RRINT.

1. Unconstrained Max-Min Problems: Find all critical points off and classify each as a local maxima,
a local minima or a saddle point. Here are the suggested steps you should use:

(a) Define the functiofiusingMFE

(b) Plot the functionf to gain a qualitative understanding of the local maxima, local minima and
saddle points. You may have to adjust your viewing rectangle.

(c) Compute the gradient gfand set it equal to the zero vector.

(d) Solve the resulting system of equations to obtain critical points. If necessary, use an
allvalues(  \dots,independent) to resolve anyRootOf s. This may produce extra
points which are not really critical points. So label the critical point candidates for easy referral.
CHECK your critical point candidates to determine which satisfy the vector equa];fOﬁ 0.

(e) Compute the Hessian ¢f

(f) Analyze each critical point usingPMDto determine if it is a local maxima, a local minima
or a saddle point. CHECK your classification of each critical point agrees with your qualitative
understanding from your plot. If necessary replot the function in the neighborhood of each critical
point.

2. Constrained Max-Min Problems: Find the absolute maximum and absolute minimum of your func-
tion f inside or on the ellipse? + 432 = 32. Here are the suggested steps you should use:

(@) Define the functiorf and the constraint function= x2 + 4y? usingMF

(b) Use display to simultaneously show aontourplot of the function f and an
implicitplot of the constraint equation = 32 to gain a qualitative understanding of the
maxima and minima on the constraint.
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(c) Compute the gradient gfand the gradient af and construct the Lagrange equatii%ﬁ = )ﬁg.
Also define the constraint equatigfiz, y) = 32.

(d) Solve the resulting system of equations to obtain critical points. If necessary, use an
allvalues(  \dots,independent) to resolve anyRootOf s. This may produce extra
points which are not really critical points. So label the critical point candidates for easy refer-
ral. CHECK your critical point candidates to determine which satisfy the equaﬁg”ns )ﬁg
andg = 32.

(e) Compute the value of at all critical points inside or on the ellipse to find the absolute maxima

and absolute minima. CHECK your extrema agree with your qualitative understanding from your
plot.

9.8 Lab: A Volume of Desserts

Objectives: You will learn to useMapleto compute integrals in two and three dimensional space, in polar,
cylindrical and spherical coordinates.
You are strongly encouraged to work with a partner.

Before Lab: 2°Read sections 5.1 and 5.2.
Maple Commands: Int ,value ,simplify ,plot andplot3d

vec _calc commands: MF (Make Function)Muint (Display Multiple Integral),muint/step
(Compute Multiple Integral, Stepwisg)2r (polar to rectangulary2p (rectangular to polar2r (cylin-
drical to rectangular)2c (rectangular to cylindrical)s2r (spherical to rectangular) améls (rectangular
to spherical).

Initialization:
e In a text region, at the top of thdaple Worksheet, type “Lab: A Volume of Desserts”
o Next type your NAMES, ID’s and SECTION .
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegplecomment.

Lab Report Requirements:  Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking areand FRINT.

1. Consider the chocolate kiss given in cylindrical coordinate8 by » < 1 + (1 — r)1/3 — /3 for
0<r<land0 <6 <2m.

20Stewart Ch. 16.
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(a) Find the volume of the chocolate kiss.

(b) Find thez coordinate of the centroid of the chocolate kiss.
HINT: Do the integrals in cylindrical coordinates.

2. The top of a pie wedge is given in cylindrical coordinatedby r < 2,0 < 0 < % andz = 0. The

7“2

depth of the pie is given by = —1 +

(a) Find the area of the top of the pie wedge.
HINT: Use polar coordinates.

(b) Find thexr andy coordinates of the centroid of the top of the pie wedge. Then express the centroid
in polar coordinates.
HINT: Set up the integrals to find the andy coordinates of the centroid, NOT theandf
components. Then work in polar coordinates to do the integrals. Finally convertdahdy
coordinates of the centroid to polar coordinates.

(c) Find the volume of the solid pie wedge.
HINT: Use cylindrical coordinates.

(d) Find ther, y andz coordinates of the centroid of the solid pie wedge. Then convert to cylindrical
coordinates.
HINT: You need to do 3 dimensional integrals, especially for:tlitemponent of the centroid.
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=N

3. Considerthe ice cream cone given in spherical coordinatesby < 4, 0 < 0 <27 and0 < ¢ <

(a) Find the volume of the ice cream cone.

(b) Find thez coordinate of the centroid of the ice cream cone. Then convertto spherical coordinates.
HINT: Work in spherical coordinates for doing the integrals while finding:ttemponents of
the centroid.

4. The surface of an apple is given in spherical coordinates-byp + g for0 <6 <2wand0 < ¢ < 7.

(a) Find the volume of the apple.

(b) Find thez coordinate of the centroid of the apple. Then convert to spherical coordinates.
HINT: Work in spherical coordinates for doing the integrals while finding:ttemponents of
the centroid.

5. (20% EXTRA CREDIT)  Plot the chocolate kiss, the pie wedge, the ice cream cone and the apple.
Be sure to plot all surfaces of each.
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9.9 Lab: Interpretation of the Divergence

Objectives: You will learn an integral formula for the divergence of a vector field which provides an
interpretation of the divergence. Then you will prove it using Gauss’ Theorem and use it to compute several
divergences.

You are strongly encouraged to work with a partner.

Before Lab: 2Read subsection 6.2.6 and sections 7.2 and 8.5.
Maple Commands: D, op, value andLimit

vec _calc commands: MF(Make Function)DIV (divergence)¢ross or &x (cross product)ot
or &. (dot product) andMuint (Display Multiple Integral).

Initialization:
e In a text region, at the top of thdaple Worksheet, type
“Lab: Interpretation of the Divergence”
e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegple comment.

Background: Given a 3-dimensional vector field = (Fy, F», F3), the integral formula for the divergence
of F gives the value of the functiodiv F' at a pointP. To do this, letS,(P) be the sphere centeredzatof
radiusp oriented with the outward normal. Then the valueldf F at P is

L 3 .
(div F)(P) = lim = / / Fods .
su(P)

In this formula, the integral computes the outward expansion of the vectorﬁiem‘ough the sphere
. . . 4 - .
S,(P). The integral is then divided by the volume of the sph??ﬁe:?’. The limit thus computes the expansion

per unit volume for smaller and smaller spheres. Thus, i interpreted as the velocity of a fluid, then the
expansion integral measures the amount of that fluid flowing out of the sphere. Hﬁmtfé)(P) may be
interpreted as the amount of that fluid which is “coming out” of the péint

Computationally, ifP = (a, b, ¢), then the sphere centerediabf radiusp may be parametrized by

]%(9,(;5) = (a+ psingcosh,b+ psingsinb, c+ pcosd)

Be sure to check the direction of the normal and reverse it if necessary.

21Stewart§§17.5, 17.9.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking are Bnd RRINT.

1. Justify the integral formula for the divergence by using Gauss’ Theorem. You may assuiie that
is continuous, so that its value inside a small sphere may be approximated by its value at the center of
the sphere. You should not ustapleto do this.

2. Plot each of the following vector fields fers < 2 < 5, -5 < y < 5,—5 < z < 5. Then compute
the divergence at the poift = (a, b, ¢) using both the derivative formula (usimjV ) and the integral
formula. Check that the answers are the same.

(@) F = (22,y% 2%

(b) G = (2y,y*2, 2%x)

(€) @ = (23 y*2* — 2%y, —y22?)
(d) 7= (0,0,€)

(e) @ = (2%y, 3>z, 2°x)

9.10 Lab: Interpretation of the Curl

Objectives: You will learn an integral formula for the curl of a vector field which provides an interpretation
of the curl. Then you will prove it using Stokes’ Theorem and use it to compute several curls.
You are strongly encouraged to work with a partner.

Before Lab: 22Read subsection 6.1.4 and sections 7.3 and 8.4.
Maple Commands: D, op,value , Limit andmap.

vec _calc commands: MF(Make Function) CURL(curl), dot or & (dot product) andVuint
(Display Multiple Integral).

Initialization:
e In a text region, at the top of tidaple Worksheet, type
“Lab: Interpretation of the Curl”
e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegple comment.

22Stewart§§17.5, 17.8.
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Background: Given a 3-dimensional vector field = (Fy, Fy, Fs), its curl is also a vector field. So the
integral formula for the curl of’ gives the value at a poirt of the quantityV - curl F for an arbitrary unit
vector N. Then the components oful F may be found by takingV to be successiveli; j andk. To give
the formula, letC, 5, (P) be the circle centered dt of radiusp which lies in the plane througk with

normalN. Then the value oV - curl F at P is

. . 1 L.
(N - cwrl F)(P) = lim — 7{ F-ds
p~>0 7Tp
Cip.x)(P)

where the circle is traversed counterclockwise as seen from the tip of the n&tmal

In this formula, the integral computes the circulation of the vector fiélsround the circle’J(p’N)(P).
The integral is then divided by the area of the cirgj¢?. The limit thus computes the circulation per unit
area for smaller and smaller circles. Thuskifs interpreted as the velocity of a fluid, théN - curl F)(P)
may be interpreted as the rate that the fluid circulates about the line through th&poitite directionV. If
(N-curl F)(P) > 0, then the fluid circulates counterclockwise as seen from the . df (V-curl F)(P) <
0, then the fluid circulates clockwise.

Also notice that NV -curl F)(P) is a maximum whetV points in the same direction &surl F)(P). Thus

(curl F)(P) points along the axis of rotation &t and its magnitud%(\curlf)(P)‘ is the rate of rotation at

P.
Computationally, if? = (a, b, ¢), then the three components(efirl F)(P) are given by

(curl F); (P) = lim % j{ﬁ - ds

p—0 TP
C
. 1 L.
(curl F)o(P) = ;11% 7r—p2 F-ds
Ca
(curl B)3(P) = lim — ¢ F - di
curl )3 = pli?% s S
Cs

where the circleg’,, C>; andC; are parametrized by

C1(0) = P + pcos(8)j + psin(8)k = (a,b + pcos(h), c + psin())
C5(0) = P + pcos(0)k + psin(0)i = (a + psin(6), b, ¢ + pcos(6))
C3(0) = P+ pcos(0)i + psin(0)j = (a + pcos(d),b + psin(d), ¢)

Lab Report Requirements:  Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking e Rnd FRINT.

1. Justify the integral formula for the curl by using Stokes’ Theorem. You may assumeuthat is
continuous, so that its value inside a small sphere may be approximated by its value at the center of the
sphere. You should not uséapleto do this.
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2. Plot each of the following vector fields fer5 < z < 5, -5 <y < 5,—5 < z < 5. Then compute the
curl at the point? = (a, b, ¢) using both the derivative formula (usi@JRL and the integral formula.
Check that the answers are the same.

@) F = (2%, 4’2, 2°x)
(b) G=(a®+ 9+ 2% y° +2° +a*, 22 + 27 + )
(c) 7= (322 cosy, 2% cosy — 23 siny, 32 siny)

9.11 Lab: Gauss' Law

Objectives: You will learn to useMapleto compute volume integrals and surface integrals of a vector field,
to compute the divergence of a vector field and to apply Gauss’ Theorem. You will also learn about the basic
law of electrostatics: Gauss’ Law.

You are strongly encouraged to work with a partner.

Before Lab: 22Read chapters 5 and 6 and sections 7.2 and 8.5, especially example 7.3.
Maple Commands: D, op, Int ,value andsimplify

vec _calc commands: MF(Make Function)DIV (divergence)evall (evaluate list)dot or &.
(dot product) and/uint (Display Multiple Integral).

Initialization:
e In a text region, at the top of thdaple Worksheet, type “Lab: Gauss’ Law”
o Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usidegple comment.

Background: Gauss’ Law is the basic law of electrostatics and applies when the electric charge density
(in units of charge/unit volume) is independent of time. (The charge is allowed to move but the net charge at

each point must remain the same.) The integral of the charge den§jty= /// p.dV  over avolume
\4

V' gives the net charg® inside the volumé/. Gauss’' Law relates the electric field to either the charge
densityp,.. or the net chargé).

Thedifferential form of Gauss’ Lavetates V - E = 4rp,.
Theintegral form of Gauss’ Lavgtates / E-dS = 47Q. HereS is any closed surface arfg is

S
the net charge inside the volurirewhose boundary is the surfae

The differential and integral forms of Gauss’ Law are related by Gauss’ Theorem as discussed in question
3 below.

23gtewart Ch. 17.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking are Bnd RRINT.

Consider the following 6 electric fieldsk {s a constant.)

a) E, = (k;x(a:Q + 9% 4+ 22), ky(2® + y? + 22), kz(x? + 4% + 2%))

b) Ey = (kz/22 4+ y2 + 22, ky /a2 + 42 + 22, kz /22 + 42 + z2)

c) E. = (ka, ky, kz)

L ka ky kz
d) By = (s, ———, —————)
\/x +y +z \/x +y +z \/x +y“+z
®) Ee_(x2+y2+22’x2+y2+22’x2+y2+22)
_ kx ky kz
f) Ey =( 3/2)

(@2 + 12+ 22 (a2 + 92+ 22)°% (a2 + 2 + 22)

1. For each electric field, compute the charge densitipy using the differential form of Gauss’ Law.
Then integrate the charge density over the solid spheré+ y? + 22 < a®>  to obtain the net charge
Q inside the sphere. The integral should be done in spherical coordinates.

2. For each electric field, recompute the net chaggmside the sphere by using the integral form of
Gauss’ Law. The boundary of the solid sphere is the surfagé + 32 + 22 = a®> which may be
parametrized by R(6, ¢) = (asin(¢) cos(f), asin(¢) sin(h), a cos(¢)).

NOTE: In some of the outputaple uses the expressiasgn(a) . The functioncsgn , called the
complex sign, ist+1 if its argument is positive and is1 if its argument is negative. Sineeis the
radius, it is positive, butlaple does not know this. Seésgn(a) = 1 everywhere.

3. Without usingMaple, explain how the integral form of Gauss’ Law may be derived from the differential
form of Gauss’ Law and Gauss’ Theorem. You may type this in a text region or write it out by hand.

4. For one of the electric fields, the charge density is constant. Which one?

5. For one of the electric fields, the net chargecame out differently when using the differential and
integral forms of Gauss’ Law. Which one? Why does this not violate Gauss’ Theorem? In this case,
the physicists regard the integral form of Gauss’ Law as giving the correct answer and interpret the net
charge) as a point charge at the origin. Explain why this interpretation is reasonable by looking at the
charge density at points other than the origin.
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9.12 Lab: Ampere’s Law

Objectives: You will learn to useMapleto compute line and surface integrals of a vector field, to com-
pute the curl of a vector field and to apply Stokes’ Theorem. You will also learn about the basic law of
magnetostatics: Ampere’s Law.

You are strongly encouraged to work with a partner.

Before Lab: 2*Read chapter 6 and sections 7.3 and 8.4, especially examples 6.7 and 7.6.

Maple Commands: D, op, Int ,value andsimplify
NoOTE: In Maple, the letterl stands for/—1. So you will need to use some other symbol for the current,
e.g.la, Ib, etc.

vec _calc commands: MF(Make Function) CURL(curl), evall (evaluate list)dot or &. (dot
product),cross or&x (cross product) anluint (Display Multiple Integral).

Initialization:
e In a text region, at the top of thdaple Worksheet, type “Lab: Ampere’s Law”
e Next type your NAMES, ID’s and SECTION.
e Start thevec _calc package by executing:
> with(vec_calc); vc_aliases;
e Save your file now and after each problem.
e Number each problem either in a text region or usideagple comment.

Background: Ampere’s Law is the basic law of magnetostatics and applies when the electric charge density
is independent of time. (The charge is allowed to move but the net charge at each point must remain the
same.) If the charge densitys (in units of charge/unit volume) and the velocity field of the charg?é (g

units of distance/unit time) then the current density ig = pCV' (in units of charge/unit area/unit time).

The integral of the current density I = // J-dS over a surface gives the net current (in units of

charge/unittime) which is passing through that surface, positive in the direction of the noshairepere’s
Law relates the magnetic fiel to either the current denS|tX/ or the currenf.

Thedifferential form of Ampere’s Lavstates V x B = 4x.J.

Theintegral form of Ampere’s Lavetates j{ B-ds=4rI. HereC is any closed curve anklis the

C
net current passing through any surfatehose boundary is the curée.

The differential and integral forms of Ampere’s Law are related by Stokes’ Theorem as discussed in
guestion 3 below.

245tewart Ch. 17.
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Lab Report Requirements: Answer the following questions. Where appropriate, you must explain your
reasoning in text regions. Print out your worksheet by clicking are Bnd RRINT.
Consider the following 5 magnetic fields: {s a constant.)

(—2ky(z* + y?), 2kz(2® + y°), 0)

a) B,

b) B,

(—2ky /2% + y2, 2ka\/a2 + y2,0)
¢) B. = (—2ky, 2kz,0)
—2ky 2kx

d) Bd:(\/x2+y2)\/x2+y270>
e) B, —( —2ky 2kx 0)

m2+y2’m2+y2’

1. For each magnetic field, compute the current denf:ityy using the differential form of Ampere’s
Law. Then integrate the current density over the disk? + 3?> < a? in the zy-plane to obtain
the net currenf passing through the disk. The disk may be parametrized in polar coordinates by
R(r,0) = (rcos(0), rsin(6),0).

2. For each magnetic field, recompute the net curfgrassing through the disk by using the integral form
of Ampere’s Law. The boundary of the disk is the circle> +y? = >  which may be parametrized
by #(0) = (acos(f),asin(8),0).
NOTE: In some of the outputMaple uses the expressiarsgn(a) . The functioncsgn , called the
complex sign, ist+1 if its argument is positive and is1 if its argument is negative. Sineeis the
radius, it is positive, butlaple does not know this. Sagn(a) = 1 everywhere.

3. Without usingMaple, explain how the integral form of Ampere’s Law may be derived from the differ-
ential form of Ampere’s Law and Stokes’ Theorem. You may type this in a text region or write it out
by hand.

4. For one of the magnetic fields, the current density is constant. Which one?

5. For one of the magnetic fields, the net curregame out differently when using the differential and
integral forms of Ampere’s Law. Which one? Why does this not violate Stokes’ Theorem? In this case,
the physicists regard the integral form of Ampere’s Law as giving the correct answer and interpret the
net current/ as a current moving along theaxis. Explain why this interpretation is reasonable by
looking at the current density at points not on thaxis.



Chapter 10

Projects

This chapter contains a collection of projects on vector calculus. They are divided into two groups. The first
group involve Multivariable Differentiation while the second group also involve Multivariable Integration.

In a one semester course, we recommend that the students be required to do two such projects, probably
one from each group. Normally the students would work in groups of four students and different groups
would work on different projects. Each group would have from two to four weeks to complete the project
and must turn in an extensive project report. The report should be graded on mathevtegilesind English
presentation.

Projects on Vectors and Multivariable Differentiation
¢ 10.1 Totaling Gravitational Forcés

e 10.2 Animate a Cunfe

10.3 Newton’s Method in 2 Dimensiohs

10.4 Gradient Method of Finding Extretha

10.5 The Trash Dumpster

10.6 Locating an Apartmeht

1stewart Chs. 12, 13.
2Stewart§§14.3, 14.4.
SStewart§§15.3, 15.4.
4Stewart§15.6.

SStewart§§15.7, 15.8.
6Stewart§§15.7, 15.8.
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Projects on Multivariable Integration

e 10.7p-Normed Spaceballs: The Area of a UpitNormed Circlé

10.8 The Volume Between a Surface and its Tangent Plane

10.9 Hyper-Spaceballs: The Hypervolume of a Hypersphere

10.10 The Center of Mass of Planet®X

10.11 The Skimpy Dondit

10.12 Steradian Measufe

10.1 Project: Totaling Gravitational Forces

BIn physics, Newton’s Law of Gravity says that a point masa/ s attracted to a point massm by
GMm

the force F = W 7, where G is Newton’'s gravitational constant, ¥ is the vector from
T

M to m, and |f] isthelengthof 7. Moregenerally, apointmassM is attracted to a

k
. . - GMm; .

collection of point masses my,mo,... ,my  bytheforce F = E |~|TZ 7;, where 7; isthe
‘ T3
i=1

vectorfrom M to m;.

Suppose a point mass M s located on theg-axisat P = (0,Y) for a positive number Y .
Also suppose 2n  point masses, each with massn, are located on the-axis at the points @Q; =
(1Az,0) forapositive number Az and i=-n,-n+1,-n+2,...,—-1,1,... . n—2n—1,n.
(Note: There is no mass at the origin.)

1. Draw a picture showing the line segments fromP to each of the @;,s when Y = 3,
n=2 and Az =1.(Seelab9.1foran example of plotting dot-to-dot pictures.)

2. Find the magnitude of the total gravitational force od/ duetothe 2n other masses.

3. Is the magnitude of the gravitational force onM/  finite if n  goes to infinity? Explain mathe-
matically why or why not.

4. With n = 2, find the values of Y  which maximize and minimize the magnitude of the
gravitational forceon M  due to the 4 other masses.

“Stewart§16.3.

8Stewart§§15.4, 15.7, 16.3, 16.5.
9Stewart§§16.3, 16.4, 16.7, 16.8.
10stewart§§16.5, 16.8.
lsStewart§§16.8, 17.6.
12stewart§§17.6, 17.9.

13gtewart Chs. 12, 13.
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10.2 Project: Animate a Curve

write aMaple proceduravhich animates the graph of a curve®(t)  in 3 dimemsions. The inputs should
be the curve function, the range for the parameter and the number of plots. The output should be the animated
plot. At the tip of the curve add one of the following to your animation:

1. The velocity vector #(¢t) and the acceleration vectord(t) .

2. The unit tangent vector T(t), the unit principal normal vector N(¢) and the unit binormal
vector B(t).

3. The osculating circle. This is the circle in the plane of(t) and &(¢t) which best fits the curve

1
K (t)

at #(t). Thus, its center is in the direction N(t) from () and its radius is
where k(t) isthe curvature.

Use your procedure to animate a few curves using about 15 plots. Document your procedure to explain how
it works and how it may be used.

10.3 Project: Newton’s Method in 2 Dimensions

15The ordinary Newton’s Method uses the linear approximation to find an approximate solution to an equation
of the form f(z) = 0. Basically, ifz, is an initial approximation to the solution, then the tangent line to

y = f(x) atx = 1z intesects the:-axis at a poin{x1,0) andz; is usually a better approximation to the
solution thaney. So the process can be iterated usings the new initial approximation. A short derivation
shows that at each stage

f(xi)
f'(z:)

This may be automated Mapleby defining the function

> newt:= x -> evalf(x - f(x)/Df(x));

This assumes that and its derivativeD f have been defined in arrow notation. Further, it is often useful to
ploty = f(x) to get an initial approximation to the solution and toBéits  to one more than the desired
number of digits accuracy.

Tit1 = Tj —

EXAMPLE 10.1. Solve the equationos(x) = z to 15 digits of accuracy.
SoLUTION: We set the digits, define the function and compute its derivative:

> Digits:=16;
> fi=x -> cos(x)-x;
> Df:=D(f);

To get an initial approximation, we plot the function:

> plot(f(x),x=-Pi..Pi);

and observe the initial approximation shouldabe- .8 . We can now use 5 iterations of Newton’s method to
get the solution:

l4stewart§§14.3, 14.4.
15stewart§§15.3, 15.4.
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> newt(.8);newt(%);newt(%);newt(%);newt(%);

We now turn to the 2-dimensional Newton’s Method. This uses the linear approximation to find an
approximate solution to a pair of equations of the fof(r,y) = 0 andg(z,y) = 0. Basically, if (zo, yo)
is an initial approximation to the solution, then the tangent plane<of (z,y) at(x,y) = (z¢, yo) and the
tangent plane tea = g(z,y) at(x,y) = (xo,yo) intesect thery-plane at a common poirft, y1,0) and
(z1,y1) is usually a better approximation to the solution ttfan, yo). So the process can be iterated using
(z1, 1) as the new initial approximation. A short derivation shows that at each stage

o f9y — fug _ Jo9 — [ Ga
fﬁcgy - fygx fxgy - fygx
where the functiong andg and their partial derivativeg;, f,, g andg, are all evaluated dtc;, y; ).

Tir1 = T and Yirl = Yi (*)

1. Derive the equations (*). You should uskapleto construct the tangent planes and to solve for the
intersection of these planes with thg-plane.

2. Construct a singl&aple function callednewt2d which acts on an initial approximatidm:, y) and
produces the next approximation.

3. (Optional) To improve your project, write aple procedure which will automatically control the
iterations ofnewt2d . The procedure should take as arguments, the funcfiarslg, the number of
digits of accuracy desired and the maximum number of iterations to allow (to prevent an infinite loop).

4. Use youMaplefunctionnewt2d oryourMapleprocedure to find all solutions to each of the following
pairs of equations. You will need to plot the two equations ugimglicitplot to get an initial
approximation to each solution. Give your answers to 25 digits of accuracy?(8g#s .) You can
usefsolve to check you solutions.

Tyt —22y=0

(@) x +y — cosh(z) +sinh(y —1) =0 and =z
(b) 2 —y=5 and 3z+y=7
(c) xsin(y) —ycos(z) =0 and zt +y* =256

(d) 2y — Pz +2%% =5 and 222 +3y% =18

10.4 Project: Gradient Method of Finding Extrema

16\Write aMaple proceduravhich finds an approximation to a local maximum or local minimum of a given
function. The algorithm to be used by the procedure is called the gradient method (or Cauchy’s method or
the method of steepest ascent or descent) which is described below for the case of a local maximum.

The inputs to your procedure should be the function, the initial guess, the maximum number of iterations
(to prevent an infinite loop), the desired tolerance and a parameter to say whether the program should look
for a maximum or a minimum. The output should be the coordinates of the extremum which may be plugged
into the function to obtain the extreme value.

Document your procedure: Include comments in the code to explain how it works. Write a help page to
explain how it may be used.

Use your procedure to find all local extrema of each of the following functions:

16stewart§15.6.
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1. f(r,y) =9— (z—3)2 - 9(y — 2)? (Start from the point2, 1).)
2. flz,y) =((z—1)?+(y—2)2 —4)* + 32 — 4y (See example 4.3.)
3. f(z,y) = 2% + y? + 8sin(z) cos(y) (There are 5 extrema.)

To help find the initial guess for each maximum or minimum, you will want to plot one or more graphs and/or
contour plots of each function.

Cauchy’s Gradient Method or the Method of Steepest Ascent Suppose you want to find a local maxi-
mum of afunctionf()?) and you believe there is a local maximum near the initial péj;nt(You may believe

this because you drew a contour plot.) Now, you know that the gradient vector points in the local direction
of maximum increase of the function but it may not point directly at the top of the hill. So, if you move from
P, in the direction of the gradient of at P, then the function will increase, at least initially. Hence, you
construct the lineX (t) = Py + t Vf(B,) and restrict the function to this line by forming the composition
g(t) = f(X(t)) = f(Py+t Vf(P,)). Then you find the first maximum @f(¢) and call this point’;. Now

P, is a local maximum of; but it may not be a local maximum ¢f becausev f(P,) only pointslocally

uphill. However,f(P,) is bigger thanf (P,). So you restart this process wifhas the new initial point. As

you iterate this process, you keep moving uphill and (hopefully) get closer and closer to the local maximum.

As you write your procedure you should keep in mind the following points:

e Before you begin to turn the algorithm into a procedure or even automate it usiméyile/do
loop, be sure your algorithm and yoltaple code works step by step on one or two of the sample
functions.

e To find a maximum you move in the directign of the gradiéﬁtf. To find a minimum you move in
the direction of the negative of the gradientV f.

e Along the line in the direction of the gradient, there may be several critical points. Which one do you
want? To isolate this critical point, you may use an interval infdodve  command and/or you may
use thanaxor min commands to find the largest or smallest of a list of numbers.

e Your input function may be an expression or an arrow defined function and your max/min parameter
may be numerical or a string, but you must explain which in the documentation.

¢ Your tolerance may measure the distance moved between two successive iterations or the change in the
value of the function between two successive iterations or both. Your documentation must explain this.

e Read the help pages @proc , ?options , ?for and?if . To debug a procedure, it is helpful to
include a line at the beginning of the procedure which saygibn trace; "

¢ |f you wrote your program in vector notation, the same procedure should also work for functions of 3
or more variables.
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10.5 Project: The Trash Dumpster

17You are the mathematics consultant for a company which makes trash dumpsters, you know, the big kind
you see outside a dorm or apartment complex. Go outside and find one. Try to find one which is not just a
rectangular solid and has some type of hinged lid covering part of the top. If you cannot find one with a lid,
pretend that a lid covers the front portion of the top for the full width of the dumpster. This is the kind of trash
dumpster your company currently manufactures (hereafter called the original dumpster). Draw a diagram of
the original dumpster and take its measurements. Note which edges are folded and which are welded.

Your boss has asked you to redesign the dumpster to minimize the cost, but with the following constraints:

e You must maintain the basic geometrical shape of the dumpster but you may change the lengths.
e You must maintain the volume of the dumpster to hold the same amount of trash.
e You must maintain the area of the lid so that the dumpster may be emptied in the same manner.

e You may need to restrict the ratio of some lengths to prevent the geometry from changing. You should
only do this if the minimization process causes some length to go to zero, thereby changing the geom-
etry. You must document this in your report.

e The base is made of 10 gauge steel sheet metal (.1345 in thick) which costs $0.93 per ft

e The sides, top and lid are made of 12 gauge steel sheet metal (.1046 in thick) which costs $0%71 per ft
e Welding costs $0.12 per ft.

e The hinge for the lid costs $0.20 per foot.

e Cutting and folding the sheet metal are fixed costs which are independent of length. So they do not
need to be included in the cost.

You may modify any of these restrictions to fit your geometry, but you must explain in your report.

You need to write a report presenting your suggestions which can be read by both the company presi-
dent and the technical engineers. You should include the original cost and dimensions, the final cost and
dimensions and the percent savings in the cost.

To organize your work, you should follow the following steps:

Draw a diagram of the dumpster. Describe it and pick variable names for each of the lengths.
. Write formulas for the general cost and volume of the dumpster and the area of the lid.
. Plug in your measurements to find the original cost, volume and area of the lid.

1.
2
3
4. Write out the constraints on the volume and area.
5. Minimize the cost.

6

. If some length goes to zero, go back to step 4 and add a constraint on the ratio of that length to some
other length.

7. Discuss your results.

17stewart§§15.7, 15.8.
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10.6 Project: Locating an Apartment

8Upon moving to a new city, you want to find an apartment which is conveniently located relative to your
school, your place of work and the shopping mall. These are located at

S=(-35 W=(l,-4) M=(6-2)

respectively. If your apartmentis at A = (z,y) find the location of your apartment which minimizes
f =|AS|+ |AW| + |AM|. Here |AS| is the distance from your apartmentto school (i.e. the length
of the vector AS) and similarlyfor [AW| and |AM].

In the course of solving this problem, you should answer the following questions:

1. Compute the gradient of |AqS| and express your answer in terms of the vectots . In particular,
how are their directions related, how are their magnitudes related?

2. Draw a contour plot of |AqS| and use it to further justify your answers to #1.
3. Findthe point A  which minimizes f.

4. Plotthe three vectors AS, AW and AM usingtheplot option
scaling=constrained . (See lab 9.1 for an example of plotting dot-to-dot pictures.)

5. Give a geometric condition on the three vectorslS , AW and AM  which characterizes
the point A  which minimizes f.

e Do either #6 or #7:

6. What happens if the points S, W and M are moved so that the angleZSWM is
greaterthan 135°?

7. Prove the geometric condition you found in #5. It may be useful to use your results from #1.

10.7 Project: p-Normed Spaceballs: The Area of a Unitp-Normed
Circle

¥In this project, you will determine the area of a upiball in the plane for different values of p and
look at their limiting characteristics.

Definitions:

The p-norm of a vector ¢ = (z,y) in R? is ¢, = {/|z[P +y|» instead of the standard
Euclidean 2-norm |Z], = /|z|> + |y|?> .  So ap-normed circle of radius R is the set of points
(z,y) satisfying

[0, =8 or |z["+[y|" = R",

18stewart§§15.7, 15.8.
19stewart§16.3.
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and ap-ball is the interior of g-normed circle. So you need to compute the area of the region satisfying

2P+ [ylP < 1.

(In this project, the dimension of the space is fixed and the norm varies.)

1.

10.

Usingimplicitplot or justplot with scaling=constrained , graph several unjt-circles
in the plane with p > 1.  Specifically, superimpose the curvedz|? + |yl =1 for p =
1, 2,3, 4,5. Notice they are convex.

. Make a conjecture as to the limiting shape and area of hesdlsas p — .

. Usingimplicitplot or justplot with scaling=constrained , graph several unjt-circles
in the plane with 0 < p < 1. Specifically, superimpose the curvegz|? + |y|? = 1 for
p=1,3, % 1 1. Notice they are concave forp < 1.

. Make a conjecture as to the limiting “shape” and “area” of theballsas p — 0% .

. For p=1,2 3,4,5, computethe area of the upiball

|z[” + Jy[" < 1.

HINT: For each value of p, the fact that the-ball is symmetric with respect to both theaxis

and they-axis means that the total area is 4 times the area of the part pftthkbin the first quadrant.
Accordingly, set up an appropriate double integral in rectangular coordinates for the area in the first
guadrant and multiply it by 4.

. Can you obtain a general formula for the area of theptbiall for p > 17

. Whether or not you answered #6 in the affirmative, what is the limiting value of the area of the unit

p-ballas p— 0o ? Use Maple'dimit andvalue commands.

For p=3, 4, % L1, computethe area of the upitball

Wl

|lz[? + [yl < 1.

. Can you obtain a general formula for the area of the putiall for 0 < p < 1?2 HINT: The

formulas in #6 and #9 are the same.

Whether or not you answered #9 in the affirmative, what is the limiting value of the area of the unit
p-ballas p — 0t ?
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10.8 Project: The Volume Between a Surface and Its Tangent Plane

291n this project, you will be finding the tangent plane to a surface for which the volume between the surface
and the tangent plane is a minimum.

1. Pickasurface z = f(z,y) which is everywhere concave up or everywhere concave down such as
2= flz,y) = 2® + 3y + 2%

NoTe: Afunction f(z,y) iseverywhere concave up or everywhere concave dowi i fo fyy — fny
is everywhere positive.

2. Find its tangent plane at a general pointa, b, f(a,b)) .

3. Compute the volume between the surface and its tangent plane above the r&giorwhich is the
square 0<x <1, 0<y<1. Callthisvolume V{(a,b).

4. Findthe point (a,b) forwhichthe volume V(a,b) isaminimum. Be sure to apply the second
derivative test to verify that your critical point is a minimum.

5. Repeat steps 1-4 for two or three other functiong(x,y) .  Use interesting functions, not just
polynomials, and check the concavity.

6. What do you conjecture?

7. Prove your conjecture by repeating steps 1-4 for an undefined fungtioiBefore solving for (a, b)
you will need to give names to the partial derivatives §f usingsubs .

8. What happens to your conjecture if you change the regidd?  Try some shapes other than a
rectangle or a circle!

10.9 Project: Hyper-Spaceballs: The Hypervolume of a Hypersphere

2ln this project, you will determine the hypervolume enclosed by a hypersph&® ursing the ordinary

n
Euclidean norm: |Z| = , | Y (zx)3.
k=1

(In this project, the norm is fixed and the dimension of the space varies.)

1. Draw the circle 2% + y> = 1, using a parametriplot or an implicitplot with
scaling=constrained . Compute the area enclosed by the circle? + y> = R? using a
double integral in polar coordinates. Repeat using a double integral in rectangular coordinates. Write
your answer as an arrow defined functioia(R) where V, means 2-dimensional volume or
area. (In Maple, youenter v, as V[2] .)

20stewart§§15.4, 15.7, 16.3, 16.5.
21stewart§§16.3, 16.4, 16.7, 16.8.
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. Draw the sphere z? 4+ 4% + 22 = 1, using a parametriplot3d or animplicitplot3d

with scaling=constrained . (You may wish to experiment with various 3-D plotting options.)
Compute the volume enclosed by the sphere® +1? + 22 = R?>  using a triple integral in spherical
coordinates. Repeat using a triple integral in rectangular coordinates. Write your answer as an arrow
defined function V3(R) where V3 means 3-dimensional volume.

We now leave the earthly realm and journey into n-dimensional spacenwith3. Being a three-
dimensional being, you cannot visualize objects in these higher dimensional spaces. Like a pilot pass-
ing his final flight test, you must rely on your wits and your instruments — — in this case Maple. Take a
food break before taking this next step. Where and what did you eat?

. Compute the 4-dimensional hypervolume enclosed by the hyperspheter 42 + 22 + w? = R?

using a quadruple integral in rectangular coordinates iR* .  Write your answer as an arrow
defined function V4(R) where V, means 4-dimensional volume.

. For n =5,6,...,10, find then-dimensional hypervolume of the-dimensional hypersphere

n
in =R?> in R". Write your answer as an arrow defined functiow,,(R) where V,,
k=1

means:-dimensional volume.

HINT:  After doing the case for n = 5, you may gewerytired of typing in all those limits of
integration! There are two ways to shorten the task: (See your instructor for help.)

(a) Try using theseq andsum commands to construct the list of limits which are needed for the
n-fold multiple integral.

(b) Alternatively, notice that the 3-dimensional ball of radius2  may be sliced into thin disks
perpendicular to the-axis with varying radii .  Computationally, the triple integral for
Va(R) may be written as a single integral oveof V,(r) with r varying as a func-
tion of 2. Now generalize this by slicing the-dimensional hypersphere of radiusR
perpendicular to the® axis producing a collection of parallgl — 1)-dimensional hyperspheres
of varying radii .  Then express V,(R) as anintegral of V,,_y(r) with r
varying as a function of the'" coordinate.

. Looking at your results for the hypervolumes of thelimensional hyperspheres, deduce two general

patterns for V,(R) . The formulas fom even and fom odd are different. Does your “odd”
formula hold for the case n = 1; thatis, for the length of the interval [- R, R] ?

. Use mathematical induction to prove your two formulas fov,,(R) .  (Use the second hint from

#4.) This may be hard; so don’t be discouraged it you don't get it.

HINT:  You may use the following definite integrals without proof:

/2 (2k)!m /2 22k+1 (k)2
2k _ ' 2k+1 _ :
/_W/2 cos** 0df = 72%(]{!)2 /_Tr/2 cos 0do 7(2]{ )
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10.10 Project: The Center of Mass of Planet X

22As a space pioneer, you have just arrived in a new solar system and discovered a new planet, hereafter
called Planet X, which is very similar to Earth.

In order to safely orbit and land on the planet, you need to know the total mass of the planet to within
+10%! kg and the center of mass of the planet to within 1 m accuracy. That is the objective of this project.

From distant but detailed radar observations, you have determined that (i) sea level is at a radius of 6371
km from the center of Planet X and that (ii) the land surface (both above and below sea level) is given in km
as a radial function of the spherical coordinai#sp) by the formula:

R = 6373 — .8c0s(2.20) — 2.55 cos(3.64¢ — 1.07) + 1.78 sin(5.46¢ — 1.64) + 3.19 cos(.65¢ + 8.8)

You may assume that the density of water is 1 gfom10'? kg/km? while the average density of the land is
5.52 g/cnt or 5.52 x 10'2 kg/km?.

Procedure:

1. Initialize your worksheet and define the spherical coordinates:

with(vec_calc): vc_aliases:
jacobian:=rho™2*sin(phi);
x0:=rho*sin(phi)*cos(theta);
y0:=rho*sin(phi)*sin(theta);
z0:=rho*cos(phi);

vV V.V V V

Then enter the values for tiveater _density and theland _density in kg/km? and define the
water _level andthdand _level inkm.

. Recreate the above plot of planet X but displayed from an orientation you prefespbsesplot

to draw two separate plots of the water surface in blue and the land surface in green. In each plot use
a grid with 97 lines in the direction and 49 lines in the direction. This will put one line at every

3.75° = g rad. Thendisplay the two plots together. (Use a courser grid until you perfect your
plots.)

22Stewart§§16.5, 16.8.
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3. Compute the mass and center of mass of the solid land of Planet X (not including the water).
4. Compute the mass and center of mass of the water portion of Planet X (not including the land).

5. Compute the total mass and total center of mass of Planet X by combining those for the land and water
portions.

HINTS:

e Compute the integrals in spherical coordinates udiugnt andvalue orevalf and rememberto
include the spherical Jacobian in the integrand. Then when you computethandz coordinates of
the center of mass be sure to expresg, andz in spherical coordinates.

e Maple may not be able to compute the exact values of the triple integrals vaing and may not
even be able to compute approximate decimal values wsiatf . In that case, you should use the
midpoint rule to approximate each of the three integrals. For example, the volume of a sphere of radius
10 m can be computed from the integral

> Muint(1*jacobian,rho=0..10,theta=0..2*Pi,phi=0..Pi);

T 27 10
/ / / jacobian dp df d¢
o Jo Jo

Then its exact and approximate values are
> value(%); V:=evalf(%);

20 jacobian T2

V :=197.3920881 jacobian

However, an approximate value can also be obtained from
> n:=8: middlesum( subs(i=j, middlesum( subs(i=k, middlesum(

1*jacobian, rho=0..10, n)), theta=0..2*Pi, n)), phi=0..Pi, n):
V:=evalf(%);

V :=24.67401100r + 172.7180770 (proc(F, V) ... end)

Be sure to increase the number of intervals until you get the desired accuracy.

e When you compute the mass and center of mass of the water, you must remember that (i) there is no
water when the land level is above sea level and (ii) when the land level is below sea level there is only
water between the land level and sea level. You can implement (ii) by taking the limits on the radial
integral to be the land level and the sea level. To implement (i), you will need to use the Heaviside
function which has the value 0 when its argument is negative and has the value 1 when its argument is
positive. Se@Heaviside
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10.11 Project: The Skimpy Donut

23You are the mathematics consultant for a donut company which makes donuts which have a thin layer of
chocolate icing covering the entire donut. One day you decide to point out that the company might cut costs
on chocolate icing if they keep the volume (and hence weight) of the donut fixed but adjust the shape of the
donut to minimize the surface area. Alternatively, they could advertize extra icing by maximizing the surface
area. You need to write a report presenting your idea which can be read by both the company president and
the technical engineers.

A donut has the shape of a torus which is specified by giving a big radius and a small radius b
as shown in the figure. A typical donut might haver = 1in  and b= % in.

T>=
s SN
7 7

——

Your job is to determine the values ofa and b which extremize the surface area while keeping
the volume fixed at the volume of the typical donut mentioned above.

1. The surface of a torus satisfies the equation
(r—a)’*+ 22 =0b°
in cylindrical coordinates where, of coursep < a .

(a) Compute the volume V' of the torus as a functionof «  and 5.
HINT: Integrate in cylindrical coordinates.

. . . 1. .
(b) Check that the volume of the typical donut witha = 1in  and b= 3 in is V=—
in® ~ 5in3.
2. The surface of the torus can also be parametrized as

x = (a+bcosg)cosb
y = (a+ bcosg)sinb for

z =bsin¢ -

23Stewart§§16.8, 17.6.
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Here, 6 represents the angle around the circle of radius and ¢ represents the angle
around the circle of radius b .

(a) Plot the donut using a 3 dimensional parametric plot.

(b) Compute the surface areaS of the torus as a functionof a«  and b.
HINT: Do a surface integralin 6 and ¢.

. . . 1. .
(c) Check that the surface area of the typical donutwith = 1in and b = 3 in is S=
272 in? ~ 20in?.
2
3. Keep the volume fixed at V' = T in3 and find the values of a , b and S which

minimize and maximize the surface area&5.  (Apply the second derivative test to any critical point
in the in the interior and check the values at the endpoints.)

10.12 Project: Steradian Measure

24In this project, you will learn about steradian measure, which is a measure of solid angle, and use it to
measure the solid angle subtended by several shapes.

Definition:  The solid angle ZPS subtended by a smooth parametric surfacd as seen from
a point P is the set of rays (half-lines) starting atP and passing through S .  These rays
intersect the sphere of radiuskR  centered at P inasurface T(R) witharea A(R). Then
the steradian measure of the solid anglg PS  relative to the sphere of radiusR s

A(R)
RQ

Thus the steradian measure is the fraction of the sphere subtended tines
This is analogous to the radian measure of a planar angle which is the fraction of a circle subtended times

2.

|£PS| =

1. Show that the steradian measure of the solid angtePS can be computed from the following

integral over the surface S :
1. -
S T

where 7 isthevectorfrom P tothe pointon the surface S and r=|7].

HINT: Choose R sothat S is completely enclosed in the sphere of radiugt. Then
apply Gauss’ Divergence Theorem to the solid region betweén and T(R) using the vector

field F= igf.
T
2. Show that the steradian measure of the solid anglePS  is independent of the radius R .
HINT:  Apply Gauss’ Divergence Theorem to the solid region betwedf(R;) and T(R2) .

24Stewart§§17.6, 17.9.
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3. Use the formula in problem #1 to compute the solid angle subtended by 3 or 4 surfaces. The following
are possible surfaces but you may use any surfaces of your choice. Give appropriate plots. (You can do
this problem before problems #1 and #2.)

(@) Thesquare {y=2,-1<z<1,-1<z<1} asseenfromthe origin.

(b) Theellipse {z=2,92% + 16y% < 25} as seen from the origin.

(c) The paraboloid z =22 +y? asseenfrom (0,0,-1).

(d) The paraboloid z = 2% +4? asseenfrom (0,0,1).

(e) The upper sheet of the hyperboloid of two sheetg = 22 + 42 +1 as seen from the origin.
(f) The upper sheet of the hyperboloid of two sheets? = 22 + 32 +1 asseen from (0,0,2).
(g) The hyperboloid of one sheetz? = 22 +y?> — 1  as seen from the origin.

(h) The torus given in cylindrical coordinates as:> + (r — a)? = b?> as seen from the origin.
(Firsttry a=2 and b=1))
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A.2 Description of the Package

Thevec _calc package is a collection dflaplecommands designed for the study and application of vector
calculus problems.

At the time this book went to press the current versiomaxf _calc was version 4.3 which works with
MapleV Release 4 and Release 5. All of this book was executed in Release 5 using that version. There is
also a version 3 for Release 3, but that version is not being maintained, has slightly different command names
and has an incomplete help system. The version number of your copy is displayed whenever you start the
package. A future version of the package may be included in the share library for a future veidiaplef
Current information about the package is available over the internet using the following URL:

e http://calclab.math.tamu.edu/maple/vec —calc/

A.3 Obtaining and Installing the Files
Before using the package, you must first obtain and install three files: the package index, the package library

and package help database. The file names amaple.ind , maple.lib and maple.hdb .
These are not to be confused with the filesnaple.ind , maple.lib and maple.hdb in the
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standardMaplelibrary. These files are exactly the same for all operating systems. (The version for Release 3
does not have or need the help database.)

The files are available by anonymous FTP. The FTP sitefig.math.tamu.edu and the direc-
toryis  /pub/MapleVR5/vec  calc . The files must be transferred in BINARY mode. The three
files total 352 Kbytes.

You may keep the files on a floppy disk or put them on your hard disk. Here are the recommended
locations on the hard disk:

e DOS/Windows (95, 98 and NT) and OS2:
C:\Program Files \Maple V Release 5 \local \vec _calc

o UNIX/X-Windows:

/usr/local/MapleVR5/local/vec _calc
e Macintosh:
Macintosh HD:Maple V Release 5:local:vec _calc

You will need to create thiocal andvec _calc subdirectories. If you put the files in a different directory
or leave them on a floppy disk, then the instructions below must be appropriately modified.

A.4 Using the Package

To use the commands in threc _calc package, you must first execute two or three commands.
The first command tellMaplewhere the package library files are located. The exact form of this command
is system and installation dependent.

e For DOS/Windows (95, 98 or NT) and OS2 enter:

> libname := libname, "C:\\Program Files\\Maple V Release
5\\local\\vec_calc";

e For UNIX/X-Windows enter:
> libname := libname, "/usr/local/MapleVR5/local/vec_calc";

e For Macintosh enter:
> libname := libname, "Macintosh HD:Maple V Release 5:local:vec_calc";
In each of these commands, you must replace the path by the actual path to the library files as appropriate
for your operating system and where you installed the files. The path is then enclakrbla quotes(”).
Also notice that a DOS directotymust be entered ag,.
The second command reads in the package commands:
> with(vec_calc);
Finally, the third (optional) command defines many abbreviations fovébecalc commands:
> vc_aliases;
This book assumes that you have executed this optional command so that all the aliases are available.
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Below is the output you should expect from these commands.

> libname := libname, "C:\\Program Files\Maple V Release
5\local\\vec_calc";

libname := "C:\\ PROGRAM FILES \MAPLE V RELEASE 5\ \update’
“C:\\PROGRAM FILES, \MAPLE V RELEASE 5)\lib”,

“C:\\Program File§ \Maple V Release 6\local\ \vec.calc”
> with(vec_calc);

Warning, new definition for norm
Warning, new definition for trace
Package: vec_calc  Version 4.3
For all HELP, execute: ?vec_calc

To use aliases, execute:  vc_aliases;

[&., &z, CURL, DIV, GRAD, HESS, JAC, JAC_DET, LAP, Line_int_scalar,
Line_int_vector, Multipleint, POT, Surface_int_scalar, Surface_int_vector,
VEC_POT, cross, curve_acceleration, curve_arclength, curve_binormal,
curve_curvature, curve_forget, curve_jerk, curve_normal,
curve_normal_acceleration, curve_tangent, curve_tangential _acceleration,
curve_torsion, curve_velocity, cyl2rect, cyl2sph, deg2rad, dot, evall,
leading_principal_minor_determinants, len, line_int_scalar, line_int_vector,
makefunction, multipleint, polar2rect, rad2deg, rect2cyl, rect2polar, rect2sph,
sph2cyl, sph2rect, ss, surface_int_scalar, surface_int_vector, vc_aliases)

> vc_aliases;

1, Point, MF, Cv, Ca, Cj, CT, CN, CB, Ck, Ct, CL, CaT, CaN, Cforget, d2r, r2d, p2r, r2p,
c2r, r2c, s2r, r2s, s2c, c2s, Muint, muint, LPMD, Lis, lis, Liv, liv, Sis, sis, Siv, siv
After starting thevec _calc package, you may get help on any command by executing
> ?vec_calc
and following the hyperlinks.

A.5 Automating the Package

You may automate the startup of thec _calc package in two ways: (1) by using command line parameters,
and/or (2) by using Mapleinitialization file.

A.5.1 Command Line Parameters

When you starMaple you may set several options on the command line. For details, read the help page
?maple . In particular, “The -b (library) option tells Maple that the following argument should be used as the
pathname of the directory which contains the Maple library. This initializes the Maple valilaidene .

By default,libname is initialized with the pathname” of the standard library. “More than one -b option can
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be specified. In this casdijbname is initialized to a sequence of libraries in the order they appear on the
command line and the libraries are searched in that order.

To find out the standard library(s) on your machine, exeltobame;  Then the command line argument
can be used to modify tHbname variable.

e For DOS/Windows and OS2: If the currdiiname is
> libname;

“C:\\PROGRAM FILES\\MAPLE V RELEASE 5\\ update’,
“C:\\PROGRAM FILES, \MAPLE V RELEASE 5\\lib”
then you should stailapleusing
"C: \Program Files \Maple V Release 5 \BIN.WNT\wmaple.exe"
-b "C: \PROGRAM FILEGgMAPLE V RELEASE ‘\@pdate"
-b "C: \PROGRAM FILESMAPLE V RELEASE \3ib"
-b "C: \PROGRAM FILEGMAPLE V RELEASE Jocal \vec _calc"

You can put this line in a batch file in the users’ path. Or you can edit the Target Line in the Properties
or Settings window for th&lapleicon to agree with this.

e For UNIX/X-Windows: If the currentibname is
> libname;
“lusr/local/MapleVR5/lib”
then you should staMapleusing

% /usr/local/MapleVR5/bin/maple -x -b /usr/local/MapleVR5/lib
-b /usr/local/MapleVR5/local/vec calc

You can put this line in a shell script in the users’ path.

e For Macintosh: It does not appear possible to use command line arguments, since there is no command
line. (If you figure out how to do it, please tell me. P. Yasskin)

A.5.2 Maplelnitialization Files

Maplecan have two initialization files (except on a Macintosh) which can contain any numidepdé state-
ments which will be executed at the start of every session. A system-wide initialization file (if it exists) will
be executed first. An individual user’s initialization file (if it exists) will be executed next. Any output from
these files will appear in the worksheet and then the prompt will appear. Hence it is usually “recommended
that all statements in the initialization files terminate with a full colon (:) rather than a semicolon, to prevent
any display.”

The names, locations and contents of the initialization files are system dependent.

e For DOS/Windows and OS2:

— The system-wide initialization file is callednaple.ini and it is located in the
C:\PROGRAM FILEGMAPLE V RELEASE \Bib directory.
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— The user’s initialization file is callethaple.ini  and it is located in the user’s Working Direc-
tory.
On Windows 3.x and NT, to set the user’s Working Directory, seleciMbple application icon
in the Program Manager, and select "Properties” under the "File” menu. Modify the field called
"Working Directory”. You can make differen¥aple application icons for different Working
Directories.
On Windows 95 and 98, to set the user's Working Directory, create a shortcut fodapée
application. Select thMaple shortcut icon, click the right mouse button and open "Properties”.
Modify the field called "Start In”. This will be the user’'s Working Directory used when you start
Mapleusing this particular shortcut icon.
On OS2, to set the user’'s Working Directory, select Meple application icon, click the right
mouse button and open "Settings”. Modify the field called "Working Directory”.

— To automate thgec _calc package, the initialization files should contain the three statements

> libname := libname, "C:\\Program Files\Maple V Release
5\local\\vec_calc™:

> with(vec_calc): vc_aliases:

If the path to thevec _calc package is specified on the command line (say in a batch file or in
the Properties window for thdapleicon), then thdibname statement should not be included.
Thevc _aliases:  statement is optional.

e For UNIX/X-Windows:
— The system-wide initialization file is calledmapleinit and it is located in the
{usr/local/MapleVR5/lib directory.

— The user’sinitialization file is callegnapleinit and itis located in the user's home directory.

— To automate thgec _calc package, the initialization files should contain the three statements
> libname := libname, "/usr/local/MapleVR5/local/vec_calc":
> with(vec_calc): vc_aliases:

If the path to thevec _calc package is specified on the command line (say in a system-wide shell
script), then thdibname statement should not be included. TNe_aliases: statement is
optional.

e For Macintosh:
— There is only one initialization file. This system-wide initialization file is calMdplelnit

and it is located in thdMaplefolder, where thélaple application resides.

— To automate thgec _calc package, the initialization files should contain the three statements

> libname := libname, "Macintosh HD:Maple V Release
5:local:vec\_calc™:

> with(vec_calc): vc_aliases:

Thevc _aliases:  statement is optional.



Appendix B

Tables of Applications of Integration

This appendix provides three tables of applications of integration. The first contains applications of double
and triple integrals. The second contains applications of line and surface integrals of scalar fields. The third
contains applications of line and surface integrals of vector fields with alternate forms due to the Fundamental
Theorem of Calculus for Curves, Stokes’ Theorem and Gauss’ Theorem, when appropriate. Examples appear
throughout the text.
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Table B.1: Table of Applications of Multiple Integrals

Application? 2-D 3-D
differential dA = dz dy dV = dxdydz =rdrdfdz
=rdrdf = Jdudv = p*sin(¢) dpdf dp = J du dv dw
measure A= //R 1dA area V= ///R 1dV volume
total mas8 M= // pdA M = /// pdV
R R

electric charge

Q=//Rpch

o fff

moments

My:// xpdA

R

]V[x:// ypdA
R

M= [[[ apav
]b[m:///RypdV
Moy = [[[ zoav

center of mass

(z,y), where

M, M,

=3 U

=

(z,9,%z), where

Myz sz

g=tm = Lo

M

= zZ=

moments of inerti&

R
Iy:// 2 pdA
R
Io://(x2+y2)pdz4
R

M M
Ix:///R(yg—i—zQ)pdV
Iy:///R(a:2+22)pdV
IZ:///R(x2+y2)pdv

radii of gyration

=_Jh =_ |k
Ve YTV

N/A

2R = region of integration
b, = mass density
¢p. = charge density

dThe center of mass is also called the centroid when the density is a constant.

€Note thatly = I, + Iy.
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Table B.2:

APPENDIX B. TABLES OF APPLICATIONS OF INTEGRATION

Table of Applications of Line and Surface Integrals of Scalars

Application®P

Line Integrals

Surface Integrals

scalar differential

ds = |v] dt

dS = |N|du dv

measure

arc length

B
L:/ lds
A

A= // 1dS surface area
S

total mas$

B
M:/
A

pds

]VI://pdS
s

electric charg®é

Q=[me

moments

B
Q=/pms
A

B

M, :/ xpds
A

B
M, = / ypds

]Vlyzz//a:pdS

s

szz// ypdS
s

Mmy://zpdS
s

A
center of mass (z,9,%z), where (z,9,z), where
f:AIyz7§:MT/z, E:Mmy E:AIyz, y:sz7E:MT/y
M M M M M M
moments of inertia I, = /AB(y2 +22) pds I, = //S(y2 + 22) pdS

Iy://s(xQ—sz)pdS
Iz://s(waLyQ)pdS

A = #(a), B = 7(b), wherer(¢) is the curve
bs is the surface

¢p = mass density
dp. = charge density
®The center of mass is also called the centroid when the density is a constant.




Table B.3:

Table of Applications of Line and Surface Integrals of Vectors
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Line Integrals

Surface Integrals

vector differential

ds = vdt =T ds

dS = Ndudv = NdS

open curv&surfacé

B
Work:/ F.ds
A
(B) — f(A)if F=Vf

by Fund. Thm. of Calc. for Curves

flux://ﬁ-diq
S

—

:74 A dsif F=V x A
oS

by Stokes’ Theorem

closed curv8surfacé

Circulation = 7{}3 ds

- / / ¥ x Fods
S
by Stokes’ Theorem

wheredS =7

Ezxpansion :/ F.dS

://S/Vﬁ-ﬁdv

by Gauss’ Theorem

wheregV = S

a8A = #(a), B = 7(b), wherer(t) is the open curve

bgs is the open surface
¢ris the closed curve
45 is the closed surface
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?,seehelp T, seetorsion

curl curl seecurl of the curl 7, seevelocity

curl grad seecurl of the gradient

curl, seecurl acceleration, 31, 196, 212

div curl, seedivergence of the curl normal, 37, 197

div, seedivergence tangential, 37, 197

grad diy seegradient of the divergence addcoords , 103

grad seegradient addition of vectorsseevector: addition
a, seeacceleration algebra of vectorseevector: algebra
ap, seeacceleration: normal allvalues , 70,85

ar, seeacceleration: tangential Ampere’s Law, 145, 208

&x, seecross product angle, 6,191

&. , seedot product angle , seeangle

B, seebinormal vector: unit animate , 67

[ 1 ,seesquare brackets animate curve, 212

., seecolon animate3d , 154

=, seeassignment apartment, 216

V, seedel operatorseegradient apple, 202

V x , seecur] applications of integrals, 92, 100, 230
V x V, seecurl of the gradient approximate value, 4

V x V x , seecurl of the curl aquarium, 79, 88

V'V, seeHessian arc length, 32, 116, 196, 232

\VAVAR seegradient of the divergence scalar differential, 116

V-, seedivergence vector differential, 120

? V%, seedivergence of the curl arc length parameter, 32

V2 =V -V, seelaplacian area, 92, 231

dS, seescalar differential of surface area p-ball, 216

ds, seescalar differential of arc length cardioid, 100

dz9, seevector differential of surface area differential, 107

ds, seevector differential of arc length parallelogram, 8

7, seejerk scalar differential, 127

K, Seecurvature surface, 127, 232

N, seenormal vector: unit principal triangle, 8, 191

% seepercent vector differential, 131

; , seesemi-colon area as a line integral, 125, 165

#, seecomment arrow notation

T', seetangent vector: unit explicit vs.makefunction , 40
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partial derivative, 44
VS. expression notation, 45
assignment, 2
unassign, 2
assume, 136
asymptotes, 16, 17
asymptotic cone, 19

big dipper, 190
binormal vector
unit, 34, 196, 212
bipolar coordinateseecoordinates: bipolar

c2r,11
c2s,11
Ca, seeacceleration
CaN seeacceleration: normal
cardioid, 100
CaT, seeacceleration: tangential
CB, seebinormal vector: unit
center of mass, 93, 102, 118, 128, 220, 231, 232
centroid, 92, 100, 201, 231, 232
chain rule, 55
using implicit differentiation, 59
chargeseeelectric charge
chocolate kiss, 200
circle, 16
osculating, 212
circle ,140
circulation, 124, 172, 205, 233
Cj, segjerk
Ck, seecurvature
CL, seearc length
click in plot, 64
CN seenormal vector: unit principal
colon, 5
comment, 6
\mif completesquare , 16, 19
component, 2
composition, 55
with curve, 60, 116, 120
with surface, 128, 131
concavity, 218
cone, 18,111
4-dimensional, 111
conservative force, 160
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constrained max-min problems, 69, 78, 199

contourplot
contourplot3d
contraction, 178
convergence, 178
convert 47
convert( ., polynom ) ,52
coordinate curve, 104
on surface, 126
coordinate grid, 104
for surface, 126
coordinate tangent vector, 105
for surface, 126
coordinates
2D rectangular, 10, 189
3D rectangular, 11, 189
bipolar, 103
curvilinear, 103
cylindrical, 11, 96, 200
in plot, 64
paraboloidal, 103
polar, 10, 95, 189, 200
spherical, 11, 98, 107, 189, 200

, seeplot: 2D contour
, seeplot: 2D contour

coordplot , 104
coordplot3d , 104
coords , 103

critical points, 199
classifying, 75
finding, 70
cross , seecross product
cross (quadric), 16, 17
cross product, 8, 126, 191
CT, seetangent vector: unit
Ct, seetorsion
CURL, seecurl
curl, 144, 151, 208
interpretation, 204
curl , seecurl
curl of the gradient, 148, 151
Curl TheoremseeStokes’ Theorem
current,seeelectric current
curvature, 36, 196, 212
curve
2D plot, 23
3D plot, 23
analysis, 29, 196
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parametric, 21, 25, 116, 193, 212
quadric, 16, 192
reparametrize, 32
curve _acceleration , seeacceleration
curve _binormal , seebinormal vector: unit
curve _curvature ,seecurvature
curve _jerk ,segjerk
curve _length ,seearc length
curve _normal , seenormal vector:
unit principal
curve _normal _acceleration , see
acceleration: normal
curve _tangent ,seetangentvector: unit
curve _tangential  _acceleration , see
acceleration: tangential
curve _torsion , seetorsion
curve _velocity ,seevelocity
curvilinear coordinateseecoordinates:
curvilinear
cusp, 21
Cv, seevelocity
cyl2rect ,11
cyl2sph |11
cylinder, 18
cylinderplot , 97
cylindrical coordinatesseecoordinates:
cylindrical

D, 28, 31, 44, 105, 126
d2r ,5
decimal approximation, 4
deg2rad ,5
degrees, 5, 6
del operator, 139
density

linear, 118

surface, 128
derivative, 27
derivative along curve, 58, 60
derivative along vector, 60
dessert, 200
Diff , 27
diff ,44
differential, 49

n-volume, 107

area, 107
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identities,seeidentities: differential
volume, 107
differential of arc length
scalar, 116
vector, 120
differential of surface area
scalar, 127
vector, 131
direction of a vector, 4
direction vector, 12
directional derivative, 58, 61
display 41,50, 63
DIV, seedivergence
diverge , seedivergence
divergence, 139, 151, 178, 206
interpretation, 203
divergence of the curl, 149, 151
Divergence TheorenseeGauss’ Theorem
donut, 222
dot , seedot product
dot product, 4, 191

electric charge, 39, 138, 142, 206, 208, 231, 232

electric current, 138, 145, 208
electric field, 206
eliminating variables, 69, 79, 84
ellipse, 16, 17, 29, 42, 80, 82, 224
ellipsoid, 18, 47
elliptic paraboloid, 18
equate , 12,70
estimate

using differentials, 49
evalf ,4
evall ,3
expansion, 135, 178, 203, 233
expression, 40

partial derivative, 44
expression notation

VS. arrow notation, 45

fieldplot , seeplot: 2D vector field
fieldplot3d , seeplot: 3D vector field
fluid, 124, 134, 135

flux, 134, 172, 233

4-dimensional cone, 111
4-dimensional sphere, 219
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4-dimensional volume, 111, 219
Frenetseecurve: analysis
fsolve ,70
function
derivative along curve, 60
restriction to curve, 60, 116
restriction to surface, 128
Fundamental Theorem of Calculus, 156

Fundamental Theorem of Calculus for Curves, 157,

158, 160, 233

Gauss’ Law, 138, 142, 206

Gauss’' Theorem, 137, 174, 203, 206, 223, 233

2-Dimensional, 161
GRADseegradient
grad , seegradient
gradient, 46, 70, 139, 151, 216
as normal, 66
higher order, 148
in chain rule, 57
in directional derivative, 60
interpretation, 63
method, 213
plot, 63, 66
gradplot , seeplot: 2D gradient field
gradplot3d , seeplot: 3D gradient field
grain silo dome, 129
graph,seeplot
gravity, 160, 211
Green’'s Theorem, 125, 161
grid ,18

helix, 29

help, 27

HESS seeHessian

Hessian, 46, 76, 147

hessian , seeHessian
hyperbola, 16, 17, 43
hyperbolic paraboloid, 18, 20
hyperboloid of 1 sheet, 18, 224
hyperboloid of 2 sheets, 18, 19, 224
hypersphere, 218
hypervolume, 218

ice cream cone, 202
identities

differential, 150, 155
Im, 186
implicit differentiation, 50, 198
in chain rule, 59
implicitplot , seeplot: 2D implicit
implicitplot3d , seeplot: 3D implicit
independent , 70
Int , 28
integral, 27

JAC, 106

JAC_DET, 106

Jacobian
curvilinear, 105
cylindrical, 96
polar, 95
spherical, 98

jerk, 31, 196

labs, 188
Lagrange multipliers, 69, 82, 84, 200, 215
LAP, seeLaplacian
Laplacian, 146
of vector, 147
laplacian , seelLaplacian
leading principal minor determinants, 76
left hand side, 17
len , 2,32
length, 2
level curve, 41
level surface, 66
Ihs , seeleft hand side
Limit 27
limit, 27
line
2D non-parametric, 15
3D non-parametric, 15
parametric, 12, 192, 214
symmetric, 15
line integral
of a scalar, 116, 232
of a vector, 120, 208, 233
line integrals as surface integrals, 168
linear approximation, 48, 197, 212
list
vs. vector, 47
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list 47
list of lists

VS. matrix, 47
listlist , 47
locate apartment, 216
LPMD, 76

magnetic field, 208
makefunction ,seeMF
map, 27, 147
mass, 93, 102, 118, 128, 220, 231, 232
mathematical induction, 219
matrix
vs. list of lists, 47
matrix , 46, 47, 147
max-min problems, 69, 78, 199
two constraints, 84
maximum, 75, 76, 211, 213, 222
ME 25, 29, 40, 104, 126
middlesum , 221
minimum, 75, 76, 211, 213, 215, 216, 218, 222
moment of inertia, 95, 102, 118, 128, 231, 232
moments, 92, 93, 101, 231, 232
mtaylor , seeTaylor polynomial
Muint , 89, 221
muint , 89
multiple integral, 200
applications, 231
curvilinear, 107, 108
cylindrical, 97
middlesum, 221
polar, 95, 218
rectangular, 89, 217-219
spherical, 98, 219
Multipleint , 89
multipleint , 89

n-dimensional sphere, 218
n-dimensional volume, 218
n-volume differential, 107
Newton’s Law, 211
Newton’s method, 212
non-parametric
line, seeline: non-parametric
plane,seeplane: non-parametric
nops , 53
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normal acceleratiorseeacceleration: normal
normal vector

to 2D line, 15

to level surface, 66

to plane, 13, 14

to surface, 126

unit principal, 34, 196, 212
north star, 190

op, 26

orientation of surface, 131
orienteering, 189
orthogonal projection, 7
osculating circle, 212

p-ball, 216
p2r, 10
parabola, 16
paraboloid
elliptic, 18, 224
hyperbolic, 18, 20
paraboloidal coordinateseecoordinates:
paraboloidal
parallelepiped
volume, 8, 192
parallelogram
area, 8
parameter, 12, 13, 25
parametric
curve,seecurve: parametric
line, seeline: parametric
plane,seeplane: parametric
plot of curve,seeplot
plot of surfaceseeplot
surface seesurface: parametric
parametrizing constraints, 69, 80, 84
partial derivative
arrow notation, 44
expression, 44
path independence, 158, 160, 180
percent, 3
pie wedge, 201
plane
non-parametric, 14, 192
parametric, 13
tangentseetangent plane
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Planet X, 220

plot
2D contour, 41, 63, 214, 216
2D gradient field, 63, 66
2D graph, 23, 41, 214, 217
2D implicit, 16, 23, 41, 217, 218
2D parametric, 218

2D parametric curve, 21, 23, 29, 41, 96, 193

2D vector field, 63, 140

3D gradient field, 63, 66

3D graph, 23, 41

3D implicit, 19, 23, 50, 219

3D parametric, 219

3D parametric curve, 22, 23, 29, 196

3D parametric surface, 22, 23, 97, 126, 220,

223
3D vector field, 63, 141
click in, 64
cylindrical, 97
donut, 223
dot-to-dot, 189, 211, 216
Planet X, 220
points, 189
polar, 96
spherical, 220
tangent plane, 48, 50
Taylor polynomial, 54
text, 63
plot , seeplot: 2D
plot3d , seeplot: 3D
plot:3D implicit, 197
point, 1
polar coordinateseecoordinates: polar
polar2rect ,10
polarplot , 96
position, 25, 30, 116
POT, seescalar potential
potential
scalar,seescalar potential
vector,seevector potential
potential  , seescalar potential
potential energy, 160
product rulesseeidentities: differential
projection
orthogonalseeorthogonal projection
scalarseescalar projection
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vector,seevector projection
projects, 210

quadratic approximation, 52, 197
quadric curveseecurve: quadric
quadric surfaceseesurface: quadric

r2c , 11
r2d ,6
r2p , 10
r2s , 11
rad2deg , 6
radians, 5, 6
radii of gyration, 95, 231
Re, 186
readlib , 53
rectzcyl ,11
rect2polar , 10
rect2sph , 11
rectangular coordinateseecoordinates:
rectangular

related line and surface integrals, 179
related surface and volume integrals, 182
reparametrize a curve, 32
restriction

to curve, 60, 116, 120

to surface, 128, 131
reversing the normal, 131
rhs , seeright hand side
right hand side, 17
RootOf , 70, 85

s2c,11
s2r, 11
saddle point, 75, 76
scalar, 1
restriction to curve, 116
restriction to surface, 128
scalar differential
of arc length, 116
of surface area, 127
scalar function
of several variable, 40
partial derivative, 44
scalar multiplicationseevector:
scalar multiplication
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scalar potential, 151, 152, 158, 160 of a vector, 131, 206, 208, 233
scalar projection, 6, 191 surface integrals as line integrals, 168
Second Derivative Test iR?, 75, 218 surface integrals as volume integrals, 176
Second Derivative Test iR", 76 symmetric equations for line, 15
semi-colon, 1, 5
sink, 178 Table B.1, 92, 100, 231
skimpy donut, 222 Table B.2, 118, 128, 232
solid angle, 223 Table B.3, 122, 133, 160, 172,178, 233
solve ,70 tangent function, 48
source, 178 tangent plane, 218
space, 5 graph vs. level surface, 66
spaceballs, 216 in Newton’s method, 213
spacecurve ,seeplot: 3D parametric curve plot, 48
speed, 32, 196 to graph, 47,198
sph2cyl ,11 to level surface, 66, 198
sph2rect ,11 tangent vector, 12
sphere, 18 curvilinear coordinate, 105
n-dimensional, 218 to surface, 126
4-dimensional, 219 unit, 34, 196, 212
sphere , 141 tangential acceleratiosgeacceleration:
sphereplot , 220 tangential
spherical coordinatesgecoordinates: taylor ,52
spherical Taylor polynomial, 53, 148, 198
spiral helix, 117 approximation, 52
spiral ramp, 126 contour plot, 54
square brackets, 2, 26 order term, 52
starship, 56 ordinary plot, 54
steepest ascent, 213 textplot , 63
step , 89 torsion, 36, 197
steradian measure, 223 torus, 222, 224
Stokes’ Theorem, 167, 170, 204, 208, 233 trash dumpster, 215
2-Dimensional, 161 triangle
surface area, 8, 191
3D plot, 23
normal vector, 126 unassign, 2
orientation, 131 unconstrained max-min problems, 69, 199
parametric, 22, 125 unit vector, 4
quadric, 18, 192, 198
tangent vector, 126 value
surface area, 127, 232 on curve, 60, 116, 120
donut, 223 on surface, 128, 131
scalar differential, 127 value 32,89
vector differential, 131 vec _calc package, 225
surface independence, 170, 183 VECPOT, seevector potential
surface integral vecpotent , seevector potential

of a scalar, 128, 232 vector, 1
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addition, 3, 189

algebra, 1

direction of, 4

direction of line, 12

normal to 2D line, 15
normal to plane, 13, 14
restriction to curve, 120
restriction to surface, 131
scalar multiplication, 3, 189
tangent to line, 12

unit, 4
vs. list, 47
vector , 47

vector differential

of arc length, 120

of surface area, 131
vector function

of one variable, 25

of several variables, 103

partial derivative, 105
vector potential, 151, 153, 170
vector projection, 7, 191
velocity, 31, 116, 196, 212

in chain rule, 57

in derivative along curve, 60
volume, 231

n-dimensional, 218

4-dimensional, 111, 219

differential, 107

parallelepiped, 8, 192

to tangent plane, 218

torus, 222
volume as a surface integral, 137, 177
volume integral, 200, 206

word problems, 78
work, 7,122, 159, 233



