Math 304–504 Linear Algebra **Lecture 11:**

Vector spaces and their subspaces.

Vector space

Vector space is a set *V* equipped with two operations $\alpha : V \times V \to V$ and $\mu : \mathbb{R} \times V \to V$ that have certain properties (listed below).

The operation α is called *addition*. For any $\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u} + \mathbf{v}$.

The operation μ is called *scalar multiplication*. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r\mathbf{u}$. Properties of addition and scalar multiplication

A1. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ for all $\mathbf{a}, \mathbf{b} \in V$.

A2. $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.

A3. There exists an element of V, called the *zero* vector and denoted **0**, such that $\mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a}$ for all $\mathbf{a} \in V$.

A4. For any $\mathbf{a} \in V$ there exists an element of V, denoted $-\mathbf{a}$, such that $\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$. A5. $r(\mathbf{a} + \mathbf{b}) = r\mathbf{a} + r\mathbf{b}$ for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in V$. A6. $(r + s)\mathbf{a} = r\mathbf{a} + s\mathbf{a}$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A7. $(rs)\mathbf{a} = r(s\mathbf{a})$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A8. $1\mathbf{a} = \mathbf{a}$ for all $\mathbf{a} \in V$. • Associativity of addition implies that a multiple sum $\mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_k$ is well defined for any $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in V$.

• Subtraction in V is defined as usual: $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}).$

• Addition and scalar multiplication are called **linear operations**.

Given
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$$
 and $r_1, r_2, \dots, r_k \in \mathbb{R}$,
$$\boxed{r_1 \mathbf{u}_1 + r_2 \mathbf{u}_2 + \dots + r_k \mathbf{u}_k}$$

is called a **linear combination** of $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{a} \in V$, the negative $-\mathbf{a}$ is unique.
- $\mathbf{a} + \mathbf{b} = \mathbf{c} \iff \mathbf{a} = \mathbf{c} \mathbf{b}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
- $\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{c} \iff \mathbf{a} = \mathbf{b}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
- $0\mathbf{a} = \mathbf{0}$ for any $\mathbf{a} \in V$.
- $(-1)\mathbf{a} = -\mathbf{a}$ for any $\mathbf{a} \in V$.

Examples of vector spaces

In most examples, addition and scalar multiplication are natural operations so that properties A1–A8 are easy to verify.

- \mathbb{R} : real numbers
- $\mathbb{R}^n \ (n \ge 1)$: coordinate vectors
- \mathbb{C} : complex numbers
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries (also denoted $\mathbb{R}^{m \times n}$)
 - \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \dots) , $x_i \in \mathbb{R}$
 - $\{0\}$: the trivial vector space

Functional vector spaces

- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- \widetilde{P}_n : polynomials of degree *n* (**not** a vector space)
- \mathcal{P}_n : polynomials of degree at most n
- $F(\mathbb{R})$: all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$
- $F(\mathbb{R}) \setminus C(\mathbb{R})$: all discontinuous functions $f : \mathbb{R} \to \mathbb{R}$ (**not** a vector space)
- $C^1[a, b]$: all continuously differentiable functions $f : [a, b] \rightarrow \mathbb{R}$
- $C^{\infty}[a, b]$: all smooth functions $f : [a, b] \to \mathbb{R}$

Counterexample: dumb scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$r \odot \mathbf{a} = \mathbf{0}$$
 for any $\mathbf{a} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5. $r \odot (\mathbf{a} + \mathbf{b}) = r \odot \mathbf{a} + r \odot \mathbf{b}$ $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$ A6. $(r + s) \odot \mathbf{a} = r \odot \mathbf{a} + s \odot \mathbf{a}$ $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$ A7. $(rs) \odot \mathbf{a} = r \odot (s \odot \mathbf{a})$ $\iff \mathbf{0} = \mathbf{0}$ A8. $1 \odot \mathbf{a} = \mathbf{a}$ $\iff \mathbf{0} = \mathbf{a}$

A8 is the only property that fails. As a consequence, property A8 does not follow from properties A1–A7.

Counterexample: lazy scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$\boxed{r \odot \mathbf{a} = \mathbf{a}}$$
 for any $\mathbf{a} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5. $r \odot (\mathbf{a} + \mathbf{b}) = r \odot \mathbf{a} + r \odot \mathbf{b} \iff \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b}$ A6. $(r + s) \odot \mathbf{a} = r \odot \mathbf{a} + s \odot \mathbf{a} \iff \mathbf{a} = \mathbf{a} + \mathbf{a}$ A7. $(rs) \odot \mathbf{a} = r \odot (s \odot \mathbf{a}) \iff \mathbf{a} = \mathbf{a}$ A8. $1 \odot \mathbf{a} = \mathbf{a} \iff \mathbf{a} = \mathbf{a}$

The only property that fails is A6.

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- \mathcal{P}_n : polynomials of degree at most n \mathcal{P}_n is a subspace of \mathcal{P} .
 - $F(\mathbb{R})$: all functions $f : \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\mathbf{x}, \mathbf{y} \in S \implies \mathbf{x} + \mathbf{y} \in S,$$

 $\mathbf{x} \in S \implies r\mathbf{x} \in S \text{ for all } r \in \mathbb{R}.$

Proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for *S* because they hold for *V*. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that *S* is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$.

System of linear equations:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

Any solution (x_1, x_2, \ldots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all equations in the system are homogeneous (all $b_i = 0$).

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all equations in the system are homogeneous (all $b_i = 0$).

Proof: "only if": the zero vector $\mathbf{0} = (0, 0, \dots, 0)$ is a solution only if all equations are homogeneous.

"if": if all equations are homogeneous then the solution set is not empty because it contains $\mathbf{0}$.

Suppose $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ are solutions. That is, for every $1 \le i \le m$

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = 0,$$

 $a_{i1}y_1 + a_{i2}y_2 + \cdots + a_{in}y_n = 0.$

Then $a_{i1}(x_1 + y_1) + a_{i2}(x_2 + y_2) + \dots + a_{in}(x_n + y_n) = 0$ and $a_{i1}(rx_1) + a_{i2}(rx_2) + \dots + a_{in}(rx_n) = 0$ for all $r \in \mathbb{R}$. Hence $\mathbf{x} + \mathbf{y}$ and $r\mathbf{x}$ are also solutions. Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Consider the set L of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

Theorem L is a subspace of V.

Proof: First of all, *L* is not empty. For example, $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$ belongs to *L*.

The set L is closed under addition since

 $(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)+(s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_n\mathbf{v}_n)=$ = $(r_1+s_1)\mathbf{v}_1+(r_2+s_2)\mathbf{v}_2+\cdots+(r_n+s_n)\mathbf{v}_n.$

The set *L* is closed under scalar multiplication since $t(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n) = (tr_1)\mathbf{v}_1+(tr_2)\mathbf{v}_2+\cdots+(tr_n)\mathbf{v}_n.$ *Example.* $V = \mathbb{R}^3$.

- The plane z = 0 is a subspace of \mathbb{R}^3 .
- The plane z = 1 is not a subspace of \mathbb{R}^3 .

• The line t(1,1,0), $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 and a subspace of the plane z = 0.

• The line (1,1,1) + t(1,-1,0), $t \in \mathbb{R}$ is not a subspace of \mathbb{R}^3 as it lies in the plane x + y + z = 3, which does not contain **0**.

• The plane $t_1(1,0,0) + t_2(0,1,1)$, $t_1, t_2 \in \mathbb{R}$ is a subspace of \mathbb{R}^3 .

• In general, a line or a plane in \mathbb{R}^3 is a subspace if and only if it passes through the origin.