Math 304-504
Linear Algebra
Lecture 12:
Span.

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Examples.

- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- \mathcal{P}_{n} : polynomials of degree less than n \mathcal{P}_{n} is a subspace of \mathcal{P}.
- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \Longrightarrow \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R} .
\end{gathered}
$$

Remarks. The zero vector in a subspace is the same as the zero vector in V. Also, the subtraction in a subspace is the same as in V.

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an element of \mathbb{R}^{n}.
Theorem The solution set of the system is a subspace of \mathbb{R}^{n} if and only if all equations in the system are homogeneous (all $b_{i}=0$).

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$. Consider the set L of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.

Theorem L is a subspace of V.
Definition. The subspace L is called the span of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ and denoted

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)
$$

If $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)=V$, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is called a spanning set for V.

Remark. $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$ is the minimal subspace of V that contains $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Example. $\quad V=\mathbb{R}^{3}$.

- The plane $z=0$ is a subspace of \mathbb{R}^{3}.
- The line $t(1,1,0), t \in \mathbb{R}$ is a subspace of \mathbb{R}^{3} and a subspace of the plane $z=0$.
- The plane $t_{1}(1,0,0)+t_{2}(0,1,1), t_{1}, t_{2} \in \mathbb{R}$ is a subspace of \mathbb{R}^{3}.
- In general, a line or a plane in \mathbb{R}^{3} is a subspace if and only if it passes through the origin.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R}): \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

- diagonal matrices: $b=c=0$
- upper triangular matrices: $c=0$
- lower triangular matrices: $b=0$
- symmetric matrices $\left(A^{T}=A\right): \quad b=c$
- anti-symmetric matrices $\left(A^{T}=-A\right)$:

$$
a=d=0, c=-b
$$

- matrices with zero trace: $a+d=0$
(trace $=$ the sum of diagonal entries)
- matrices with zero determinant, $a d-b c=0$, do not form a subspace: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ consists of all matrices of the form

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) .
$$

This is the subspace of diagonal matrices.

- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ consists of all matrices of the form

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) .
$$

This is the subspace of symmetric matrices.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is the subspace of anti-symmetric matrices.
- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
is the subspace of upper triangular matrices.
- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
is the entire space $\mathcal{M}_{2,2}(\mathbb{R})$.

Examples of subspaces of $C^{\infty}(\mathbb{R})$:

- $f^{\prime \prime}(x)-f(x)=0,-\infty<x<\infty$

Solutions of this ODE form a subspace.
First of all, 0 is a solution. Further, if f and g are solutions, $f^{\prime \prime}-f=0$ and $g^{\prime \prime}-g=0$, then $(f+g)^{\prime \prime}-(f+g)=0$ and $(r f)^{\prime \prime}-r f=0$ for any $r \in \mathbb{R}$.
The subspace is spanned by functions e^{x} and e^{-x}.

- $f^{\prime \prime}(x)+f(x)=0,-\infty<x<\infty$

Solutions form a subspace, which is spanned by functions $\sin x$ and $\cos x$.

- $f^{\prime \prime}(x)=0,-\infty<x<\infty$

Solutions form a subspace, which is spanned by functions 1 and x.

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{w}=(4,-7,3)$. Determine whether \mathbf{w} belongs to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

We have to check if there exist $r_{1}, r_{2} \in \mathbb{R}$ such that $\mathbf{w}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}$. This vector equation is equivalent to a system of linear equations:
$\left\{\begin{aligned} 4 & =r_{1}+3 r_{2} \\ -7 & =2 r_{1}+r_{2} \\ 3 & =0 r_{1}+r_{2}\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=-5 \\ r_{2}=3\end{array}\right.\right.$
Thus $\mathbf{w}=-5 \mathbf{v}_{1}+3 \mathbf{v}_{2} \in \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Notice that \mathbb{R}^{2} is spanned by vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ since $(x, y)=x \mathbf{e}_{1}+y \mathbf{e}_{2}$. Hence it is enough to check that vectors \mathbf{e}_{1} and \mathbf{e}_{2} belong to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \supset \operatorname{Span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=\mathbb{R}^{2}
$$

$\mathbf{e}_{1}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}2 r_{1}+r_{2}=1 \\ 5 r_{1}+3 r_{2}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=3 \\ r_{2}=-5\end{array}\right.\right.$
$\mathbf{e}_{2}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}2 r_{1}+r_{2}=0 \\ 5 r_{1}+3 r_{2}=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=-1 \\ r_{2}=2\end{array}\right.\right.$
Thus $\mathbf{e}_{1}=3 \mathbf{v}_{1}-5 \mathbf{v}_{2}$ and $\mathbf{e}_{2}=-\mathbf{v}_{1}+2 \mathbf{v}_{2}$.

