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Linear Algebra

Lecture 13:

Linear independence.



Span: implicit definition

Let S be a subset of a vector space V .

Definition. The span of the set S , denoted
Span(S), is the smallest subspace of V that

contains S . That is,

• Span(S) is a subspace of V ;

• for any subspace W ⊂ V one has

S ⊂ W =⇒ Span(S) ⊂ W .

Remark. The span of any set S ⊂ V is well defined
(it is the intersection of all subspaces of V that

contain S).



Span: effective description

Let S be a subset of a vector space V .

• If S = {v1, v2, . . . , vn} then Span(S) is the set

of all linear combinations r1v1 + r2v2 + · · · + rnvn,
where r1, r2, . . . , rn ∈ R.

• If S is an infinite set then Span(S) is the set of

all linear combinations r1u1 + r2u2 + · · · + rkuk ,
where u1, u2, . . . , uk ∈ S and r1, r2, . . . , rk ∈ R

(k ≥ 1).

• If S is the empty set then Span(S) = {0}.



Spanning set

Definition. A subset S of a vector space V is

called a spanning set for V if Span(S) = V .

Examples.

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and

e3 = (0, 0, 1) form a spanning set for R
3 as

(x , y , z) = xe1 + ye2 + ze3.

• Matrices

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

form a spanning set for M2,2(R) as
(

a b

c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.



Linear independence

Definition. Let V be a vector space. Vectors

v1, v2, . . . , vk ∈ V are called linearly dependent if
they satisfy a relation

r1v1 + r2v2 + · · · + rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are

called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

An infinite set S ⊂ V is linearly dependent if

there are some linearly dependent vectors v1, . . . , vk ∈ S .
Otherwise S is linearly independent.



Theorem The following conditions are equivalent:

(i) vectors v1, . . . , vk are linearly dependent;
(ii) one of vectors v1, . . . , vk is a linear combination

of the other k − 1 vectors.

Proof: (i) =⇒ (ii) Suppose that

r1v1 + r2v2 + · · · + rkvk = 0,

where ri 6= 0 for some 1 ≤ i ≤ k . Then

vi = − r1
ri
v1 − · · · − ri−1

ri
vi−1 −

ri+1

ri
vi+1 − · · · − rk

ri
vk .

(ii) =⇒ (i) Suppose that

vi = s1v1 + · · · + si−1vi−1 + si+1vi+1 + · · · + skvk

for some scalars sj . Then

s1v1 + · · · + si−1vi−1 − vi + si+1vi+1 + · · · + skvk = 0.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and

e3 = (0, 0, 1) in R
3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0

=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0

1 0

)

, and E22 =

(

0 0

0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Examples of linear independence

• Polynomials 1, x , x2, . . . , xn.

a0 + a1x + a2x
2 + · · ·+ anx

n = 0 identically
=⇒ ai = 0 for 0 ≤ i ≤ n

• The infinite set {1, x , x2, . . . , xn, . . . }.

• Polynomials p1(x) = 1, p2(x) = x − 1, and

p3(x) = (x − 1)2.

a1p1(x) + a2p2(x) + a3p3(x) = a1 + a2(x − 1) + a3(x − 1)2 =
= (a1 − a2 + a3) + (a2 − 2a3)x + a3x

2.

Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically
=⇒ a1 − a2 + a3 = a2 − 2a3 = a3 = 0
=⇒ a1 = a2 = a3 = 0



Problem Let v1 = (1, 2, 0), v2 = (3, 1, 1), and
v3 = (4,−7, 3). Determine whether vectors

v2, v2, v3 are linearly independent.

We have to check if there exist r1, r2, r3 ∈ R not all
zero such that r1v1 + r2v2 + r3v3 = 0.

This vector equation is equivalent to a system






r1 + 3r2 + 4r3 = 0
2r1 + r2 − 7r3 = 0

0r1 + r2 + 3r3 = 0





1 3 4 0
2 1 −7 0

0 1 3 0





The vectors v1, v2, v3 are linearly dependent if and

only if the matrix A = (v1, v2, v3) is singular.
We obtain that det A = 0.



Theorem Vectors v1, v2, . . . , vm ∈ R
n are linearly

dependent whenever m > n.

Proof: Let vj = (a1j , a2j , . . . , anj) for j = 1, 2, . . . , m.
Then the vector identity t1v1 + t2v2 + · · · + tmvm = 0

is equivalent to the system














a11t1 + a12t2 + · · · + a1mtm = 0,

a21t1 + a22t2 + · · · + a2mtm = 0,
· · · · · · · · ·

an1t1 + an2t2 + · · · + anmtm = 0.

Vectors v1, v2, . . . , vm are columns of the matrix (aij).

If m > n then the system is under-determined,
therefore the zero solution is not unique.



Spanning sets and linear dependence

Let v0, v1, . . . , vk be vectors from a vector space V .

Proposition If v0 is a linear combination of vectors
v1, . . . , vk then

Span(v0, v1, . . . , vk) = Span(v1, . . . , vk).

Indeed, if v0 = r1v1 + · · · + rkvk , then

t0v0 + t1v1 + · · · + tkvk =

= (t0r1 + t1)v1 + · · · + (t0rk + tk)vk .

Corollary Any spanning set for a vector space is

minimal if and only if it is linearly independent.



Proposition Functions 1, ex , and e−x are linearly

independent.

Proof: Suppose that a + bex + ce−x = 0 for some
a, b, c ∈ R. We have to show that a = b = c = 0.

x = 0 =⇒ a + b + c = 0
x = 1 =⇒ a + be + ce−1 = 0

x = −1 =⇒ a + be−1 + ce = 0

The matrix of the system is A =





1 1 1
1 e e−1

1 e−1 e



.

det A = e2 − e−2 − 2e + 2e−1 =

= (e − e−1)(e + e−1) − 2(e − e−1) =
= (e−e−1)(e+e−1−2) = (e−e−1)(e1/2−e−1/2)2 6= 0.

Hence the system has a unique solution a = b = c = 0.



Proposition Functions 1, ex , and e−x are linearly

independent.

Alternative proof: Suppose that

a + bex + ce−x = 0 for some a, b, c ∈ R.

Differentiate this identity twice:
bex − ce−x = 0,

bex + ce−x = 0.

It follows that bex = ce−x = 0 =⇒ b = c = 0.

Then a = 0 as well.



Theorem Let λ1, λ2, . . . , λk be distinct real

numbers. Then the functions eλ1x , eλ2x , . . . , eλkx

are linearly independent.

Furthermore, the set of functions xmeλix ,
1 ≤ i ≤ k , m = 0, 1, 2, . . . is also linearly
independent.


