Math 304–504 Linear Algebra

Lecture 13: Linear independence.

Span: implicit definition

Let S be a subset of a vector space V.

Definition. The **span** of the set S, denoted Span(S), is the smallest subspace of V that contains S. That is,

- Span(S) is a subspace of V;
- for any subspace $W \subset V$ one has $S \subset W \implies \operatorname{Span}(S) \subset W$.

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

• If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

• If S is an infinite set then Span(S) is the set of all linear combinations $r_1\mathbf{u}_1 + r_2\mathbf{u}_2 + \cdots + r_k\mathbf{u}_k$, where $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in S$ and $r_1, r_2, \ldots, r_k \in \mathbb{R}$ $(k \ge 1)$.

• If S is the empty set then $\operatorname{Span}(S) = \{\mathbf{0}\}.$

Spanning set

Definition. A subset S of a vector space V is called a **spanning set** for V if Span(S) = V. Examples.

• Vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ form a spanning set for \mathbb{R}^3 as $(x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$. • Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a spanning set for $\mathcal{M}_{2,2}(\mathbb{R})$ as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0}$$
,

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=\mathbf{0}.$$

An infinite set $S \subset V$ is **linearly dependent** if there are some linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in S$. Otherwise S is **linearly independent**. **Theorem** The following conditions are equivalent: (i) vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly dependent; (ii) one of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a linear combination of the other k - 1 vectors.

Proof: (i)
$$\Longrightarrow$$
 (ii) Suppose that
 $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k = \mathbf{0}$,
where $r_i \neq 0$ for some $1 \leq i \leq k$. Then
 $\mathbf{v}_i = -\frac{r_1}{r_i}\mathbf{v}_1 - \cdots - \frac{r_{i-1}}{r_i}\mathbf{v}_{i-1} - \frac{r_{i+1}}{r_i}\mathbf{v}_{i+1} - \cdots - \frac{r_k}{r_i}\mathbf{v}_k$.
(ii) \Longrightarrow (i) Suppose that
 $\mathbf{v}_i = s_1\mathbf{v}_1 + \cdots + s_{i-1}\mathbf{v}_{i-1} + s_{i+1}\mathbf{v}_{i+1} + \cdots + s_k\mathbf{v}_k$
for some scalars s_j . Then
 $s_1\mathbf{v}_1 + \cdots + s_{i-1}\mathbf{v}_{i-1} - \mathbf{v}_i + s_{i+1}\mathbf{v}_{i+1} + \cdots + s_k\mathbf{v}_k = \mathbf{0}$

Examples of linear independence

• Vectors
$$\mathbf{e}_1 = (1,0,0)$$
, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ in \mathbb{R}^3 .

 $x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3 = \mathbf{0} \implies (x, y, z) = \mathbf{0}$ $\implies x = y = z = 0$

• Matrices
$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
 $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
 $aE_{11} + bE_{12} + cE_{21} + dE_{22} = 0 \implies \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$
 $\implies a = b = c = d = 0$

Examples of linear independence

• Polynomials $1, x, x^2, \ldots, x^n$.

 $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$ identically $\implies a_i = 0$ for $0 \le i \le n$

• The infinite set $\{1, x, x^2, \ldots, x^n, \ldots\}$.

• Polynomials
$$p_1(x) = 1$$
, $p_2(x) = x - 1$, and $p_3(x) = (x - 1)^2$.

$$\begin{aligned} a_1 p_1(x) + a_2 p_2(x) + a_3 p_3(x) &= a_1 + a_2(x-1) + a_3(x-1)^2 = \\ &= (a_1 - a_2 + a_3) + (a_2 - 2a_3)x + a_3x^2. \\ \text{Hence } a_1 p_1(x) + a_2 p_2(x) + a_3 p_3(x) = 0 \quad \text{identically} \\ &\implies a_1 - a_2 + a_3 = a_2 - 2a_3 = a_3 = 0 \\ &\implies a_1 = a_2 = a_3 = 0 \end{aligned}$$

Problem Let $\mathbf{v}_1 = (1, 2, 0)$, $\mathbf{v}_2 = (3, 1, 1)$, and $\mathbf{v}_3 = (4, -7, 3)$. Determine whether vectors $\mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

We have to check if there exist $r_1, r_2, r_3 \in \mathbb{R}$ not all zero such that $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3 = \mathbf{0}$. This vector equation is equivalent to a system

$$\begin{cases} r_1 + 3r_2 + 4r_3 = 0 \\ 2r_1 + r_2 - 7r_3 = 0 \\ 0r_1 + r_2 + 3r_3 = 0 \end{cases} \begin{pmatrix} 1 & 3 & 4 & | & 0 \\ 2 & 1 & -7 & | & 0 \\ 0 & 1 & 3 & | & 0 \end{pmatrix}$$

The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent if and only if the matrix $A = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is singular. We obtain that det A = 0. **Theorem** Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$ are linearly dependent whenever m > n.

Proof: Let $\mathbf{v}_j = (a_{1j}, a_{2j}, \dots, a_{nj})$ for $j = 1, 2, \dots, m$. Then the vector identity $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \dots + t_m\mathbf{v}_m = \mathbf{0}$ is equivalent to the system

$$\left\{ egin{array}{ll} a_{11}t_1+a_{12}t_2+\cdots+a_{1m}t_m=0,\ a_{21}t_1+a_{22}t_2+\cdots+a_{2m}t_m=0,\ \cdots\cdots\cdots a_{n1}t_1+a_{n2}t_2+\cdots+a_{nm}t_m=0. \end{array}
ight.$$

Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are columns of the matrix (a_{ij}) . If m > n then the system is under-determined, therefore the zero solution is not unique.

Spanning sets and linear dependence

Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ be vectors from a vector space V. **Proposition** If \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\operatorname{Span}(\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k) = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$.

Indeed, if
$$\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$$
, then
 $t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k =$
 $= (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k$.

Corollary Any spanning set for a vector space is minimal if and only if it is linearly independent.

Proposition Functions 1, e^x , and e^{-x} are linearly independent.

Proof: Suppose that $a + be^x + ce^{-x} = 0$ for some $a, b, c \in \mathbb{R}$. We have to show that a = b = c = 0.

$$x = 0 \implies a + b + c = 0$$

 $x = 1 \implies a + be + ce^{-1} = 0$
 $x = -1 \implies a + be^{-1} + ce = 0$

The matrix of the system is
$$A = egin{pmatrix} 1 & 1 & 1 \ 1 & e & e^{-1} \ 1 & e^{-1} & e \end{pmatrix}$$

 $det A = e^{2} - e^{-2} - 2e + 2e^{-1} =$ = $(e - e^{-1})(e + e^{-1}) - 2(e - e^{-1}) =$ = $(e - e^{-1})(e + e^{-1} - 2) = (e - e^{-1})(e^{1/2} - e^{-1/2})^{2} \neq 0.$

Hence the system has a unique solution a = b = c = 0.

Proposition Functions 1, e^x , and e^{-x} are linearly independent.

Alternative proof: Suppose that $a + be^{x} + ce^{-x} = 0$ for some $a, b, c \in \mathbb{R}$. Differentiate this identity twice: $be^{x} - ce^{-x} = 0$, $be^{x} + ce^{-x} = 0$. It follows that $be^{x} = ce^{-x} = 0 \implies b = c = 0$. Then a = 0 as well. **Theorem** Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct real numbers. Then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Furthermore, the set of functions $x^m e^{\lambda_i x}$, $1 \le i \le k$, m = 0, 1, 2, ... is also linearly independent.