Math 304-504
Linear Algebra
Lecture 13:
Linear independence.

Span: implicit definition

Let S be a subset of a vector space V.
Definition. The span of the set S, denoted $\operatorname{Span}(S)$, is the smallest subspace of V that contains S. That is,

- $\operatorname{Span}(S)$ is a subspace of V;
- for any subspace $W \subset V$ one has

$$
S \subset W \Longrightarrow \operatorname{Span}(S) \subset W
$$

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.
- If S is an infinite set then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}$, where $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in S$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$ $(k \geq 1)$.
- If S is the empty set then $\operatorname{Span}(S)=\{\mathbf{0}\}$.

Spanning set

Definition. A subset S of a vector space V is called a spanning set for V if $\operatorname{Span}(S)=V$.
Examples.

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ form a spanning set for \mathbb{R}^{3} as

$$
(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}
$$

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a spanning set for $\mathcal{M}_{2,2}(\mathbb{R})$ as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0
$$

An infinite set $S \subset V$ is linearly dependent if there are some linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$.

Otherwise S is linearly independent.

Theorem The following conditions are equivalent:
(i) vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent;
(ii) one of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a linear combination of the other $k-1$ vectors.

Proof: (i) \Longrightarrow (ii) Suppose that

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where $r_{i} \neq 0$ for some $1 \leq i \leq k$. Then

$$
\mathbf{v}_{i}=-\frac{r_{1}}{r_{i}} \mathbf{v}_{1}-\cdots-\frac{r_{i-1}}{r_{i}} \mathbf{v}_{i-1}-\frac{r_{i+1}}{r_{i}} \mathbf{v}_{i+1}-\cdots-\frac{r_{k}}{r_{i}} \mathbf{v}_{k} .
$$

(ii) \Longrightarrow (i) Suppose that

$$
\mathbf{v}_{i}=s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}
$$

for some scalars s_{j}. Then
$s_{1} \mathbf{v}_{1}+\cdots+s_{i-1} \mathbf{v}_{i-1}-\mathbf{v}_{i}+s_{i+1} \mathbf{v}_{i+1}+\cdots+s_{k} \mathbf{v}_{k}=\mathbf{0}$.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
$x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}=\mathbf{0} \Longrightarrow(x, y, z)=\mathbf{0}$
$\Longrightarrow x=y=z=0$
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,
$E_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $E_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
$a E_{11}+b E_{12}+c E_{21}+d E_{22}=O \Longrightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$
$\Longrightarrow a=b=c=d=0$

Examples of linear independence

- Polynomials $1, x, x^{2}, \ldots, x^{n}$.
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ identically
$\Longrightarrow \quad a_{i}=0$ for $0 \leq i \leq n$
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.
- Polynomials $p_{1}(x)=1, p_{2}(x)=x-1$, and $p_{3}(x)=(x-1)^{2}$.
$a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}=$ $=\left(a_{1}-a_{2}+a_{3}\right)+\left(a_{2}-2 a_{3}\right) x+a_{3} x^{2}$.
Hence $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=0$ identically
$\Longrightarrow a_{1}-a_{2}+a_{3}=a_{2}-2 a_{3}=a_{3}=0$
$\Longrightarrow a_{1}=a_{2}=a_{3}=0$

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{v}_{3}=(4,-7,3)$. Determine whether vectors
$\mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
We have to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}=\mathbf{0}$.
This vector equation is equivalent to a system

$$
\left\{\begin{array}{l}
r_{1}+3 r_{2}+4 r_{3}=0 \\
2 r_{1}+r_{2}-7 r_{3}=0 \\
0 r_{1}+r_{2}+3 r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
2 & 1 & -7 & 0 \\
0 & 1 & 3 & 0
\end{array}\right)\right.
$$

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is singular. We obtain that $\operatorname{det} A=0$.

Theorem Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ are linearly dependent whenever $m>n$.

Proof: Let $\mathbf{v}_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)$ for $j=1,2, \ldots, m$. Then the vector identity $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{m} \mathbf{v}_{m}=\mathbf{0}$ is equivalent to the system

$$
\left\{\begin{array}{c}
a_{11} t_{1}+a_{12} t_{2}+\cdots+a_{1 m} t_{m}=0 \\
a_{21} t_{1}+a_{22} t_{2}+\cdots+a_{2 m} t_{m}=0 \\
\cdots \cdots+a_{n m} t_{m}=0
\end{array}\right.
$$

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are columns of the matrix $\left(a_{i j}\right)$. If $m>n$ then the system is under-determined, therefore the zero solution is not unique.

Spanning sets and linear dependence

Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors from a vector space V.
Proposition If \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then

$$
\operatorname{Span}\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)
$$

Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then

$$
\begin{gathered}
t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}= \\
=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}
\end{gathered}
$$

Corollary Any spanning set for a vector space is minimal if and only if it is linearly independent.

Proposition Functions $1, e^{x}$, and e^{-x} are linearly independent.
Proof: Suppose that $a+b e^{x}+c e^{-x}=0$ for some $a, b, c \in \mathbb{R}$. We have to show that $a=b=c=0$.
$x=0 \Longrightarrow a+b+c=0$
$x=1 \Longrightarrow a+b e+c e^{-1}=0$
$x=-1 \Longrightarrow a+b e^{-1}+c e=0$
The matrix of the system is $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & e & e^{-1} \\ 1 & e^{-1} & e\end{array}\right)$.
$\operatorname{det} A=e^{2}-e^{-2}-2 e+2 e^{-1}=$
$=\left(e-e^{-1}\right)\left(e+e^{-1}\right)-2\left(e-e^{-1}\right)=$
$=\left(e-e^{-1}\right)\left(e+e^{-1}-2\right)=\left(e-e^{-1}\right)\left(e^{1 / 2}-e^{-1 / 2}\right)^{2} \neq 0$.
Hence the system has a unique solution $a=b=c=0$.

Proposition Functions $1, e^{x}$, and e^{-x} are linearly independent.
Alternative proof: Suppose that
$a+b e^{x}+c e^{-x}=0$ for some $a, b, c \in \mathbb{R}$.
Differentiate this identity twice:
$b e^{x}-c e^{-x}=0$,
$b e^{x}+c e^{-x}=0$.
It follows that $b e^{x}=c e^{-x}=0 \Longrightarrow b=c=0$.
Then $a=0$ as well.

Theorem Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct real numbers. Then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.
Furthermore, the set of functions $x^{m} e^{\lambda_{i} x}$, $1 \leq i \leq k, m=0,1,2, \ldots$ is also linearly independent.

