Math 304–504 Linear Algebra Lecture 16: Basis and coordinates.

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

• $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices dim $\mathcal{M}_{m,n}(\mathbb{R}) = mn$

• \mathcal{P}_n : polynomials of degree less than ndim $\mathcal{P}_n = n$

• $\mathcal{P}:$ the space of all polynomials $\dim \mathcal{P} = \infty$

•
$$\{\mathbf{0}\}$$
: the trivial vector space dim $\{\mathbf{0}\} = 0$

Theorem Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be vectors in \mathbb{R}^n . Then the following conditions are equivalent: (i) { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } is a basis for \mathbb{R}^n ; (ii) { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } is a spanning set for \mathbb{R}^n ; (iii) { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } is a linearly independent set.

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:

(i) S is a linearly independent spanning set for V, i.e., a basis;

- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

How to find a basis?

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

That is, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Approach 2. Build a maximal linearly independent set adding one vector at a time.

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 1. \mathbf{v}_1 and \mathbf{v}_2 span the plane x + 2z = 0.

The vector $\mathbf{v}_3 = (1, 1, 1)$ does not lie in the plane x + 2z = 0, hence it is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Hint 2. At least one of vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ is a desired one. Let us check that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3\}$ are two bases for \mathbb{R}^3 :

$$\begin{vmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 1 \neq 0, \qquad \begin{vmatrix} 0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0.$$

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v}=x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_n\mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \ldots, x_n)

is a one-to-one correspondence between V and \mathbb{R}^n . This correspondence respects linear operations in V and in \mathbb{R}^n . Vectors $\mathbf{u}_1 = (2, 1)$ and $\mathbf{u}_2 = (3, 1)$ form a basis for \mathbb{R}^2 . **Problem 1.** Find coordinates of the vector $\mathbf{v} = (7, 4)$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2$.

The desired coordinates x, y satisfy

$$\mathbf{v} = x\mathbf{u}_1 + y\mathbf{u}_2 \iff \begin{cases} 2x + 3y = 7\\ x + y = 4 \end{cases} \iff \begin{cases} x = 5\\ y = -1 \end{cases}$$

Problem 2. Find the vector **w** whose coordinates with respect to the basis $\mathbf{u}_1, \mathbf{u}_2$ are (7, 4).

$$\mathbf{w} = 7\mathbf{u}_1 + 4\mathbf{u}_2 = 7(2,1) + 4(3,1) = (26,11)$$

Given a vector $\mathbf{v} \in \mathbb{R}^2$, let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis $\mathbf{e}_1 = (1, 0)$, $\mathbf{e}_2 = (0, 1)$ and let (x', y') be its coordinates with respect to the basis $\mathbf{u}_1 = (2, 1)$, $\mathbf{u}_2 = (3, 1)$.

Problem. Find a relation between (x, y) and (x', y').

By definition, $\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 = x'\mathbf{u}_1 + y'\mathbf{u}_2$. In standard coordinates,

$$\begin{pmatrix} x \\ y \end{pmatrix} = x' \begin{pmatrix} 2 \\ 1 \end{pmatrix} + y' \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$
$$\implies \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Change of coordinates in \mathbb{R}^n

Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ be a basis for \mathbb{R}^n . Take any vector $\mathbf{x} \in \mathbb{R}^n$. Let (x_1, x_2, \ldots, x_n) be the standard coordinates of \mathbf{x} and $(x'_1, x'_2, \ldots, x'_n)$ be the coordinates of \mathbf{x} with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$.

Problem 1. Given the standard coordinates (x_1, x_2, \ldots, x_n) , find the nonstandard coordinates $(x'_1, x'_2, \ldots, x'_n)$.

Problem 2. Given the nonstandard coordinates $(x'_1, x'_2, \ldots, x'_n)$, find the standard coordinates (x_1, x_2, \ldots, x_n) .

Let $\mathbf{u}_j = (u_{1j}, u_{2j}, \dots, u_{nj}), j = 1, 2, \dots, n.$ Then

$$\mathbf{x} = x'_{1}\mathbf{u}_{1} + x'_{2}\mathbf{u}_{2} + \dots + x'_{n}\mathbf{u}_{n}$$

$$= x'_{1}(u_{11}\mathbf{e}_{1} + u_{21}\mathbf{e}_{2} + \dots + u_{n1}\mathbf{e}_{n})$$

$$+ x'_{2}(u_{12}\mathbf{e}_{1} + u_{22}\mathbf{e}_{2} + \dots + u_{n2}\mathbf{e}_{n})$$

$$+ \dots \dots$$

$$+ x'_{n}(u_{1n}\mathbf{e}_{1} + u_{2n}\mathbf{e}_{2} + \dots + u_{nn}\mathbf{e}_{n})$$

$$= (u_{11}x'_{1} + u_{12}x'_{2} + \dots + u_{1n}x'_{n})\mathbf{e}_{1}$$

$$+ (u_{21}x'_{1} + u_{22}x'_{2} + \dots + u_{2n}x'_{n})\mathbf{e}_{2}$$

$$+ \dots \dots$$

$$+ (u_{n1}x'_{1} + u_{n2}x'_{2} + \dots + u_{nn}x'_{n})\mathbf{e}_{n}.$$

At the same time, $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n$.

It follows that

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n1} & u_{n2} & \dots & u_{nn} \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$$

The matrix $U = (u_{ii})$ does not depend on the vector **x**. Columns of U are coordinates of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ with respect to the standard basis. U is called the **transition matrix** from the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ to the standard basis $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$. This solves Problem 2. To solve Problem 1, we have to use the inverse matrix U^{-1} , which is the transition matrix from $\mathbf{e}_1, \ldots, \mathbf{e}_n$ to $\mathbf{u}_1, \ldots, \mathbf{u}_n$.

Problem. Find the transition matrix from the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ in \mathbb{R}^3 to the basis $\mathbf{u}_1 = (1, 1, 0), \ \mathbf{u}_2 = (0, 1, 1), \ \mathbf{u}_3 = (1, 1, 1).$

The transition matrix from $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is

$$U = egin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}.$$

The transition matrix from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is the inverse matrix $A = U^{-1}$.

The inverse matrix can be computed using row reduction.

$$(U \mid I) = \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

Subtract the 1st row from the 2nd row:

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

Subtract the 2nd row from the 3rd row:

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \\ \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix}$$

Subtract the 3rd row from the 1st row:

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix} = (I \mid U^{-1})$$
Thus $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$

The columns of *A* are coordinates of vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

Change of coordinates: general case

Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ be two bases for a vector space V. Take any vector $\mathbf{x} \in V$. Let (x_1, x_2, \ldots, x_n) be the coordinates of \mathbf{x} with respect to the basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and $(x'_1, x'_2, \ldots, x'_n)$ be the coordinates of \mathbf{x} with respect to $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. Then

$$\begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1n} \\ \vdots & \ddots & \vdots \\ u_{n1} & \dots & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

where $U = (u_{ij})$ is the **transition matrix** from the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \ldots, \mathbf{u}_n$. Columns of U are coordinates of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ with respect to the basis $\mathbf{u}_1, \ldots, \mathbf{u}_n$.

Problem. Find the transition matrix from the basis $p_1(x) = 1$, $p_2(x) = x + 1$, $p_3(x) = (x + 1)^2$ to the basis $q_1(x) = 1$, $q_2(x) = x$, $q_3(x) = x^2$ for the vector space \mathcal{P}_3 .

We have to find coordinates of the polynomials p_1, p_2, p_3 with respect to the basis q_1, q_2, q_3 : $p_1(x) = 1 = q_1(x)$ $p_2(x) = x + 1 = q_1(x) + q_2(x),$ $p_3(x) = (x+1)^2 = x^2 + 2x + 1 = q_1(x) + 2q_2(x) + q_3(x).$ Thus the transition matrix is $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.