Math 304-504
Linear Algebra
Lecture 16:
Basis and coordinates.

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. - $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{m, n}(\mathbb{R}):$ the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree less than n $\operatorname{dim} \mathcal{P}_{n}=n$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Theorem Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be vectors in \mathbb{R}^{n}.

Then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Theorem Let S be a subset of a vector space V.
Then the following conditions are equivalent:
(i) S is a linearly independent spanning set for V,
i.e., a basis;
(ii) S is a minimal spanning set for V;
(iii) S is a maximal linearly independent subset of V.

How to find a basis?

Theorem Let V be a vector space. Then
(i) any spanning set for V can be reduced to a minimal spanning set;
(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

That is, any spanning set contains a basis, while any linearly independent set is contained in a basis.

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis.

Approach 2. Build a maximal linearly independent set adding one vector at a time.

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}.
Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ will be a basis for \mathbb{R}^{3}.
Hint 1. \mathbf{v}_{1} and \mathbf{v}_{2} span the plane $x+2 z=0$.
The vector $\mathbf{v}_{3}=(1,1,1)$ does not lie in the plane $x+2 z=0$, hence it is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$ are linearly independent.
Problem. Extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}.
Our task is to find a vector \mathbf{v}_{3} that is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.

Hint 2. At least one of vectors $\mathbf{e}_{1}=(1,0,0)$, $\mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ is a desired one.
Let us check that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{1}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}\right\}$ are two bases for \mathbb{R}^{3} :

$$
\left|\begin{array}{rrr}
0 & -2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=1 \neq 0, \quad\left|\begin{array}{rrr}
0 & -2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right|=2 \neq 0
$$

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is a one-to-one correspondence between V and \mathbb{R}^{n}. This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Vectors $\mathbf{u}_{1}=(2,1)$ and $\mathbf{u}_{2}=(3,1)$ form a basis for \mathbb{R}^{2}.
Problem 1. Find coordinates of the vector $\mathbf{v}=(7,4)$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$.

The desired coordinates x, y satisfy
$\mathbf{v}=x \mathbf{u}_{1}+y \mathbf{u}_{2} \Longleftrightarrow\left\{\begin{array}{l}2 x+3 y=7 \\ x+y=4\end{array} \Longleftrightarrow\left\{\begin{array}{l}x=5 \\ y=-1\end{array}\right.\right.$
Problem 2. Find the vector \mathbf{w} whose coordinates with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$ are $(7,4)$.
$\mathbf{w}=7 \mathbf{u}_{1}+4 \mathbf{u}_{2}=7(2,1)+4(3,1)=(26,11)$

Given a vector $\mathbf{v} \in \mathbb{R}^{2}$, let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$ and let (x^{\prime}, y^{\prime}) be its coordinates with respect to the basis $\mathbf{u}_{1}=(2,1), \quad \mathbf{u}_{2}=(3,1)$.

Problem. Find a relation between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$.
By definition, $\mathbf{v}=x \mathbf{e}_{1}+y \mathbf{e}_{2}=x^{\prime} \mathbf{u}_{1}+y^{\prime} \mathbf{u}_{2}$. In standard coordinates,

$$
\begin{gathered}
\binom{x}{y}=x^{\prime}\binom{2}{1}+y^{\prime}\binom{3}{1}=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} \\
\Longrightarrow\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)^{-1}\binom{x}{y}=\left(\begin{array}{rr}
-1 & 3 \\
1 & -2
\end{array}\right)\binom{x}{y}
\end{gathered}
$$

Change of coordinates in \mathbb{R}^{n}

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for \mathbb{R}^{n}.
Take any vector $\mathbf{x} \in \mathbb{R}^{n}$. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the standard coordinates of \mathbf{x} and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be the coordinates of \mathbf{x} with respect to the basis
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.
Problem 1. Given the standard coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, find the nonstandard coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$.
Problem 2. Given the nonstandard coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$, find the standard coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Let $\mathbf{u}_{j}=\left(u_{1 j}, u_{2 j}, \ldots, u_{n j}\right), j=1,2, \ldots, n$.
Then

$$
\begin{gathered}
\mathbf{x}=x_{1}^{\prime} \mathbf{u}_{1}+x_{2}^{\prime} \mathbf{u}_{2}+\cdots+x_{n}^{\prime} \mathbf{u}_{n} \\
=x_{1}^{\prime}\left(u_{11} \mathbf{e}_{1}+u_{21} \mathbf{e}_{2}+\cdots+u_{n 1} \mathbf{e}_{n}\right) \\
+x_{2}^{\prime}\left(u_{12} \mathbf{e}_{1}+u_{22} \mathbf{e}_{2}+\cdots+u_{n 2} \mathbf{e}_{n}\right) \\
\left.+\cdots \cdots \cdots+u_{n n} \mathbf{e}_{n}\right) \\
+x_{n}^{\prime}\left(u_{1 n} \mathbf{e}_{1}+u_{2 n} \mathbf{e}_{2}+\cdots\right. \\
=\left(u_{11} x_{1}^{\prime}+u_{12} x_{2}^{\prime}+\cdots+u_{1 n} x_{n}^{\prime}\right) \mathbf{e}_{1} \\
+\left(u_{21} x_{1}^{\prime}+u_{22} x_{2}^{\prime}+\cdots+u_{2 n}^{\prime} n_{n}^{\prime}\right) \mathbf{e}_{2} \\
\left.+\cdots u_{n n} x_{n}^{\prime}\right) \mathbf{e}_{n} .
\end{gathered}
$$

At the same time, $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$.

It follows that

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
u_{21} & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n 1} & u_{n 2} & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right) .
$$

The matrix $U=\left(u_{i j}\right)$ does not depend on the vector \mathbf{x}.
Columns of U are coordinates of vectors
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ with respect to the standard basis. U is called the transition matrix from the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$.

This solves Problem 2. To solve Problem 1, we have to use the inverse matrix U^{-1}, which is the transition matrix from $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ in \mathbb{R}^{3} to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.

The transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is

$$
U=\left(\begin{array}{l|l|l}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

The transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is the inverse matrix $A=U^{-1}$.
The inverse matrix can be computed using row reduction.

$$
(U \mid I)=\left(\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Subtract the 1st row from the 2 nd row:
$\rightarrow\left(\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right)$
Subtract the 2nd row from the 3rd row:
$\rightarrow\left(\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)$
Subtract the 3rd row from the 1st row:
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)=\left(I \mid U^{-1}\right)$
Thus $A=\left(\begin{array}{rrr}0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1\end{array}\right)$.
The columns of A are coordinates of vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.

Change of coordinates: general case

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ and $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be two bases for a vector space V. Take any vector $\mathbf{x} \in V$. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the coordinates of \mathbf{x} with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be the coordinates of \mathbf{x} with respect to $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$. Then

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 n} \\
\vdots & \ddots & \vdots \\
u_{n 1} & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

where $U=\left(u_{i j}\right)$ is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the basis $p_{1}(x)=1, p_{2}(x)=x+1, p_{3}(x)=(x+1)^{2}$ to the basis $q_{1}(x)=1, q_{2}(x)=x, q_{3}(x)=x^{2}$ for the vector space \mathcal{P}_{3}.

We have to find coordinates of the polynomials p_{1}, p_{2}, p_{3} with respect to the basis q_{1}, q_{2}, q_{3} :
$p_{1}(x)=1=q_{1}(x)$,
$p_{2}(x)=x+1=q_{1}(x)+q_{2}(x)$,
$p_{3}(x)=(x+1)^{2}=x^{2}+2 x+1=q_{1}(x)+2 q_{2}(x)+q_{3}(x)$.
Thus the transition matrix is $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.

