Math 304-504
Linear Algebra
Lecture 17:
Change of coordinates (continued). Rank and nullity of a matrix

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is a one-to-one correspondence between V and \mathbb{R}^{n}. This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Change of coordinates

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ and $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be two bases for a vector space V. Take any vector $\mathbf{x} \in V$. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the coordinates of \mathbf{x} with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be the coordinates of \mathbf{x} with respect to $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$. Then

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 n} \\
\vdots & \ddots & \vdots \\
u_{n 1} & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

where $U=\left(u_{i j}\right)$ is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Example. Vectors $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1)$, and $\mathbf{u}_{3}=(1,1,1)$ form a basis for \mathbb{R}^{3}.

The transition matrix from the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

The transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

Problem. Find the transition matrix from the basis $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,0,1), \mathbf{v}_{3}=(1,2,1)$ to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.

To change coordinates from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, we first change coordinates from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, and then from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.

Transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$:

$$
U_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right)
$$

Transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$:

$$
U_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

Transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$:

$$
U_{2} U_{1}=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right) .
$$

Nullspace

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
Definition. The nullspace of the matrix A, denoted $N(A)$, is the set of all n-dimensional column vectors \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$.

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The nullspace $N(A)$ is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.

Theorem The nullspace $N(A)$ is a subspace of the vector space \mathbb{R}^{n}.

Proof: We have to show that $N(A)$ is nonempty, closed under addition, and closed under scaling.
First of all, $A \mathbf{0}=\mathbf{0} \Longrightarrow \mathbf{0} \in N(A) \Longrightarrow N(A)$ is not empty.
Secondly, if $\mathbf{x}, \mathbf{y} \in N(A)$, i.e., if $A \mathbf{x}=\mathbf{A} \mathbf{y}=\mathbf{0}$, then $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}+\mathbf{0}=\mathbf{0} \quad \Longrightarrow \mathbf{x}+\mathbf{y} \in N(A)$.
Thirdly, if $\mathbf{x} \in N(A)$, i.e., if $A \mathbf{x}=\mathbf{0}$, then for any $r \in \mathbb{R}$ one has $A(r \mathbf{x})=r(A \mathbf{x})=r \mathbf{0}=\mathbf{0} \quad \Longrightarrow \quad r \mathbf{x} \in N(A)$.

Definition. The dimension of the nullspace $N(A)$ is called the nullity of the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Elementary row operations do not change the nullspace. Let us convert A to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3
\end{array}\right) \\
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4} \\
x_{2}=-2 x_{3}-3 x_{4}
\end{array}\right.\right.
\end{gathered}
$$

General element of $N(A)$:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =(t+2 s,-2 t-3 s, t, s) \\
& =t(1,-2,1,0)+s(2,-3,0,1), \quad t, s \in \mathbb{R} .
\end{aligned}
$$

Vectors ($1,-2,1,0$) and ($2,-3,0,1$) forms a basis for $N(A)$. Thus the nullity of the matrix A is 2 .

Row space

Definition. The row space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by rows of A.
The dimension of the row space is called the rank of the matrix A.

Theorem 1 Elementary row operations do not change the row space of a matrix.
Theorem 2 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.
Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.
Theorem 3 The rank of a matrix A plus the nullity of A equals the number of columns of A.

Problem. Find the rank of the matrix

$$
A=\left(\begin{array}{rrrr}
-1 & 0 & -1 & 2 \\
2 & 0 & 2 & 0 \\
1 & 0 & 1 & -1
\end{array}\right) .
$$

Elementary row operations do not change the row space. Let us convert A to row echelon form:
$\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & -1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 4 \\ 1 & 0 & 1 & -1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrrr}1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
Vectors $(1,0,1,-2)$ and $(0,0,0,1)$ form a basis for the row space of A. Thus the rank of A is 2 .

Remark. The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.
The nullity of A equals the number of free variables in the corresponding system, which equals the number of columns without leading entries.
Consequently, rank+nullity is the number of all columns in the matrix A.

Theorem 1 Elementary row operations do not change the row space of a matrix.

Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be the rows of A and $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ be the rows of B. We have to show that $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$.
Observe that any row \mathbf{b}_{i} of B belongs to $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$. Indeed, either $\mathbf{b}_{i}=\mathbf{a}_{j}$ for some $1 \leq j \leq m$, or $\mathbf{b}_{i}=r \mathbf{a}_{i}$ for some scalar $r \neq 0$, or $\mathbf{b}_{i}=\mathbf{a}_{i}+r \mathbf{a}_{j}$ for some $j \neq i$ and $r \in \mathbb{R}$.
It follows that $\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \subset \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$.
Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$
\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right) \subset \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) .
$$

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right) .
$$

Alternative solution: Clearly, the rows of A are linearly independent. Therefore the rank of A is 2 .
Since

$$
(\text { rank of } A)+(\text { nullity of } A)=4,
$$

it follows that the nullity of A is 2 .

