Math 304–504 Linear Algebra Lecture 18: Column space of a matrix. Linear transformations. Kernel and range.

Nullspace

Let $A = (a_{ij})$ be an $m \times n$ matrix. *Definition.* The **nullspace** of the matrix A, denoted N(A), is the set of all *n*-dimensional column vectors **x** such that $A\mathbf{x} = \mathbf{0}$.

Theorem 1 The nullspace N(A) is a subspace of the vector space \mathbb{R}^n .

Theorem 2 Elementary row operations do not change the nullspace of a matrix.

Definition. The dimension of the nullspace N(A) is called the **nullity** of the matrix A.

Row space

Definition. The **row space** of an $m \times n$ matrix A is the subspace of \mathbb{R}^n spanned by rows of A.

The dimension of the row space is called the **rank** of the matrix *A*.

Theorem 1 Elementary row operations do not change the row space of a matrix.

Theorem 2 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.

Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Theorem 3 The rank of a matrix *A* plus the nullity of *A* equals the number of columns of *A*.

Column space

Definition. The **column space** of an $m \times n$ matrix *A* is the subspace of \mathbb{R}^m spanned by columns of *A*.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^{T} .

Theorem 2 Elementary column operations do not change the column space of a matrix.

Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (although they can change the column space).

Theorem 4 For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$egin{array}{rccccc} A = egin{pmatrix} -1 & -1 & 0 & 2 \ 1 & 1 & 0 & -1 \ 2 & 2 & 0 & 0 \end{pmatrix}. \end{array}$$

The column space of A coincides with the row space of A^{T} . To find a basis, we convert A^{T} to row echelon form:

$$\begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ 0 & 0 & 0 \\ 2 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & -1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} -1 & 1 & 2 \\ 2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus vectors (1, -2, -1) and (0, 1, 4) form a basis for the column space of the matrix A.

Linear mapping = linear transformation = linear function

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if

$$\frac{L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),}{L(r\mathbf{x}) = rL(\mathbf{x})}$$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

A linear mapping $\ell: V \to \mathbb{R}$ is called a **linear** functional on *V*.

If $V_1 = V_2$ (or if both V_1 and V_2 are functional spaces) then a linear mapping $L: V_1 \rightarrow V_2$ is called a **linear operator**.

Properties of linear mappings

Let
$$L: V_1 \rightarrow V_2$$
 be a linear mapping.
• $L(r_1\mathbf{v}_1 + \dots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \dots + r_kL(\mathbf{v}_k)$
for all $k \ge 1$, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{R}$.
 $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) = L(r_1\mathbf{v}_1) + L(r_2\mathbf{v}_2) = r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2)$,
 $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3) = L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) + L(r_3\mathbf{v}_3) =$
 $= r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2) + r_3L(\mathbf{v}_3)$, and so on.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

 $L(\mathbf{0}_1) = L(0\mathbf{0}_1) = 0L(\mathbf{0}_1) = \mathbf{0}_2.$

•
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
 for any $\mathbf{v} \in V_1$.
 $L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v})$.

Linear functionals

•
$$V = \mathbb{R}^n$$
, $\ell(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$.

•
$$V = C[a, b], \ \ell(f) = f(a).$$

•
$$V = C^1[a, b], \ \ell(f) = f'(b).$$

•
$$V = C[a, b], \ \ell(f) = \int_{a}^{b} f(x) \, dx$$

•
$$V = C[a, b]$$
, $\ell(f) = \int_a^b g(x)f(x) dx$,
where $g \in C[a, b]$.

Linear operators

• $V = \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix and \mathbf{x} is regarded as a column vector.

• V = C[a, b], L(f) = gf, where $g \in C[a, b]$.

•
$$V_1 = C^1[a, b], V_2 = C[a, b], L(f) = f'.$$

•
$$V = C[a, b], \ (L(f))(x) = \int_a^x f(\xi) \, d\xi.$$

•
$$V = C[a, b], \ (L(f))(x) = \int_{a}^{b} G(x, \xi) f(\xi) d\xi,$$

where $G \in C([a, b] \times [a, b]).$

Linear differential operators

• an ordinary differential operator

$$L: C^{\infty}(\mathbb{R})
ightarrow C^{\infty}(\mathbb{R}), \quad L = g_0 rac{d^2}{dx^2} + g_1 rac{d}{dx} + g_2,$$

where g_0, g_1, g_2 are smooth functions on \mathbb{R} . That is, $L(f) = g_0 f'' + g_1 f' + g_2 f$.

• Laplace's operator $\Delta : C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

(a.k.a. the Laplacian; also denoted by ∇^2).

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The **range** (or **image**) of *L* is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of *L* is denoted L(V).

The **kernel** of *L*, denoted ker *L*, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) The range of L is a subspace of W. (ii) The kernel of L is a subspace of V.

Example.
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
, $L\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 1 & 2 & -1\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$

The kernel ker *L* is the nullspace of the matrix. The range $L(\mathbb{R}^3)$ is the column space of the matrix.

The range of L is spanned by vectors (1, 1, 1), (0, 2, 0), and (-1, -1, -1). It follows that $L(\mathbb{R}^3)$ is the plane spanned by (1, 1, 1) and (0, 1, 0).

To find ker L, we apply row reduction to the matrix:

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence $(x, y, z) \in \ker L$ if x - z = y = 0. It follows that ker L is the line spanned by (1, 0, 1).