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Linear Algebra

Lecture 18:
Column space of a matrix.

Linear transformations.
Kernel and range.



Nullspace

Let A = (aij) be an m×n matrix.

Definition. The nullspace of the matrix A,
denoted N(A), is the set of all n-dimensional

column vectors x such that Ax = 0.

Theorem 1 The nullspace N(A) is a subspace of the vector
space R

n.

Theorem 2 Elementary row operations do not change the
nullspace of a matrix.

Definition. The dimension of the nullspace N(A) is
called the nullity of the matrix A.



Row space

Definition. The row space of an m×n matrix A is

the subspace of R
n spanned by rows of A.

The dimension of the row space is called the rank

of the matrix A.

Theorem 1 Elementary row operations do not change the
row space of a matrix.

Theorem 2 If a matrix A is in row echelon form, then the
nonzero rows of A are linearly independent.

Corollary The rank of a matrix is equal to the number of
nonzero rows in its row echelon form.

Theorem 3 The rank of a matrix A plus the nullity of A

equals the number of columns of A.



Column space

Definition. The column space of an m×n matrix

A is the subspace of R
m spanned by columns of A.

Theorem 1 The column space of a matrix A coincides with
the row space of the transpose matrix AT .

Theorem 2 Elementary column operations do not change
the column space of a matrix.

Theorem 3 Elementary row operations do not change the
dimension of the column space of a matrix (although they can
change the column space).

Theorem 4 For any matrix, the row space and the column
space have the same dimension.



Problem. Find a basis for the column space of the
matrix

A =





−1 −1 0 2

1 1 0 −1
2 2 0 0



.

The column space of A coincides with the row space
of AT . To find a basis, we convert AT to row

echelon form:








−1 1 2

−1 1 2
0 0 0

2 −1 0









→









−1 1 2

0 0 0
0 0 0

2 −1 0











→









−1 1 2

2 −1 0
0 0 0
0 0 0









→









−1 1 2

0 1 4
0 0 0
0 0 0









→









1 −2 −1

0 1 4
0 0 0
0 0 0









Thus vectors (1,−2,−1) and (0, 1, 4) form a basis
for the column space of the matrix A.



Linear mapping = linear transformation = linear function

Definition. Given vector spaces V1 and V2, a
mapping L : V1 → V2 is linear if

L(x + y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.

A linear mapping ℓ : V → R is called a linear

functional on V .

If V1 = V2 (or if both V1 and V2 are functional
spaces) then a linear mapping L : V1 → V2 is called

a linear operator.



Properties of linear mappings

Let L : V1 → V2 be a linear mapping.

• L(r1v1 + · · · + rkvk) = r1L(v1) + · · · + rkL(vk)
for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ R.

L(r1v1 + r2v2) = L(r1v1) + L(r2v2) = r1L(v1) + r2L(v2),

L(r1v1 + r2v2 + r3v3) = L(r1v1 + r2v2) + L(r3v3) =
= r1L(v1) + r2L(v2) + r3L(v3), and so on.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

L(01) = L(001) = 0L(01) = 02.

• L(−v) = −L(v) for any v ∈ V1.

L(−v) = L((−1)v) = (−1)L(v) = −L(v).



Linear functionals

• V = R
n, ℓ(x) = x · x0, where x0 ∈ R

n.

• V = C [a, b], ℓ(f ) = f (a).

• V = C 1[a, b], ℓ(f ) = f ′(b).

• V = C [a, b], ℓ(f ) =

∫ b

a

f (x) dx .

• V = C [a, b], ℓ(f ) =

∫ b

a

g(x)f (x) dx ,

where g ∈ C [a, b].



Linear operators

• V = R
n, L(x) = Ax, where A is an n× n matrix

and x is regarded as a column vector.

• V = C [a, b], L(f ) = gf , where g ∈ C [a, b].

• V1 = C 1[a, b], V2 = C [a, b], L(f ) = f ′.

• V = C [a, b], (L(f ))(x) =

∫ x

a

f (ξ) dξ.

• V = C [a, b], (L(f ))(x) =

∫ b

a

G (x , ξ)f (ξ) dξ,

where G ∈ C ([a, b] × [a, b]).



Linear differential operators

• an ordinary differential operator

L : C∞(R) → C∞(R), L = g0

d2

dx2
+ g1

d

dx
+ g2,

where g0, g1, g2 are smooth functions on R.

That is, L(f ) = g0f
′′ + g1f

′ + g2f .

• Laplace’s operator ∆ : C∞(R2) → C∞(R2),

∆f =
∂2f

∂x2
+

∂2f

∂y 2

(a.k.a. the Laplacian; also denoted by ∇2).



Range and kernel

Let V , W be vector spaces and L : V → W be a

linear mapping.

Definition. The range (or image) of L is the set
of all vectors w ∈ W such that w = L(v) for some

v ∈ V . The range of L is denoted L(V ).

The kernel of L, denoted ker L, is the set of all
vectors v ∈ V such that L(v) = 0.

Theorem (i) The range of L is a subspace of W .

(ii) The kernel of L is a subspace of V .



Example. L : R
3 → R

3, L





x

y

z



 =





1 0 −1
1 2 −1

1 0 −1









x

y

z



.

The kernel ker L is the nullspace of the matrix.
The range L(R3) is the column space of the matrix.

The range of L is spanned by vectors (1, 1, 1), (0, 2, 0), and
(−1,−1,−1). It follows that L(R3) is the plane spanned by
(1, 1, 1) and (0, 1, 0).

To find ker L, we apply row reduction to the matrix:




1 0 −1
1 2 −1
1 0 −1



 →





1 0 −1
0 2 0
0 0 0



 →





1 0 −1
0 1 0
0 0 0





Hence (x , y , z) ∈ ker L if x − z = y = 0.
It follows that ker L is the line spanned by (1, 0, 1).


