Math 304-504
Linear Algebra

Lecture 19:
 Kernel and range (continued). Matrix transformations.

Linear mapping $=$ linear transformation $=$ linear function
Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Basic properties of linear mappings:

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $L(V)$.
The kernel of L, denoted $\operatorname{ker} L$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.

Examples

$$
\begin{aligned}
& f: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R}), \quad f(A)=A+A^{T} . \\
& f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
2 a & b+c \\
b+c & 2 d
\end{array}\right) .
\end{aligned}
$$

$\operatorname{ker} f$ is the subspace of anti-symmetric matrices, the range of f is the subspace of symmetric matrices.
$g: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R}), \quad g(A)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) A$.
$g\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right)$.
The range of g is the subspace of matrices with the zero second row, ker g is the same as the range
$\Longrightarrow g(g(A))=0$.
\mathcal{P} : the space of polynomials.
\mathcal{P}_{n} : the space of polynomials of degree less than n.
$D: \mathcal{P} \rightarrow \mathcal{P}, \quad(D p)(x)=p^{\prime}(x)$.
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}$
$\Longrightarrow(D p)(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}$
The range of D is the entire \mathcal{P}, ker $D=\mathcal{P}_{1}=$ the subspace of constants.
$D: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}, \quad(D p)(x)=p^{\prime}(x)$.
$p(x)=a x^{3}+b x^{2}+c x+d \Longrightarrow(D p)(x)=3 a x^{2}+2 b x+c$
The range of D is \mathcal{P}_{3}, ker $D=\mathcal{P}_{1}$.

General linear equations

Definition. A linear equation is an equation of the form

$$
L(\mathbf{x})=\mathbf{b}
$$

where $L: V \rightarrow W$ is a linear mapping, \mathbf{b} is a given vector from W, and \mathbf{x} is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x})=\mathbf{b}$ has a solution.
The kernel of L is the solution set of the homogeneous linear equation $L(\mathbf{x})=\mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for the kernel of L, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Example. $u^{\prime \prime}(x)+u(x)=e^{2 x}$.
Linear operator $L: C^{2}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L u=u^{\prime \prime}+u$. Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
It can be shown that the range of L is the entire space $C(\mathbb{R})$ while the kernel of L is spanned by the functions $\sin x$ and $\cos x$.

Observe that
$(L b)(x)=b^{\prime \prime}(x)+b(x)=4 e^{2 x}+e^{2 x}=5 e^{2 x}=5 b(x)$.
By linearity, $u_{0}=\frac{1}{5} b$ is a particular solution.
Thus the general solution is

$$
u(x)=\frac{1}{5} e^{2 x}+t_{1} \sin x+t_{2} \cos x
$$

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}$ and $L(\mathbf{x}) \in \mathbb{R}^{m}$ are regarded as column vectors. This transformation is linear.
Indeed, $L(\mathbf{x}+\mathbf{y})=A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=A(r \mathbf{x})=r(A \mathbf{x})=r L(\mathbf{x})$.
Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for \mathbb{R}^{3}. We have that $L\left(\mathbf{e}_{1}\right)=(1,3,0)$, $L\left(\mathbf{e}_{2}\right)=(0,4,5), L\left(\mathbf{e}_{3}\right)=(2,7,8)$. Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for \mathbb{R}^{3}.

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) \\
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem 1 Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V. Then
(i) any linear mapping $L: V \rightarrow W$ is uniquely determined by vectors $L\left(\mathbf{v}_{1}\right), L\left(\mathbf{v}_{2}\right), \ldots, L\left(\mathbf{v}_{n}\right)$;
(ii) for any vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n} \in W$ there exists a linear mapping $L: V \rightarrow W$ such that $L\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$, $1 \leq i \leq n$.

Theorem 2 Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear mapping. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. The columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{R}^{n}.

Linear transformations of \mathbb{R}^{2}

Any linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented as multiplication of a 2-dimensional column vector by a
2×2 matrix: $f(\mathbf{x})=A \mathbf{x}$ or

$$
f\binom{x}{y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} .
$$

Linear transformations corresponding to different matrices can have various geometric properties.

$$
A=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Rotation by 90°

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Rotation by 45°

$$
A=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Reflection in the vertical axis

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Reflection in the line $x-y=0$

$$
A=\left(\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right)
$$

Horizontal shear

$$
A=\left(\begin{array}{cr}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Scaling

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right)
$$

Squeeze

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Vertical projection on the horizontal axis

$$
A=\left(\begin{array}{rr}
0 & -1 \\
0 & 1
\end{array}\right)
$$

Horizontal projection on the line $x+y=0$

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Identity

