Lecture 19:

Math 304-504

Linear Algebra

Kernel and range (continued).

Matrix transformations.

Linear mapping = **linear transformation** = **linear function**

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),$$

$$L(r\mathbf{x}) = rL(\mathbf{x})$$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Basic properties of linear mappings:

- $L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$ for all k > 1, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{R}$.
- $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.
 - $L(-\mathbf{v}) = -L(\mathbf{v})$ for any $\mathbf{v} \in V_1$.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The **range** (or **image**) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted L(V).

The **kernel** of L, denoted ker L, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) The range of L is a subspace of W. (ii) The kernel of L is a subspace of V.

Examples

$$f: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R}), \ \ f(A) = A + A^T.$$

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2a & b+c \\ b+c & 2d \end{pmatrix}.$$

 $\ker f$ is the subspace of anti-symmetric matrices, the range of f is the subspace of symmetric matrices.

$$g:\mathcal{M}_{2,2}(\mathbb{R}) o \mathcal{M}_{2,2}(\mathbb{R}), \ \ g(A)=egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}A.$$

$$g\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}.$$

The range of g is the subspace of matrices with the zero second row, $\ker g$ is the same as the range $\implies g(g(A)) = O$.

 \mathcal{P} : the space of polynomials.

 \mathcal{P}_n : the space of polynomials of degree less than n.

$$D: \mathcal{P} \to \mathcal{P}, \ (Dp)(x) = p'(x).$$

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

$$\implies (Dp)(x) = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^{n-1}$$

The range of D is the entire \mathcal{P} , $\ker D = \mathcal{P}_1 = \mathsf{the}$ subspace of constants.

$$D: \mathcal{P}_4 \to \mathcal{P}_4, \ (Dp)(x) = p'(x).$$

$$p(x) = ax^3 + bx^2 + cx + d \implies (Dp)(x) = 3ax^2 + 2bx + c$$

The range of D is \mathcal{P}_3 , ker $D = \mathcal{P}_1$.

General linear equations

Definition. A linear equation is an equation of the form

$$L(\mathbf{x}) = \mathbf{b}$$
,

where $L: V \to W$ is a linear mapping, **b** is a given vector from W, and **x** is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x}) = \mathbf{b}$ has a solution.

The kernel of L is the solution set of the **homogeneous** linear equation $L(\mathbf{x}) = \mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$$
,

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \dots, \mathbf{v}_k$ is a basis for the kernel of L, and t_1, \dots, t_k are arbitrary scalars.

Example. $u''(x) + u(x) = e^{2x}$.

Linear operator $L: C^2(\mathbb{R}) \to C(\mathbb{R}), Lu = u'' + u$.

Linear equation: Lu = b, where $b(x) = e^{2x}$.

It can be shown that the range of L is the entire space $C(\mathbb{R})$ while the kernel of L is spanned by the functions $\sin x$ and $\cos x$.

Observe that

$$(Lb)(x) = b''(x) + b(x) = 4e^{2x} + e^{2x} = 5e^{2x} = 5b(x).$$

By linearity, $u_0 = \frac{1}{5}b$ is a particular solution.

Thus the general solution is

$$u(x) = \frac{1}{5}e^{2x} + t_1 \sin x + t_2 \cos x.$$

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ given by $L(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and $L(\mathbf{x}) \in \mathbb{R}^m$ are regarded as column vectors. This transformation is **linear**.

Indeed,
$$L(\mathbf{x} + \mathbf{y}) = A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = L(\mathbf{x}) + L(\mathbf{y})$$
, $L(r\mathbf{x}) = A(r\mathbf{x}) = r(A\mathbf{x}) = rL(\mathbf{x})$.

Example.
$$L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Let $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, $\mathbf{e}_3 = (0,0,1)$ be the standard basis for \mathbb{R}^3 . We have that $L(\mathbf{e}_1) = (1,3,0)$, $L(\mathbf{e}_2) = (0,4,5)$, $L(\mathbf{e}_3) = (2,7,8)$. Thus $L(\mathbf{e}_1)$, $L(\mathbf{e}_2)$, $L(\mathbf{e}_3)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^3 \to \mathbb{R}^2$ such that $L(\mathbf{e}_1) = (1,1)$, $L(\mathbf{e}_2) = (0,-2)$, $L(\mathbf{e}_3) = (3,0)$, where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is the standard basis for \mathbb{R}^3 .

$$= xL(\mathbf{e}_1) + yL(\mathbf{e}_2) + zL(\mathbf{e}_3)$$

$$= x(1,1) + y(0,-2) + z(3,0) = (x+3z, x-2y)$$

$$L(x,y,z) = \begin{pmatrix} x+3z \\ x-2y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 $L(x, y, z) = L(xe_1 + ye_2 + ze_3)$

Columns of the matrix are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$.

Theorem 1 Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V. Then

(i) any linear mapping $L: V \to W$ is uniquely determined by vectors $L(\mathbf{v}_1), L(\mathbf{v}_2), \ldots, L(\mathbf{v}_n)$; (ii) for any vectors $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n \in W$ there exists a linear mapping $L: V \to W$ such that $L(\mathbf{v}_i) = \mathbf{w}_i$, 1 < i < n.

Theorem 2 Suppose $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. The columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

Linear transformations of \mathbb{R}^2

Any linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ is represented as multiplication of a 2-dimensional column vector by a 2×2 matrix: $f(\mathbf{x}) = A\mathbf{x}$ or

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Linear transformations corresponding to different matrices can have various geometric properties.

Rotation by $90^{\rm o}$

 $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

$$\sqrt{\frac{1}{\sqrt{2}}}$$
 $\frac{1}{\sqrt{2}}$

Rotation by 45°

 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $A = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$

Scaling

Vertical projection on the horizontal axis

Horizontal projection on the line
$$x + y = 0$$

Identity