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Linear Algebra

Lecture 21:
Matrix of a linear transformation.



Linear mapping = linear transformation = linear function

Definition. Given vector spaces V1 and V2, a

mapping L : V1 → V2 is linear if

L(x + y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.

Basic properties of linear mappings:

• L(r1v1 + · · · + rkvk) = r1L(v1) + · · · + rkL(vk)

for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ R.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

• L(−v) = −L(v) for any v ∈ V1.



Matrix transformations

Any m×n matrix A gives rise to a transformation
L : R

n → R
m given by L(x) = Ax, where x ∈ R

n

and L(x) ∈ R
m are regarded as column vectors.

This transformation is linear.
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Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be

the standard basis for R
3. Then vectors

L(e1), L(e2), L(e3) are columns of the matrix.



Theorem 1 Suppose that {v1, v2, . . . , vn} is a

basis for a vector space V . Then

(i) any linear mapping L : V → W is uniquely
determined by vectors L(v1), L(v2), . . . , L(vn);

(ii) for any vectors w1,w2, . . . ,wn ∈ W there exists
a linear mapping L : V → W such that L(vi) = wi ,

1 ≤ i ≤ n.

Theorem 2 Suppose L : R
n → R

m is a linear map.
Then there exists an m×n matrix A such that

L(x) = Ax for all x ∈ R
n. The columns of A are

vectors L(e1), L(e2), . . . , L(en), where e1, e2, . . . , en

is the standard basis for R
n.



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,

then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · · + xnvn,

where xi ∈ R. The coefficients x1, x2, . . . , xn are
called the coordinates of v with respect to the
ordered basis v1, v2, . . . , vn.

The mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

provides a one-to-one correspondence between V

and R
n. Besides, this mapping is linear.



Matrix of a linear mapping

Let V , W be vector spaces and f : V → W be a linear map.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.
Let w1,w2, . . . ,wm be a basis for W and g2 : W → R

m be
the coordinate mapping corresponding to this basis.
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R
n −→ R

m

The composition g2◦f ◦g
−1

1
is a linear mapping of R

n to R
m.

It is represented as v 7→ Av, where A is an m×n matrix.

A is called the matrix of f with respect to bases v1, . . . , vn

and w1, . . . ,wm. Columns of A are coordinates of vectors
f (v1), . . . , f (vn) with respect to the basis w1, . . . ,wm.



Examples. • D : P3 → P2, (Dp)(x) = p′(x).

Let AD be the matrix of D with respect to the bases

1, x , x2 and 1, x . Columns of AD are coordinates
of polynomials D1, Dx , Dx2 w.r.t. the basis 1, x .

D1 = 0, Dx = 1, Dx2 = 2x =⇒ AD =

(

0 1 0

0 0 2

)

• L : P3 → P3, (Lp)(x) = p(x + 1).

Let AL be the matrix of L w.r.t. the basis 1, x , x2.

L1 = 1, Lx = 1 + x , Lx2 = (x + 1)2 = 1 + 2x + x2.

=⇒ AL =





1 1 1

0 1 2
0 0 1







Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1
0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let N be the desired matrix. Columns of N are coordinates of
the vectors L(v1) and L(v2) w.r.t. the basis v1, v2.

L(v1) =

(

1 1
0 1

)(

3
1

)

=

(

4
1

)

, L(v2) =

(

1 1
0 1

)(

2
1

)

=

(

3
1

)

.

Clearly, L(v2) = v1 = 1v1 + 0v2.

L(v1) = αv1 + βv2 ⇐⇒

{

3α + 2β = 4
α + β = 1

⇐⇒

{

α = 2
β = −1

Thus N =

(

2 1
−1 0

)

.



Problem. Find the matrix of the identity mapping
L : R

2 → R
2, L(x) = x with respect to the bases:

(i) e1 = (1, 0), e2 = (0, 1) and e1, e2;

(ii) v1 = (3, 1), v2 = (2, 1) and v1, v2;
(iii) v1, v2 and e1, e2;

(iv) e1, e2 and v1, v2.

The desired matrix is the transition matrix from
the first basis to the second one:

A1 = A2 =

(

1 0
0 1

)

, A3 =

(

3 2
1 1

)

,

A4 = A−1

3
=

(

1 −2
−1 3

)

.



Change of basis

Consider a linear operator L : R
n → R

n. It is given
by L(x) = Ax, x ∈ R

n, where A is an n×n matrix.

Let u1, u2, . . . , un be a nonstandard basis for R
n.

If we change the standard coordinates in R
n to the

coordinates relative to u1, u2, . . . , un, then the
operator L is given by L(y) = By, y ∈ R

n, where B

is another n×n matrix.

A is the matrix of L relative to the standard basis.
B is the matrix of L relative to the basis u1, . . . , un.

Columns of A are vectors L(e1), . . . , L(en).

Columns of B are coordinates of vectors
L(u1), . . . , L(un) relative to the basis u1, . . . , un.



Problem 1. Given the matrix A, find the matrix B .

Problem 2. Given the matrix B , find the matrix A.

Let uj = (u1j , u2j , . . . , unj), j = 1, 2, . . . , n.

Consider the transition matrix U = (uij) from the
basis u1, . . . , un to the standard basis.

Theorem A = UBU−1, B = U−1AU .

Proof: It is enough to prove the 2nd formula as

B=U−1AU =⇒ UBU−1=U(U−1AU)U−1=(UU−1)A(UU−1)=A.

Take any x ∈ R
n and let y be the (vector of) nonstandard

coordinates of x.

Then Uy are standard coordinates of x
=⇒ AUy are standard coordinates of L(x)
=⇒ U−1AUy are nonstandard coordinates of L(x).



Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1

0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let S be the matrix of L with respect to the standard basis,
N be the matrix of L with respect to the basis v1, v2, and U be
the transition matrix from v1, v2 to e1, e2. Then N = U−1SU.

S =

(

1 1
0 1

)

, U =

(

3 2
1 1

)

,

N = U−1SU =

(

1 −2
−1 3

) (

1 1
0 1

) (

3 2
1 1

)

=

(

1 −1
−1 2

) (

3 2
1 1

)

=

(

2 1
−1 0

)

.


