Math 304-504
Linear Algebra

Lecture 21:

Matrix of a linear transformation.

Linear mapping $=$ linear transformation $=$ linear function
Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Basic properties of linear mappings:

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}$ and $L(\mathbf{x}) \in \mathbb{R}^{m}$ are regarded as column vectors.
This transformation is linear.
Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for \mathbb{R}^{3}. Then vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Theorem 1 Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V. Then
(i) any linear mapping $L: V \rightarrow W$ is uniquely determined by vectors $L\left(\mathbf{v}_{1}\right), L\left(\mathbf{v}_{2}\right), \ldots, L\left(\mathbf{v}_{n}\right)$;
(ii) for any vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n} \in W$ there exists a linear mapping $L: V \rightarrow W$ such that $L\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$, $1 \leq i \leq n$.

Theorem 2 Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. The columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{R}^{n}.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

provides a one-to-one correspondence between V and \mathbb{R}^{n}. Besides, this mapping is linear.

Matrix of a linear mapping

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis. Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for W and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to \mathbb{R}^{m}. It is represented as $\mathbf{v} \mapsto A \mathbf{v}$, where A is an $m \times n$ matrix. A is called the matrix of f with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of A are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Examples. - $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}, \quad(D p)(x)=p^{\prime}(x)$.
Let A_{D} be the matrix of D with respect to the bases $1, x, x^{2}$ and $1, x$. Columns of A_{D} are coordinates of polynomials $D 1, D x, D x^{2}$ w.r.t. the basis $1, x$.
$D 1=0, D x=1, D x^{2}=2 x \Longrightarrow A_{D}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$

- $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}, \quad(L p)(x)=p(x+1)$.

Let A_{L} be the matrix of L w.r.t. the basis $1, x, x^{2}$. $L 1=1, L x=1+x, L x^{2}=(x+1)^{2}=1+2 x+x^{2}$.
$\Longrightarrow A_{L}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let N be the desired matrix. Columns of N are coordinates of the vectors $L\left(\mathbf{v}_{1}\right)$ and $L\left(\mathbf{v}_{2}\right)$ w.r.t. the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$.

$$
L\left(\mathbf{v}_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{3}{1}=\binom{4}{1}, \quad L\left(\mathbf{v}_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{1} .
$$

Clearly, $L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}=1 \mathbf{v}_{1}+0 \mathbf{v}_{2}$.
$L\left(\mathbf{v}_{1}\right)=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}3 \alpha+2 \beta=4 \\ \alpha+\beta=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha=2 \\ \beta=-1\end{array}\right.\right.$
Thus $N=\left(\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right)$.

Problem. Find the matrix of the identity mapping $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L(\mathbf{x})=\mathbf{x}$ with respect to the bases:
(i) $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$ and $\mathbf{e}_{1}, \mathbf{e}_{2}$;
(ii) $\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$ and $\mathbf{v}_{1}, \mathbf{v}_{2}$;
(iii) $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\mathbf{e}_{1}, \mathbf{e}_{2}$;
(iv) $\mathbf{e}_{1}, \mathbf{e}_{2}$ and $\mathbf{v}_{1}, \mathbf{v}_{2}$.

The desired matrix is the transition matrix from the first basis to the second one:
$A_{1}=A_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad A_{3}=\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right)$,
$A_{4}=A_{3}^{-1}=\left(\begin{array}{rr}1 & -2 \\ -1 & 3\end{array}\right)$.

Change of basis

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It is given by $L(\mathbf{x})=A \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}$, where A is an $n \times n$ matrix. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a nonstandard basis for \mathbb{R}^{n}. If we change the standard coordinates in \mathbb{R}^{n} to the coordinates relative to $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$, then the operator L is given by $L(\mathbf{y})=B \mathbf{y}, \mathbf{y} \in \mathbb{R}^{n}$, where B is another $n \times n$ matrix.
A is the matrix of L relative to the standard basis. B is the matrix of L relative to the basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.
Columns of A are vectors $L\left(\mathbf{e}_{1}\right), \ldots, L\left(\mathbf{e}_{n}\right)$.
Columns of B are coordinates of vectors $L\left(\mathbf{u}_{1}\right), \ldots, L\left(\mathbf{u}_{n}\right)$ relative to the basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Problem 1. Given the matrix A, find the matrix B.
Problem 2. Given the matrix B, find the matrix A.
Let $\mathbf{u}_{j}=\left(u_{1 j}, u_{2 j}, \ldots, u_{n j}\right), j=1,2, \ldots, n$.
Consider the transition matrix $U=\left(u_{i j}\right)$ from the basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ to the standard basis.

Theorem $\quad A=U B U^{-1}, \quad B=U^{-1} A U$.
Proof: It is enough to prove the 2 nd formula as

$$
B=U^{-1} A U \Longrightarrow U B U^{-1}=U\left(U^{-1} A U\right) U^{-1}=\left(U U^{-1}\right) A\left(U U^{-1}\right)=A .
$$

Take any $\mathbf{x} \in \mathbb{R}^{n}$ and let \mathbf{y} be the (vector of) nonstandard coordinates of \mathbf{x}.
Then $U \mathbf{y}$ are standard coordinates of \mathbf{x}
$\Longrightarrow A U \mathbf{y}$ are standard coordinates of $L(\mathbf{x})$
$\Longrightarrow U^{-1} A U \mathbf{y}$ are nonstandard coordinates of $L(\mathbf{x})$.

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let S be the matrix of L with respect to the standard basis, N be the matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, and U be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}$. Then $N=U^{-1} S U$.

$$
\begin{gathered}
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right), \\
N=U^{-1} S U=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
=\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

